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Abstract—This paper presents an approach to detecting 

perceived stress in students using data collected with 
smartphones. The goal is to develop a machine-learning model 
that can unobtrusively detect the stress level in students using 
data from several smartphone sources: accelerometers, audio 
recorder, GPS, Wi-Fi, call log and light sensor. From these, 
features were constructed describing the students’ deviation from 
usual behavior. As ground truth, we used the data obtained from 
stress level questionnaires with three possible stress levels:  “Not 
stressed”, “Slightly stressed” and “Stressed”. Several machine 
learning approaches were tested: a general models for all the 
students, models for cluster of similar students, and student-
specific models. Our findings show that the perceived stress is 
highly subjective and that only person-specific models are 
substantially better than the baseline. 
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I.  INTRODUCTION AND RELATED WORK 
Work-related stress is defined as harmful physical and 

psychological responses that occur when the requirements of a 
job do not match the capabilities, resources, or needs of a 
worker, which can lead to poor health and injury [1]. In a 
similar way, “study-related” stress can be defined, where 
instead of workers we observe students. By detecting students’ 
stress and reacting on time, not only their health is protected, 
but also their future can be improved by helping them to cope 
with stress, thus allowing them to achieve better performance 
in the studies and everyday life. The existing studies on stress 
detection can be roughly separated in two groups. In the first 
group are the studies [2][3][4] performed in a controlled 
laboratory environment where the stress is invoked 
intentionally by using some kind of stress test [5]. In these 
studies the researchers have complete control over the induced 
level of stress, and usually high stress detection accuracy is 
reported (80%–97%). Another approach to stress detection, 
besides physiological sensors, includes subject’s voice analysis 
[6][7]. In the second group are studies that are analyzing stress 
in real-life situations where either lower accuracy is achieved 
[8], or the presented system is quite obtrusive and not well-
suited for real-time stress detection, since large number 
physiological sensors are used [9]. All of the previous 
mentioned studies have one thing in common: the use of 
physiological sensors, which can be additional burden to the 
user regarding price and comfort. However, Zhai et al. [10] 

reported that by removing the data from one physiological 
sensor, the accuracy dropped from 93% to 62%. Regarding the 
research done on stress detection using smartphones, few 
studies exist. Bauer et al. [11] focused on detecting stress-
related changes in the subject’s behavior. Sano et al. [12] used 
smartphone data in combination with a physiological sensor for 
stress detection. The reported accuracy for a 2 class problem is 
over 73% by using 10-fold cross-validation. Muaremi et al. 
[13]  reported that the accuracy for a three-class problem 
dropped from 61% to 55% for user-specific, and from 53% to 
45% for the LOSO cross-validation, if the data from the 
physiological sensor is removed and only smartphone data is 
used. These results are a good indicator of how hard the 
problem of detecting stress by using only smartphone data is. 

In this study we focus on the detection of perceived stress 
in campus students using only automatic sensing data extracted 
from their smartphones. The data used for this study is freely 
available on web [14]. It is collected as part of a larger study 
(StudentLife) [15] where the authors used automatic sensing 
data from smartphones to assess students’ mental health, 
activity level, sociability, academic performance, and 
behavioral trends. Their approach is based on correlation 
analysis between different aspects of the students’ life. One of 
the main conclusions of that study is: “Results from the 
StudentLife study show a number of significant correlations 
between the automatic objective sensor data from smartphones 
and mental health and educational outcomes of the student 
body”. In our study we try to take their findings one step 
further by implementing machine-learning method that will be 
able to detect the students’ stress level. The stress detection is 
presented as a classification problem with three possible labels: 
“Not stressed”, “Slightly stressed” and “Stressed”. The ground 
truth is obtained from stress questionnaires, which the students 
answered throughout the StudentLife study in order to assess 
their perceived level of stress. 

The main contribution of our study is the proposed 
advanced machine learning approaches, including feature 
extraction (section III), combination of clustering and 
classification  algorithms (section IV.B) and person-adaptive 
classification approach (section IV.C), applied on data gathered 
completely in the wild. We present thorough analysis of each 
approach and insight into their pros and cons.  
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II. UNDERSTANDING THE DATA 
In the following section, the data used in this study is 

explained. For a more detailed information about the process of 
collecting the data, one can read the StudentLife study for 
which this data is originally collected. 

