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Abstract 

In recent years, activity recognition (AR) has become 

prominent in ubiquitous systems. Following this trend, 

the Sussex-Huawei Locomotion-Transportation  

(SHL) recognition challenge provides a unique 

opportunity for researchers to test their AR methods 

against a common, real-life and large-scale benchmark. 

The goal of the challenge is to recognize eight everyday 

activities including transit. Our team, JSI-Deep, utilized 

an AR approach based on combining multiple machine-

learning methods following the principle of multiple 

knowledge. We first created several base learners using 

classical and deep learning approaches, then integrated 

them into an ensemble, and finally refined the 

ensemble’s predictions by smoothing. On the internal 

test data, the approach achieved 96% accuracy, which 

is a significant leap over the baseline 60%. 
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Introduction 

Smart devices have become an indispensable part of 

our life. Smart phones, smart watches and other 

wearables accompany us everywhere. By analyzing 

sensor data acquired via such devices, applications and 

services can be developed that contribute to safety, 

health, comfort and overall quality of life. 

One of the most easily obtained pieces of information 

from sensor data is the user’s geolocation, which can 

already be exploited for many location-sensitive 

services. However, to truly understand the user’s 

intentions, and to provide even more personalized 

services, we require more specific information, such as 

user’s activity. Precise activity recognition (AR) also 

provides a context and semantics of the user’s actions. 

The Sussex-Huawei Locomotion-Transportation  

(SHL) recognition challenge [1] addresses the problem 

of not only recognizing common activities – walking, 

running, standing still and biking – but also introduces 

a new and interesting focus on transportation – bus, 

car, train and subway. This presents a certain 

challenge, since a small bus is similar to a big car, and 

subway is actually an underground train.  

This paper describes the approach of our team, JSI-

Deep, to the SHL recognition challenge. It uses state-

of-the-art methods, starting with preprocessing, feature 

extraction and feature selection. Several models are 

then trained with classical machine learning and deep 

learning algorithms. The outputs of the models are 

combined in an ensemble, and the final predictions are 

smoothed with a Hidden Markov model (HMM). 

We believe that key to good performance of our 

approach is the application of many varied methods 

applied in parallel and in sequence – the use of the so-

called multiple knowledge, also termed multi-view 

approach, which is in regular use in the Department of 

Intelligent Systems at Jožef Stefan Institute [13]. It is 

known that top performance can be achieved this way, 

as often demonstrated by ensembles of machine-

learning models.  

Related Work 

The AR domain has been thoroughly explored in the 

past using body-worn sensors, ambient sensors and 

combinations of them. Here we focus only on the body-

worn sensors, since smartphones and smart watches 

are most frequently used for the task today.  

The most frequent AR task is classifying activities in 

relation to movement, e.g., walking, running, standing 

still and cycling [4]. Different approaches using 

standard machine learning and feature extractions have 

been used and tested [2,3] on various datasets 

[9,10,11,12].  

However, in the last years several attempts were also 

made with deep learning [5]. Surprisingly, this domain 

is still not dominated by deep learning, unlike the 

computer vision and some other domains, most likely 

because deep learning in AR is not clearly superior to 

classical machine learning. 

Several attempts have been made in the past in 

classification of just one activity, or distinguishing 

between activities related to one domain (e.g. 

transportation) [6,7,8]. 



 

However, the SHL recognition challenge seems to be 

more ambitious, trying to classify a wide variety of 

activities both human movement- and transportation-

related. Therefore, the main and most important 

related work to this paper are other papers submitted 

to this challenge. 

Data 

The overall data belongs to the SHL recognition 

challenge [1]. It is recorded by a Huawei Mate 9 

smartphone carried by a single participant over a 

period of 4 months. The participant was performing the 

activities on a daily basis (approximately 5-8 hours per 

day) with the phone logging the sensors data and being 

worn inside the front right pocket (not fixed 

orientation). 

The dataset contains the following sensor data: 

accelerometer, including separate linear acceleration 

and gravity, orientation (quaternions), gyroscope, 

magnetometer and ambient pressure. The dataset is 

labelled with the following eight activities: Car, Bus, 

Train, Subway, Walk, Run, Bike, and Still. The dataset 

is segmented in non-overlapping windows with 1-

minute length, and the order of the 1-minute windows 

was provided by the organizers.  

