

Applying Multiple Knowledge to
Sussex-Huawei Locomotion Challenge

Abstract

In recent years, activity recognition (AR) has become

prominent in ubiquitous systems. Following this trend,

the Sussex-Huawei Locomotion-Transportation

(SHL) recognition challenge provides a unique

opportunity for researchers to test their AR methods

against a common, real-life and large-scale benchmark.

The goal of the challenge is to recognize eight everyday

activities including transit. Our team, JSI-Deep, utilized

an AR approach based on combining multiple machine-

learning methods following the principle of multiple

knowledge. We first created several base learners using

classical and deep learning approaches, then integrated

them into an ensemble, and finally refined the

ensemble’s predictions by smoothing. On the internal

test data, the approach achieved 96% accuracy, which

is a significant leap over the baseline 60%.

Author Keywords

Activity recognition, machine learning, deep learning,

ensembles, HMM, competition

ACM Classification Keywords

H.2.8 [Database Applications]: Data mining; 1.5.4

[Applications]: Signal processing.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

UbiComp/ISWC'18 Adjunct, October 8–12, 2018, Singapore, Singapore

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5966-5/18/10�$15.00

https://doi.org/10.1145/3267305.3267515

Martin Gjoreski

Vito Janko
Nina Reščič
Miha Mlakar
Mitja Luštrek

Department of Intelligent
Systems
Jožef Stefan Institute,
Ljubljana, Slovenia

martin.gjoreski@ijs.si
vito.janko@ijs.si
nina.rescic@ijs.si
miha.mlakar@ijs.si
mitja.lustrek@ijs.si

Jani Bizjak
Gašper Slapničar
Matej Marinko
Vid Drobnič
Matjaž Gams

Department of Intelligent
Systems
Jožef Stefan Institute,
Ljubljana, Slovenia

jani.bizjak@ijs.si
gasper.slapnicar@ijs.si
matej.marinko123@gmai.com
vid.drobnic@gmail.com
matjaz.gams@ijs.si

mailto:Permissions@acm.org
https://doi.org/10.1145/3267305.3267515

Introduction

Smart devices have become an indispensable part of

our life. Smart phones, smart watches and other

wearables accompany us everywhere. By analyzing

sensor data acquired via such devices, applications and

services can be developed that contribute to safety,

health, comfort and overall quality of life.

One of the most easily obtained pieces of information

from sensor data is the user’s geolocation, which can

already be exploited for many location-sensitive

services. However, to truly understand the user’s

intentions, and to provide even more personalized

services, we require more specific information, such as

user’s activity. Precise activity recognition (AR) also

provides a context and semantics of the user’s actions.

The Sussex-Huawei Locomotion-Transportation

(SHL) recognition challenge [1] addresses the problem

of not only recognizing common activities – walking,

running, standing still and biking – but also introduces

a new and interesting focus on transportation – bus,

car, train and subway. This presents a certain

challenge, since a small bus is similar to a big car, and

subway is actually an underground train.

This paper describes the approach of our team, JSI-

Deep, to the SHL recognition challenge. It uses state-

of-the-art methods, starting with preprocessing, feature

extraction and feature selection. Several models are

then trained with classical machine learning and deep

learning algorithms. The outputs of the models are

combined in an ensemble, and the final predictions are

smoothed with a Hidden Markov model (HMM).

We believe that key to good performance of our

approach is the application of many varied methods

applied in parallel and in sequence – the use of the so-

called multiple knowledge, also termed multi-view

approach, which is in regular use in the Department of

Intelligent Systems at Jožef Stefan Institute [13]. It is

known that top performance can be achieved this way,

as often demonstrated by ensembles of machine-

learning models.

Related Work

The AR domain has been thoroughly explored in the

past using body-worn sensors, ambient sensors and

combinations of them. Here we focus only on the body-

worn sensors, since smartphones and smart watches

are most frequently used for the task today.

The most frequent AR task is classifying activities in

relation to movement, e.g., walking, running, standing

still and cycling [4]. Different approaches using

standard machine learning and feature extractions have

been used and tested [2,3] on various datasets

[9,10,11,12].

However, in the last years several attempts were also

made with deep learning [5]. Surprisingly, this domain

is still not dominated by deep learning, unlike the

computer vision and some other domains, most likely

because deep learning in AR is not clearly superior to

classical machine learning.