We used data extracted from the following sources:  

• Activity data, provided by an activity classifier which 
uses the smartphone’s accelerometer to detect the 
student’s activity (stationary, walking or running). 

• Audio data, provided by an audio classifier which uses 
the smartphone’s microphone to detect the student’s 
audio surrounding (silence, voice or noise).  

• Conversation data, provided by a conversation 
classifier detecting if the student is near a conversation.  

• GPS data, which is logged every 10 minutes.  

• Wi-Fi data, which is logged with a varying frequency.  

• Call log data, which provides information about the 
time and duration of the calls. 

• Light sensor data, battery charging data and locking 
data, which are logged if the smartphone had been in 
dark, charging or locked for a longer period of time. 

• Stress questionnaires data. The students had to rate 
their current stress level on a scale: feeling great, 
feeling good, little stressed, definitely stressed, stressed 
out. The stress level that we are trying to detect is a 
class value derived from the answers of these 
questionnaires. An instance is labeled “Not stressed”, if 
the student had answered feeling good or feeling great. 
An instance is labeled “Slightly stressed”, if the student 
had answered little stressed. An instance is labeled 
“Stressed” if the student had answered definitely 
stressed or stressed out. 

III. FEATURE EXTRACTION 
The features used in our study can be separated in three 

groups: short-term features, date-time features and relative 
epoch features.  

The short-term features are calculated using data only from 
the last two hours, regarding the answering time of the stress 
questionnaire.  These features are calculated in order to provide 
information about students’ behavior in the last two hours. The 
number of hours (two) was empirically chosen. In total 5 short-
term features were calculated: stationary ratio (number of 
stationary inferences divided by the number of non-stationary 
inferences), silence ratio (number of silence inferences divided 
by the number of non-silence inferences), voice ratio, noise 
ratio, conversation duration (sum of the duration of all 
conversations recognized by the conversation classifier). 

In total 3 date-time features were extracted: number of days 
until midterm, nominal feature related to the midterm (before, 
in and after midterm) and answering epoch (at which part of 
the day, the questionnaire is answered: morning, midday or 
night). 

The relative epoch features have two characteristics. The 
first one is the epoch (period) of the day for which are 
calculated, and the second is relativity to the student for which 
are calculated. Regarding the epoch characteristic, these 
features are calculated for three different epochs. The first 
epoch is from 07:30 am until 18:00 pm (roughly from waking 
up until the end of the classes). The second epoch is from 
18:00 pm until 00:00 am (period of the day when the students 
are studying, exercising, visiting friends, partying etc.). The 
third epoch is from 00:00 am until 07:30 am (period of the day 
when the students are probably sleeping). This granularity is 
introduced in order to distinguish the students’ behavior for the 
three different epochs of the day. For example high activity in 
the night epoch (00:00 am-07:30 am) might mean that the 
student did not sleep that night, whereas high activity in the 
morning epoch might have completely different meaning.   

Regarding the relativity characteristic of the relative epoch 
features, these features are calculated relative to the past 
behavior of the student for which are calculated. We introduced 
this relativity since features with absolute values (which we 
also tested, and performed worse than the relativity features) 
might have meaning only for user-specific stress detection. For 
example, a value for the activity level of one student can be 
obtained from the activity data (number of non-stationary 
inferences divided by the number of stationary inferences). 
However, activity level with value X for some students can be 
high activity level, but for other students it can be low or 
average activity level. By introducing the relative values of the 
features, we obtained an information about how the activity 
level changed compared to the past average activity level, 
regarding the activity data of the student for which it is 
calculated.  For example, the feature “activity deviation for 
epoch 1” was calculated by subtracting the average activity 
level for epoch 1 of the past two days, from the average activity 
level for epoch 1 of all the other days, excluding the past two 
days. In a similar manner, several sources of data are used for 
calculating relative epoch features. In total 44 relative epoch 
features were calculated. Each of the following features is 
calculated for each of the three epochs, except the last two 
which are for the whole day: activity deviation, silence 
deviation, voice deviation, noise deviation (time spent in silent, 
“voicy” or noisy audio surrounding relative to the past), 
number of calls deviation (number of smartphone calls relative 
to the past), duration of calls deviation (duration of all 
smartphone calls relative to the past), number of conversations 
deviation (number of conversation inferences recognized by 
the conversation classifier relative to the past), duration of 
conversations deviation, GPS distance deviation (distance 
traveled in the last 2 days calculated by using GPS coordinates 
relative to the past), stationary&silence deviation (time spent 
stationary and in silent audio surrounding relative to the past), 
stationary&voice, stationary&noise, stationary&conversation, 
nonstationary&conversation, maximum-call duration deviation 
(duration of the maximum call in the last 2 days relative to the 
average duration of calls of the past) and maximum-
conversation deviation. 