For the development and evaluation, the overall 

labelled dataset from the challenge (i.e., without the 

final test data which was provided as randomly ordered 

1-minute windows without the class label) was first 

ordered and then split the dataset into three subsets: 

the first 25% was used as an internal holdout set, the 

second 25% was used as an internal test set, and the 

last 50% were used as an internal training set. Each 

split again consisted of 1-minute windows.  

Method 

During the process of designing our approach, the main 

idea was to apply the advantages of multiple 

knowledge as much as possible [13]: present many 

reasonably different viewpoints of highest possible 

quality and sensibly combine them, with the 

expectation that the result will be superior to that of 

individual methods. This is the rationale for using 

several classical machine learning (ML) algorithms and 

deep neural networks (DNN). The result is shown in 

Figure 1: it is an ensemble of deep and classical ML 

models, combined with a stochastic Hidden Markov 

model. The ensemble consists of ten base models: one 

DNN- Spectrogram model and nine Feature-based 

models learned with nine different ML algorithms. The 

output class probabilities from the base models are fed 

into a Meta model, which outputs a class prediction. 

Finally, the class prediction of the Meta model is 

corrected by the HMM, which aims to find similar 

patterns in the data that would have similar labels. The 

details of each component are presented in the 

following subsections. 

Base models 

The Feature-based models (one DNN model and eight 

classical ML models) are build using features extracted 

from the sensor data. Before the feature extraction, the 

sensor data is down sampled to 50 Hz. Next, virtual 

sensor streams are calculated based on the real ones 

with the same (50 Hz) frequency. The virtual sensors 

can be grouped in three categories. Magnitudes were 

calculated for each three-axis sensor as the square root 

of the sum of the squared axis values. De-rotated 

sensor streams were computed by de-rotating sensor 

data from body (phone) coordinate system to NED 

(North-East-Down). 



 

This helps to get orientation-independent sensor values. 

Finally, the Euler angles (i.e. pitch, roll and yaw) were 

calculated using quaternions. After the preprocessing 

there were 30 different streams of sensor data with 50 

Hz frequency. Using the preprocessed data, we 

calculated 1696 features. The features belong to three 

groups: time-domain features typically used in AR, 

frequency-domain features, and general-purpose 

features for time-series analysis. A more complete list of 

features and the details of the feature-extraction 

implementation are reported in our other submission 

[14]. 

After the feature extraction, the data was fed to the 

following nine algorithms: Fully connected DNN, Random 

Forest, Gradient Boosting, Extreme Gradient Boosting, 

SVM, AdaBoosting, KNN, Gaussian Naïve Byes and 

Decision Tree. The typical ML algorithms were used as 

implemented in the scikit-learn python library. The 

models’ hyperparameters were tuned using randomized 

2-fold parameter search. For the DNN-Features model 

we experimented with different architectures, and the 

best performing was the architecture with 2 fully 

connected dense layers with 256 and 128 neurons. 

Similarly, for the DNN-Spectrogram model we 

experimented with different architectures, including 

Figure 1. The architecture of our approach. 

 

 

 

 

 



 

CNNs and LSTMs. The final architecture is depicted in 

the left half of Figure 1. For each raw sensor data, i.e., 

3D acceleration, 3D gyroscopes, 3D linear acceleration, 

4D orientation, 3D magnetometer and pressure data, a 

spectrogram representation is calculated using Fourier 

transformation. The spectrograms are represented as 

n-D arrays with dimensions P x T x N. P represents the 

number of spectral bands; T represents the time for 

which the spectral power is calculated; N represents 

the number of axes for the specific sensor type (e.g., 

the accelerometer has three axes, the orientation 

sensor has four axes and the pressure sensor has only 

one axis). The n-D arrays are used as input to a fully 

connected DNN. The first layer of the network is a 

sensor-specific layer, which learns sensor-specific 

parameters. There are 128 neurons for each sensor 

type, thus overall there are 896 (7x128) neurons in the 

sensor-specific layer. The output of the sensor-specific 

layer is merged using a shared Highway layer, which is 

followed by a fully connected layer with 1024 neurons. 

The output of the model is obtained from the final layer 

with a softmax activation function yielding a class 

probability distribution. 

To avoid overfitting, L2 regularization and dropout 

methods were used for all DNN models. The dropout 

probability was set to 0.3. The training was fully 

supervised, by back propagating the gradients through 

all layers. The parameters were optimized by 

minimizing the cross-entropy loss function using ADAM 

optimizer. The models were trained with a learning rate 

of 10−4.  The batch size was set to 2000, which 

translates to 1000 seconds of data par batch.  