Several attempts have been made in the past in

classification of just one activity, or distinguishing

between activities related to one domain (e.g.

transportation) [6,7,8].

However, the SHL recognition challenge seems to be

more ambitious, trying to classify a wide variety of

activities both human movement- and transportation-

related. Therefore, the main and most important

related work to this paper are other papers submitted

to this challenge.

Data

The overall data belongs to the SHL recognition

challenge [1]. It is recorded by a Huawei Mate 9

smartphone carried by a single participant over a

period of 4 months. The participant was performing the

activities on a daily basis (approximately 5-8 hours per

day) with the phone logging the sensors data and being

worn inside the front right pocket (not fixed

orientation).

The dataset contains the following sensor data:

accelerometer, including separate linear acceleration

and gravity, orientation (quaternions), gyroscope,

magnetometer and ambient pressure. The dataset is

labelled with the following eight activities: Car, Bus,

Train, Subway, Walk, Run, Bike, and Still. The dataset

is segmented in non-overlapping windows with 1-

minute length, and the order of the 1-minute windows

was provided by the organizers.

For the development and evaluation, the overall

labelled dataset from the challenge (i.e., without the

final test data which was provided as randomly ordered

1-minute windows without the class label) was first

ordered and then split the dataset into three subsets:

the first 25% was used as an internal holdout set, the

second 25% was used as an internal test set, and the

last 50% were used as an internal training set. Each

split again consisted of 1-minute windows.

Method

During the process of designing our approach, the main

idea was to apply the advantages of multiple

knowledge as much as possible [13]: present many

reasonably different viewpoints of highest possible

quality and sensibly combine them, with the

expectation that the result will be superior to that of

individual methods. This is the rationale for using

several classical machine learning (ML) algorithms and

deep neural networks (DNN). The result is shown in

Figure 1: it is an ensemble of deep and classical ML

models, combined with a stochastic Hidden Markov

model. The ensemble consists of ten base models: one

DNN- Spectrogram model and nine Feature-based

models learned with nine different ML algorithms. The

output class probabilities from the base models are fed

into a Meta model, which outputs a class prediction.

Finally, the class prediction of the Meta model is

corrected by the HMM, which aims to find similar

patterns in the data that would have similar labels. The

details of each component are presented in the

following subsections.

Base models

The Feature-based models (one DNN model and eight

classical ML models) are build using features extracted

from the sensor data. Before the feature extraction, the

sensor data is down sampled to 50 Hz. Next, virtual

sensor streams are calculated based on the real ones

with the same (50 Hz) frequency. The virtual sensors

can be grouped in three categories. Magnitudes were

calculated for each three-axis sensor as the square root

of the sum of the squared axis values. De-rotated

sensor streams were computed by de-rotating sensor

data from body (phone) coordinate system to NED

(North-East-Down).

This helps to get orientation-independent sensor values.

Finally, the Euler angles (i.e. pitch, roll and yaw) were

calculated using quaternions. After the preprocessing

there were 30 different streams of sensor data with 50

Hz frequency. Using the preprocessed data, we

calculated 1696 features. The features belong to three

groups: time-domain features typically used in AR,

frequency-domain features, and general-purpose

features for time-series analysis. A more complete list of

features and the details of the feature-extraction

implementation are reported in our other submission

[14].

After the feature extraction, the data was fed to the

following nine algorithms: Fully connected DNN, Random

Forest, Gradient Boosting, Extreme Gradient Boosting,

SVM, AdaBoosting, KNN, Gaussian Naïve Byes and

Decision Tree. The typical ML algorithms were used as

implemented in the scikit-learn python library. The

models’ hyperparameters were tuned using randomized

2-fold parameter search. For the DNN-Features model

we experimented with different architectures, and the

best performing was the architecture with 2 fully

connected dense layers with 256 and 128 neurons.

Similarly, for the DNN-Spectrogram model we

experimented with different architectures, including

Figure 1. The architecture of our approach.