The data from the light sensor and if the phone was 
charging or locked for longer period of time, was used  to 
extract information about the students’ sleep time. From each 
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of the three sources, duration was calculated (e.g. duration of 
phone being in dark) using only data from the previous night 
(22:00 pm until 10:00 am). From the three durations, the 
maximum was taken. This simple approach might not predict 
the exact time of sleep duration, but we hypothesize that it has 
positive correlation with the sleep duration. In this way, two 
features were calculated, on for the previous night and one for 
the night before the previous night, regarding the answering 
time of the stress questionnaire. Also, the data from the Wi-Fi 
scans was used to obtain information about student’s current 
location, time spent there, and the location before the current 
location. 

Since some of the features were extracted using the same 
source of data, it was expected that there is a high correlation 
between some of them. For correlation analysis the Pearson's 
correlation coefficient was calculated, which is a measure of 
linear correlation (dependence) between two variables. From 
each pair of features having the correlation coefficient higher 
than 0.65, the one with less information was excluded. For 
example the features “silence deviation” and the features 
“stationary&silence deviation” for all three epochs, were 
highly correlated, so the features “silence deviation” were 
excluded. After the feature filtering using correlation analysis, 
47 features were left for further experiments, including the 
student id as a feature. 

IV. EXPERIMENTS 
After the feature extraction, several machine learning 

approaches were tested in order to provide classification 
models that can detect the student’s perceived level of stress. 
The classification algorithms were used as implemented in the 
machine learning toolkit, Weka. In the following subsections 
each machine learning approach is explained, and discussion 
about the evaluation results is presented. 

A. Leave one student out (LOSO) 
The LOSO cross-validation was performed by splitting the 

data into training and test sets, where the test set consisted only 
of the instances from one student and the training set of the rest 
of the data. This was done for each student and the results were 
averaged. SVM, j48, Bagging and Random Forest (RF) 
classifiers were compared. Random Forest, which proved 
slightly better than the rest, was also used as the base learner 
for Weka’s Ordinal classifier, which means the order of the 
stress levels was taken into account (Stressed > Sligtlly 
stressed > Not stressed). With the LOSO technique, none of the 
classifiers achieved better accuracy than the majority class 
classifier (ZeroR), which was 43%. SVM and RF achieved 
accuracy of 42%. This results are confirmation that building 
general machine learning model for detection of perceived 
stress is very challenging task. We believe that the low 
accuracy is consequence from one of the main characteristics 
of the perceived stress, which is subjectivity: “Individuals may 
suffer similar negative life events but appraise the impact or 
severity of these to different extents as a result of factors such 
as personality, coping resources, and support.” [16]. This 
characteristic makes it almost impossible to produce a general 
classification model by using only smartphone data. Our 
findings are in line with similar stress detection studies. For 

example Hernandez et al. [8] stated: “Although everyone had 
the same job profile, we found large differences in how 
individuals reported stress levels, with similarity from day to 
day within the same participant, but large differences across the 
participants.” A proof for the high subjectivity of the perceived 
stress in our data, we can see on Fig. 1, where the class 
distribution for 10 students is presented. On the y-axis is the 
number of instances. For example, students S4 and S5 reported 
almost all the time that they were stressed, while students S6 
and S9 reported stress only 10%–20% of the time. 