Meta model 

The Meta model takes as inputs the class probabilities 

output by each of the ten base models. We evaluated 

Meta models built with the seven ML algorithms: 

Random Forest, Gradient Boosting, SVM, AdaBoosting, 

KNN, Gaussian Naïve Byes and Decision Tree, and 

tuned them. Each model was trained on the first 25% 

of the challenge data (the internal holdout data) and 

evaluated on the second 25% of the challenge data 

(the internal test data). The hyperparameter tuning 

was performed using 2-fold randomized parameter 

search on the model’s training data. The best 

performing model on the evaluation data was picked as 

the final Mmodel. 

HMM 

Classification accuracy can be improved by considering 

the probability of a classified sequence. For example, 

the classified sequence: Train, Train, Bus, Train, Train, 

makes little practical sense, particularly in a short time 

interval, e.g., a couple of seconds. A misclassification of 

the “Bus” instance is much more probable than the user 

switching from a bus to a train and back in that time.   

In order to find and correct this kind of mistakes we 

employed the HMM method. This method assumes that 

there are some hidden internal states (in our case 

activities) that emit some signal at each time step (in 

our case classifications). The parameters of such 

system are both the probabilities of transitions and 

emissions. Both can easily be inferred from the dataset 

– all we need is transition probabilities between each 

pair of activities and the confusion matrix of the 

classifier. Having the parameters of the system, a 

sequence of sequential classifications is given as to the 



 

HMM method, which returns the most likely sequence 

of internal states – activities.  

There are two possible scenarios where the HMM 

method can be used. In the first case (see Figure 2) the 

whole classified sequence is known in advance. In this 

case, the HMM method can be used directly. In a real-

life setting, this corresponds to reporting the classified 

activities to the user with a delay (as the HMM method 

uses instances classified after the current one). 

Different delays were tested to determine the relation 

between the sequence length and the method’s 

usefulness.  

In the second case (see Figure 3), we have the entire 

history of classifications, but we cannot see the future 

ones. In a real-life setting, this corresponds to 

reporting activities to the user as they happen. This can 

be implemented by using the HMM to predict only the 

last element of the sequence, while iteratively 

lengthening it. 

The HMM method requires instances to ordered in 

sequence. For the final test data, where the correct 

sequence of instances was unknown, clusters of 

instances were assembled in order assumed to be 

correct based on their similarity calculated form the 

sensor data. 

Computational resources and implementation 

Most of the software is implemented in Python, only the 

extraction of the time-domain features typically used in 

AR is in Kotlin. The general-purpose features for time-

series analysis are extracted with the TSFresh library. 

Some of the software for feature extraction and 

selection is proprietary (our own), while the rest is 

open-source. The ensemble schema used here is 

considered novel. The supervised ML models are 

trained with Keras and scikit-learn, and the HMM 

method was implemented using the hmmlearn library. 

All ML models in the method, i.e., base, meta and 

HMM, are learned using a PC with the following 

configuration: CPU 4 cores 3.3 GHz, 16 GiB of RAM and 

nVIDIA GeForce GTX1070 graphic card. For the feature 

extraction, several workstations were with comparable 

configurations. 

Regarding the time complexity, the pre-processing and 

feature extraction required ~6 hours, the model 

training required ~30 minutes, and the model testing 

required ~1 minute on the internal test data (once the 

features were extracted). 

Experimental results 

The first step in developing our approach was to decide 

on the time windows to classify. Windows from 10 

seconds to 1 minute were tested, but the 1-minute 

window consistently yielded the highest classification 

accuracy, so we report the results for classification of 

1-minute windows. 

Figure 4 summarizes the experimental results. The first 

group, before the first double line, represents the 

accuracies of the 10 base models + the majority 

classifier. The next group, between the double lines 

(also marked with “M”), represents the accuracies of 

the complete ensemble using meta models trained with 

different machine-learning algorithms. The final group, 

after the second double line, represents the accuracies 

of the ensemble with its predictions smoothed by the 

Figure 2. Sequential classified 

windows, compared to HMM 

predictions. T - Train, B - Bus. 

 

Figure 3. Iterative HMM 

predictions. Top row in each pair 

is the classified activity, bottom 

one is the predicted activity. 

Sequence is iteratively 

lengthened as more of the 

history becomes known. 



 

HMM method. HMM-Past considers only the past data, 

HMM-2 and HMM-6 provide the output after a 2 or 6 

time slots, while HMM-All had all the data as input.  

