

SIGHTSEEING ROUTE PLANNING

Hristijan Gjoreski, Božidara Cvetković, Boštjan Kaluža, Mitja Luštrek

Department of Intelligent Systems, Jožef Stefan Institute,

Jožef Stefan International Postgraduate School,

e-mail: {hristijan.gjoreski, boza.cvetkovic, bostjan.kaluza, mitja.lustrek}@ijs.si

ABSTRACT

Route planning is a challenging task because it is a

combination of theoretically well-defined computational

problems on one side, and everyday-life decisions and

constraints on the other side. This paper presents an

approach to sightseeing route planning using theory of

computation. In particular, in this paper we discuss the

combination of two well-known computational

problems: knapsack and travelling salesman, and their

practical implementation in everyday life task ‒ route

planning. The algorithms are adapted in such way that

they find near optimal solution with minimum delay,

almost in real-time. The final result of the algorithms is

a suggested list of tourist attractions ordered by their

location and attractiveness.

1 INTRODUCTION

Tourism is very important branch for the economy of a

country. Its impact is not only economic, it also promotes a

country abroad and raises the awareness of our cultural and

natural heritage at home. In order to improve the tourism

branch in a country, tourists need information on the places

of visit delivered in an efficient and attractive fashion. This

is often a difficult task, since such information is scattered

across various publications and websites. One of the main

objectives of the e-Turist project [3] is collecting all the

useful touristic information in one place and extracting

useful touristic information in order to help the tourists to

plan their trip. This information is presented using web and

smartphone applications and mainly consists of

recommendations of tourist attractions and suggestions of

near optimal routes in order to visit all the selected tourist

attractions in the time frame available.

This paper presents an approach to sightseeing route

planning, which is a key component in the e-Turist project.

Route planning in general is a challenging task because it is

a combination of theoretically well-defined computational

problems on one side, and everyday-life decisions and

constraints on the other side. In particular, in this paper we

discuss two well-known problems: knapsack problem and

travelling salesman problem, and their practical

implementation in everyday life task ‒ route planning.

2 PROBLEM DESCRIPTION

The problem discussed in this paper addresses the question:

"How to plan your sightseeing route, once you have a list of

tourist attractions?". In other words, our solution tries to

find the near optimal sightseeing route, given the points of

interest and the time available for sightseeing.

To explain the basic concept, let us consider the

following example, shown in Figure 1. Each of the small

boxes represents a point of interest (POI). Additionally,

each POI has two features: a fixed visit time duration (the

average time a tourist spends at the POI) marked with Wi,

and an POI evaluation mark (a number from 1 to 5),

representing the attractiveness of the POI) marked with Vi.

On the other hand, there is a tourist, who is limited by time,

Wmax, and has only 7 hours for sightseeing. The problem

here is how to find the best route (combination of POIs)

given the tourist's time limit and the list of the POIs.

W1= 1h

W5= 3h

W2= 2h

Wmax = 7h

W4= 4h

?

W6= 5h

W3= 2h

P1 = 0.5h

P2 = 0.3h

Wp = TSP (POI1, POI2, POI4)

POI 1

POI 2

POI 4

POI 3

POI 5

POI 6

P3 = 0.8h

Figure 1: Modified knapsack problem.

Current description of the problem reminds of the

known knapsack problem [5], with the following

parameters: weight ‒ POI visit duration (Wi), and a value ‒
POI evaluation (Vi). The tourist's time limit is the maximum

weight that the knapsack can hold (Wmax). The optimal

solution for the example shown in Figure 1 is marked with

green color; POI number: 1, 2 and 4. It has a total value of 5

(V1 + V2 + V4) and total weight of 7 hours (Wtotal = W1 + W2

+ W4), which is also the maximum time that the tourist has

for his/hers sightseeing route. With this definition, the

problem can be solved in a pseudo-polynomial time with

dynamic programming [2]. However, this definition does

not include the path duration (duration needed to visit all

the POIs). In the example shown in Figure 1, that is the path

duration to visit POI 1, POI 2 and POI 4. If we assume that

the path duration is symmetric (the same duration stands for

POI1→POI2 and PO2→POI1), there are three different

path combinations:

 POI1→POI2→POI4

 POI1→POI4→POI2

 POI2→POI1→POI4

It is easy to check that the best (minimum duration) path

is POI1→POI2→POI4, which lasts for 0.7 hours (Wp = P1

+ P2). If this path duration is added to the previous total

time (Wtotal) the new total weight is 7.7 hours which is more

than the tourist's maximum time of 7 hours (Wmax).