0
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Class distribution per student

Not stressed Slightly stressed Stressed
 

 
Figure 1. Class distribution for 10 students 

B. Cluster-specific classification 
With the previous approach we realized that building a 

general stress detection model for all the students is not 
feasible with our data. Therefore we wanted to try if clusters of 
students can be created for which accurate cluster-specific 
classification model can be built. First, the data of one student 
was removed to be used as test data. On the remaining data, a 
clustering algorithm (Weka’s expectation maximization) was 
used to create clusters of students. For each student, all 
instances were assigned to the cluster which contained most of 
his/hers instances. Next, a classification algorithm (SVM, j48, 
Bagging, Random Forest, or Ordinal classifier) was used to 
train a cluster-specific model using only the data of the specific 
cluster. In the testing phase, the test student was assigned to the 
cluster in which most of his\hers instances were clustered by 
the clustering algorithm, and the cluster-specific classification 
model was used to classify the instances of the test student. In 
the clustering phase (training and testing), only the relative 
epoch features and the Wi-Fi features were used, since these 
features contained information about students’ average 
behavior, and we wanted to cluster students with similar 
behavior. In the classification phase all 47 features were used. 
This procedure was repeated for each student and the results 
averaged. With this technique, no significant improvement in 
the overall accuracy was achieved. The highest overall 
accuracy of 43% was achieved by J48 which was equal to the 
accuracy of the majority classifier.  

C. Learning with a calibration phase 
The idea behind the learning with a calibration phase is that 

at the beginning there exists a general classification model for 
stress detection which needs a calibration phase during which it 
is adapted to a specific student. Like previously, the data of one 
student was first removed to be used as test data. From that test 
data, X random instances were moved to the training data as 
calibration data. This means that the training data consisted of 
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all the data from the other students and X instances belonging 
to the test student. A general model was then trained on the 
training data, and evaluated on the test data. This procedure 
was repeated for each student and the results averaged. With 
this technique Random Forest was tested and compared to 
classifiers trained only on the calibration data of the test 
student. In Fig. 2 it is presented how the accuracy changes as 
the X – the amount of calibration data – increases. The 
“General RF” classifier was trained on the calibration data and 
the data of other students, while the “Specific” classifiers were 
trained on the calibration data only. In order to avoid 
overfitting (since the “Specific RF” model had small amounts 
of data to train), the number of features is reduced to 20. The 
reduction is done by averaging the features for different epochs 
of the day. For example, the three features average activity for 
epoch 1, average activity for epoch 2 and average activity for 
epoch 3, are replaced by one feature, which is average of the 
three. Also, the short-term features were excluded. From the 
results in Fig. 2, we can see that starting from three calibration 
instances, the “Specific RF” model performs better than the 
“Specific ZeroR” and the “General RF” (even though the 
“General RF” had more training data), which is another 
indicator of how superior are the specific models for this data. 
In general, the accuracy of the “Specific RF” increases as the 
amount of calibration instances increases. The first 
significantly high accuracy of 60% is achieved for 23 
calibration instances which correlates with the number of 
features used in this approach (20).  

45
50
55
60
65

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Average Accuracy

Specific RF Specific ZeroR General RF  
Figure 2. Average accuracy for varying number of calibration instances. 

V. CONCLUSION 
Building general classification models for perceived stress 

detection using only smartphone data is challenging problem. 
Even clustering students’ with similar behavior using 
automatic sensing data, and building cluster-specific 
classification models didn’t improve the average accuracy for 
the stress classification. These findings were confirmed by the 
technique “Learning with a calibration phase”, where the 
person-specific model yielded best results. Once the 
classification algorithm had enough data to build a model, it 
performed better than the majority class classifier and the 
general classifier. Perceived stress is very subjective and each 
individual is specific, so smartphone stress detection can be 
done by building person-specific models, where certain period 
of time (e.g. 20-25 days) user input is needed. In the future, we 
plan to add smartphone based voice analysis [17], serious sleep 
analysis [18] and social media analysis to automatically and 

unobtrusively detect stress. Also, new smartphone technologies 
(such as Samsung Galaxy S5’s heart rate monitor) can be easily 
integrated into our approach. 
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