CNNs and LSTMs. The final architecture is depicted in

the left half of Figure 1. For each raw sensor data, i.e.,

3D acceleration, 3D gyroscopes, 3D linear acceleration,

4D orientation, 3D magnetometer and pressure data, a

spectrogram representation is calculated using Fourier

transformation. The spectrograms are represented as

n-D arrays with dimensions P x T x N. P represents the

number of spectral bands; T represents the time for

which the spectral power is calculated; N represents

the number of axes for the specific sensor type (e.g.,

the accelerometer has three axes, the orientation

sensor has four axes and the pressure sensor has only

one axis). The n-D arrays are used as input to a fully

connected DNN. The first layer of the network is a

sensor-specific layer, which learns sensor-specific

parameters. There are 128 neurons for each sensor

type, thus overall there are 896 (7x128) neurons in the

sensor-specific layer. The output of the sensor-specific

layer is merged using a shared Highway layer, which is

followed by a fully connected layer with 1024 neurons.

The output of the model is obtained from the final layer

with a softmax activation function yielding a class

probability distribution.

To avoid overfitting, L2 regularization and dropout

methods were used for all DNN models. The dropout

probability was set to 0.3. The training was fully

supervised, by back propagating the gradients through

all layers. The parameters were optimized by

minimizing the cross-entropy loss function using ADAM

optimizer. The models were trained with a learning rate

of 10−4. The batch size was set to 2000, which

translates to 1000 seconds of data par batch.

Meta model

The Meta model takes as inputs the class probabilities

output by each of the ten base models. We evaluated

Meta models built with the seven ML algorithms:

Random Forest, Gradient Boosting, SVM, AdaBoosting,

KNN, Gaussian Naïve Byes and Decision Tree, and

tuned them. Each model was trained on the first 25%

of the challenge data (the internal holdout data) and

evaluated on the second 25% of the challenge data

(the internal test data). The hyperparameter tuning

was performed using 2-fold randomized parameter

search on the model’s training data. The best

performing model on the evaluation data was picked as

the final Mmodel.

HMM

Classification accuracy can be improved by considering

the probability of a classified sequence. For example,

the classified sequence: Train, Train, Bus, Train, Train,

makes little practical sense, particularly in a short time

interval, e.g., a couple of seconds. A misclassification of

the “Bus” instance is much more probable than the user

switching from a bus to a train and back in that time.

In order to find and correct this kind of mistakes we

employed the HMM method. This method assumes that

there are some hidden internal states (in our case

activities) that emit some signal at each time step (in

our case classifications). The parameters of such

system are both the probabilities of transitions and

emissions. Both can easily be inferred from the dataset

– all we need is transition probabilities between each

pair of activities and the confusion matrix of the

classifier. Having the parameters of the system, a

sequence of sequential classifications is given as to the

HMM method, which returns the most likely sequence

of internal states – activities.

There are two possible scenarios where the HMM

method can be used. In the first case (see Figure 2) the

whole classified sequence is known in advance. In this

case, the HMM method can be used directly. In a real-

life setting, this corresponds to reporting the classified

activities to the user with a delay (as the HMM method

uses instances classified after the current one).

Different delays were tested to determine the relation

between the sequence length and the method’s

usefulness.

In the second case (see Figure 3), we have the entire

history of classifications, but we cannot see the future

ones. In a real-life setting, this corresponds to

reporting activities to the user as they happen. This can

be implemented by using the HMM to predict only the

last element of the sequence, while iteratively

lengthening it.

The HMM method requires instances to ordered in

sequence. For the final test data, where the correct

sequence of instances was unknown, clusters of

instances were assembled in order assumed to be

correct based on their similarity calculated form the

sensor data.

Computational resources and implementation

Most of the software is implemented in Python, only the

extraction of the time-domain features typically used in

AR is in Kotlin. The general-purpose features for time-

series analysis are extracted with the TSFresh library.

Some of the software for feature extraction and

selection is proprietary (our own), while the rest is

open-source. The ensemble schema used here is

considered novel. The supervised ML models are

trained with Keras and scikit-learn, and the HMM

method was implemented using the hmmlearn library.

All ML models in the method, i.e., base, meta and

HMM, are learned using a PC with the following

configuration: CPU 4 cores 3.3 GHz, 16 GiB of RAM and

nVIDIA GeForce GTX1070 graphic card. For the feature

extraction, several workstations were with comparable

configurations.

Regarding the time complexity, the pre-processing and

feature extraction required ~6 hours, the model

training required ~30 minutes, and the model testing

required ~1 minute on the internal test data (once the

features were extracted).

Experimental results

The first step in developing our approach was to decide

on the time windows to classify. Windows from 10

seconds to 1 minute were tested, but the 1-minute

window consistently yielded the highest classification

accuracy, so we report the results for classification of

1-minute windows.