For the base models it can be seen that the highest 

accuracy of 90.2% is achieved by the Extreme Gradient 

Boosting Model (XGB). The DNN Spectrogram model 

(DNN-Spec.) has a 7.6 percentage points lower 

accuracy compared to the DNN Features model (DNN-

Feat.). 

For the ensemble using meta models, it can be seen 

that the meta model built with the Gradient Boosting 

algorithm (GB-M) has the highest accuracy of 92.2%. 

Finally, the results using the HMM method show that 

the HMM significantly increases the accuracy up to 

96%. When working with past data only, this benefit is 

halved, but it is still present. The small accuracy 

difference between HMM-6 and HMM-All indicates that a 

couple of time slots are sufficient to smooth the data. 

Also, HMM-Past has the smallest achieved accuracy 

compared to the other three HMM variations, indicating 

that classifying with some delay is better than 

classifying immediately. 

Conclusion 

The approach described in this paper depicts a 

complexity vs. accuracy tradeoff. The “simplest”, one-

model approach, achieved an accuracy of 90.2%. 

However, once the second-level of complexity was 

added – the ensemble of ten different models – the 

accuracy increased by 2 percentage points. Finally, the 

third-level of complexity – the HMM-all method on top 

of the ensemble predictions – yielded another 4 

percentage point, resulting in the final accuracy of 

96%. 

The DNNs deserve special comment, since they are the 

name-sake of the team and not commonly used for AR. 

The spectrogram model (DNN-Spec.) had a 7.6 

percentage points lower accuracy compared to the 

features model (DNN-Feat.). This indicates that the 

features contain more information than spectrograms, 

which seems reasonable, since they contain additional 

specialized time-domain information, i.e., hand-crafted 

features that are based on the sensor’s amplitudes. 

Whereas the spectrograms only contain information 

about the change in the frequency bans over time. The 

DNN model using features was comparable to the best 

classical models, demonstrating that deep and classical 

approaches are comparable in this case. 

Discussion 

A part of our approach to the SHL recognition challenge 

was already the organization of the work. We joined the 

challenge with a reasonably large group consisting of 

senior and junior researchers as well as a couple of 

students. The group was split into two teams; the first 

was concentrated on fine expert tuning of the input 

data and one best classical ML method [14]. The other 

team, whose work is described in this paper, was 

focused on deep learning, finding the best ensemble 

and smoothing. 

At the beginning, the teams did not share information, 

only in the last weeks they started discussing their 

work. The rationale is that their mind-sets should be as 

different as possible to maximize the benefits of 

multiple knowledge [13]. Only after each team had the 

Algorithm Test Accuracy

Majority 16.0%

RF 84.8%

SVM 87.1%

GB 89.5%

ADA 60.0%

KNN 81.5%

NB 76.2%

DT 74.1%

XGB 90.2%

DNN-Feat. 89.4%

DNN-Spec. 81.8%

RF-M 92.0%

SVM-M 90.6%

GB-M 92.2%

ADA-M 68.5%

KNN-M 90.8%

NB-M 85.9%

DT-M 87.5%

HMM-Past 94.0%

HMM-2 95.0%

HMM-6 95.5%

HMM-All 96.0%

Figure 4. Accuracy on the internal test 

data. 



 

chance to come up with good ideas were their insights 

shared in order to get best overall results.  

The overall increase of the classification accuracy 

reported in this paper over the baseline 60% can be 

attributed both to careful preprocessing, feature 

extraction and selection, as well as to successful use of 

multiple knowledge, implemented in the form of an 

ensemble, and on successful smoothing using the HMM 

method. The contribution of preprocessing, feature 

extraction and selection amounts to roughly 20 

percentage points, corresponding to the accuracy of 

around 90% achieved by the JSI-Classic team [14]. 

The additional 6 percentage points are due to the 

ensemble and HMM smoothing, which does not seem so 

much compared to the 20 percentage points of the JSI-

Classic approach, but still rather significant, having in 

mind that 100% is the absolute limit.  

The obtained results show the power of ML when used 

with expert multiple knowledge based on years of 

experience. It also demonstrates the progress of the 

field: the domains considered very difficult some years 

ago can now be solved very well, given enough time, 

human resources and accumulated knowledge. 

Finally, the recognition result on the final SHL test 

dataset will be presented in the summary paper of the 

challenge [15]. 
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