Figure 4 summarizes the experimental results. The first

group, before the first double line, represents the

accuracies of the 10 base models + the majority

classifier. The next group, between the double lines

(also marked with “M”), represents the accuracies of

the complete ensemble using meta models trained with

different machine-learning algorithms. The final group,

after the second double line, represents the accuracies

of the ensemble with its predictions smoothed by the

Figure 2. Sequential classified

windows, compared to HMM

predictions. T - Train, B - Bus.

Figure 3. Iterative HMM

predictions. Top row in each pair

is the classified activity, bottom

one is the predicted activity.

Sequence is iteratively

lengthened as more of the

history becomes known.

HMM method. HMM-Past considers only the past data,

HMM-2 and HMM-6 provide the output after a 2 or 6

time slots, while HMM-All had all the data as input.

For the base models it can be seen that the highest

accuracy of 90.2% is achieved by the Extreme Gradient

Boosting Model (XGB). The DNN Spectrogram model

(DNN-Spec.) has a 7.6 percentage points lower

accuracy compared to the DNN Features model (DNN-

Feat.).

For the ensemble using meta models, it can be seen

that the meta model built with the Gradient Boosting

algorithm (GB-M) has the highest accuracy of 92.2%.

Finally, the results using the HMM method show that

the HMM significantly increases the accuracy up to

96%. When working with past data only, this benefit is

halved, but it is still present. The small accuracy

difference between HMM-6 and HMM-All indicates that a

couple of time slots are sufficient to smooth the data.

Also, HMM-Past has the smallest achieved accuracy

compared to the other three HMM variations, indicating

that classifying with some delay is better than

classifying immediately.

Conclusion

The approach described in this paper depicts a

complexity vs. accuracy tradeoff. The “simplest”, one-

model approach, achieved an accuracy of 90.2%.

However, once the second-level of complexity was

added – the ensemble of ten different models – the

accuracy increased by 2 percentage points. Finally, the

third-level of complexity – the HMM-all method on top

of the ensemble predictions – yielded another 4

percentage point, resulting in the final accuracy of

96%.

The DNNs deserve special comment, since they are the

name-sake of the team and not commonly used for AR.

The spectrogram model (DNN-Spec.) had a 7.6

percentage points lower accuracy compared to the

features model (DNN-Feat.). This indicates that the

features contain more information than spectrograms,

which seems reasonable, since they contain additional

specialized time-domain information, i.e., hand-crafted

features that are based on the sensor’s amplitudes.

Whereas the spectrograms only contain information

about the change in the frequency bans over time. The

DNN model using features was comparable to the best

classical models, demonstrating that deep and classical

approaches are comparable in this case.

Discussion

A part of our approach to the SHL recognition challenge

was already the organization of the work. We joined the

challenge with a reasonably large group consisting of

senior and junior researchers as well as a couple of

students. The group was split into two teams; the first

was concentrated on fine expert tuning of the input

data and one best classical ML method [14]. The other

team, whose work is described in this paper, was

focused on deep learning, finding the best ensemble

and smoothing.

At the beginning, the teams did not share information,

only in the last weeks they started discussing their

work. The rationale is that their mind-sets should be as

different as possible to maximize the benefits of

multiple knowledge [13]. Only after each team had the

Algorithm Test Accuracy

Majority 16.0%

RF 84.8%

SVM 87.1%

GB 89.5%

ADA 60.0%

KNN 81.5%

NB 76.2%

DT 74.1%

XGB 90.2%

DNN-Feat. 89.4%

DNN-Spec. 81.8%

RF-M 92.0%

SVM-M 90.6%

GB-M 92.2%

ADA-M 68.5%

KNN-M 90.8%

NB-M 85.9%

DT-M 87.5%

HMM-Past 94.0%

HMM-2 95.0%

HMM-6 95.5%

HMM-All 96.0%

Figure 4. Accuracy on the internal test

data.

chance to come up with good ideas were their insights

shared in order to get best overall results.

The overall increase of the classification accuracy

reported in this paper over the baseline 60% can be

attributed both to careful preprocessing, feature

extraction and selection, as well as to successful use of

multiple knowledge, implemented in the form of an

ensemble, and on successful smoothing using the HMM

method. The contribution of preprocessing, feature

extraction and selection amounts to roughly 20

percentage points, corresponding to the accuracy of

around 90% achieved by the JSI-Classic team [14].

The additional 6 percentage points are due to the

ensemble and HMM smoothing, which does not seem so

much compared to the 20 percentage points of the JSI-

Classic approach, but still rather significant, having in

mind that 100% is the absolute limit.

The obtained results show the power of ML when used

with expert multiple knowledge based on years of

experience. It also demonstrates the progress of the

field: the domains considered very difficult some years

ago can now be solved very well, given enough time,

human resources and accumulated knowledge.

Finally, the recognition result on the final SHL test

dataset will be presented in the summary paper of the

challenge [15].

References

1. H. Gjoreski, M. Ciliberto, L. Wang, F. J. O. Morales,
S. Mekki, S. Valentin, D. Roggen. The University of
Sussex-Huawei Locomotion and Transportation
Dataset for Multimodal Analytics with Mobile
Devices. IEEE Access, 2018, [In Press], DOI:
10.1109/ACCESS.2018.2858933

2. W.-C. H, et al. "Activity recognition with sensors on
mobile devices." Machine Learning and Cybernetics
(ICMLC), 2014 International Conference on. Vol. 2.
IEEE, 2014.

3. C. A. Ronao and C. Sung-Bae. "Human activity
recognition with smartphone sensors using deep
learning neural networks." Expert Systems with
Applications 59 (2016): 235-244.

4. S. Kozina, H. Gjoreski, M. Gams, M. Luštrek (2013)
Efficient Activity Recognition and Fall Detection
Using Accelerometers. In: Botía J.A., Álvarez-
García J.A., Fujinami K., Barsocchi P., Riedel T.

(eds) Evaluating AAL Systems Through Competitive
Benchmarking. EvAAL 2013. Communications in
Computer and Information Science, vol 386.
Springer, Berlin, Heidelberg

5. H. Gjoreski et al. "Comparing deep and classical
machine learning methods for human activity
recognition using wrist accelerometer." Proceedings
of the IJCAI 2016 Workshop on Deep Learning for

Artificial Intelligence, New York, NY, USA. Vol. 10.
2016.

6. D. Ravi et al. "A deep learning approach to on-node
sensor data analytics for mobile or wearable
devices." (2016).

7. S. Wang, C. Chen and J. Ma, "Accelerometer Based
Transportation Mode Recognition on Mobile
Phones," 2010 Asia-Pacific Conference on Wearable
Computing Systems, Shenzhen, 2010, pp. 44-
46.doi: 10.1109/APWCS.2010.18

8. S. Reddy et al. "Using mobile phones to determine
transportation modes." ACM Transactions on

Sensor Networks (TOSN) 6.2 (2010): 13.

9. D. Roggen et al., "Collecting complex activity data
sets in highly rich networked sensor environments"
In Seventh International Conference on Networked
Sensing Systems (INSS’10), Kassel, Germany,
2010.

10. H. Teng et al., Chiron: translating nanopore raw
signal directly into nucleotide sequence using deep
learning, GigaScience, Volume 7, Issue 5, 1 May
2018,
giy037, https://doi.org/10.1093/gigascience/giy03
7

11. V. Janko et al. "e-Gibalec: Mobile application to
monitor and encourage physical activity in
schoolchildren." Journal of Ambient Intelligence and
Smart Environments 9.5 (2017): 595-609.

12. B. Cvetković et al., "Real-time physical activity and
mental stress management with a wristband and a

smartphone." Proceedings of the 2017 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2017
ACM International Symposium on Wearable
Computers. ACM, 2017.

13. M. Gams. Weak intelligence: through the principle
and paradox of multiple knowledge. Nova Science,
2001.

14. V. Janko et al. A New Frontier for Activity
Recognition -- The Sussex-Huawei Locomotion
Challenge; submitted to the same workshop as this
paper.

15. Lin Wang, Hristijan Gjoreski, Kazuya Murao,
Tsuyoshi Okita, Daniel Roggen. Summary of the
Sussex-Huawei Locomotion-Transportation
Recognition Challenge. Proceedings of the 6th
International Workshop on Human Activity Sensing
Corpus and Applications (HASCA2018). Singapore,
Oct. 2018.

https://doi.org/10.1093/gigascience/giy037
https://doi.org/10.1093/gigascience/giy037