Therefore, this solution should be discarded.

The path duration estimation problem opens a new sub-

problem inside the knapsack problem, i.e., how to find the

path route with minimum duration, given the POIs. This

sub-problem is also a known problem in the theory of

computation, called travelling salesman problem (TSP) [7].

In the following sections our proposed solution is explained

and the final implementation is presented.

3 ALGORITHM

As described in the previous section, we try to find a

solution to a knapsack problem, where the weight value

changes dynamically (with each algorithm iteration) and it

depends on the "boxes" (POIs) chosen. Additionally, the

path estimation is computationally expensive process,

because it requires solving an NP-hard problem, i.e., TSP.

Moreover, the final algorithm execution time should be in

the range of several seconds, because it will be used in a

real-time POI recommendation application, where the user

needs instant feedback from the system. Because of these

reasons, several simplifications were proposed: greedy

approach for knapsack problem (POIs ordered by value),

adapted TSP for path duration estimation (finds near

optimal solution).

The first step in our algorithm is the estimation of the

importance of a POI (how good a POI is ‒ POI value). For

this reason we created a special mathematical definition that

considers three factors:

(1) POI's evaluation value

(2) POI's visit duration

(3) POI's local reachability duration

The first factor is a value that varies from 1 to 5 and it

represents rough estimation of how interesting a POI is,

based on several aspects: the attractiveness, sustainability,

visit price, etc. The next factor, the POI's visit duration,

represents the average time that a tourist needs in order to

see the POI. This is also hardcoded by a domain expert. The

final factor, the POI's reachability duration, is a variable

that represents how far a POI is from its nearest neighbors.

In other words, if a POI is far from the rest of the POIs, the

value for this variable would be greater compared to the

reachability duration of the rest POIs. Using this

information the POIs that are "outliers" (far from the rest of

the POIs) are "punished". For the estimation of this variable

we used partial implementation of the Local Outlier

Detection (LOF) algorithm [1]. In particular, we used the

local reachability distance (lrd) metric in order to estimate

how far a POI is from its neighbors. The LOF algorithm and

its mathematical definitions are described by Breunig et al.

in their paper, which is also provided in the reference list.

The mathematical definition of the POI importance,

which includes all the three factors, is given below.

𝑉∗ = 𝛼 ∗ 𝑉 + 1 − 𝛼 ∗ (1 − 𝑃 norm
∗) ∗ 𝑉

(1)

The variable V is the POI's evaluation value, which

varies from 1 to 5. The variable P
*
norm, represents the

normalized value (from 0 to 1) of the P
*
, which is a sum of

the POI's visit duration (Vd) and the POI's local reachability

distance (lrd):

𝑃∗ = 𝑉𝑑 + 𝑙𝑟𝑑

(2)

Because the idea is to "punish" the POIs which visit lasts

longer and the ones that are far away, the normalized P
*
 is

subtracted from 1. The bigger the value of P
*

norm is, the less

important the POI is. The α is a parameter regulating the

importance of the evaluation value (V) on one side, and the

POI's visit duration and POI's local reachability distance

(P
*
) on the other side. The empirical analysis of the data

showed that 0.5 is a reasonable tradeoff value for α. This

way, both sides of the equation are equally weighted in the

final importance value ‒ V
*
.

To summarize, a part of the value V (the fraction alpha)

is considered as it is, while the rest (the fraction 1 - alpha) is

reduced by the factor corresponding to the time needed for

the visit (1 - P
*

norm).

In the next step of the algorithm, all the POIs are

ordered by the importance value, i.e., V
*
. Next, using a

greedy strategy, the algorithm adds items (POIs) in the

knapsack until the limit is reached. With each POI added,

the weight of the knapsack is checked ‒ if the weight (time

duration) of the chosen POI combination is below the

maximum weight (total available time of the tourist). In

addition with each added POI, a TSP algorithm estimates

the path duration, which is also checked with the time limit

of the tourist. This way, a near optimal combination of POIs

is found.

Once the combination of POIs is found, in the next step

it is checked if the user prefers to start from the nearest POI.

If this is the case, the order of the POIs is recalculated with

a modified version of the original TSP which creates a path

using a fixed start POI.

In the final step of the algorithm, it is checked if the

tourist has chosen multiple days for sightseeing. In the case

of multiple-days visit, the POIs are segmented into groups,

each group corresponding to one day of the trip.

Additionally, it is checked if the user plans a meal in a

particular hour of the day. If this is the case and there are

restaurant-POIs in the list of POIs, the best (according to

the evaluation value) restaurant is chosen. That day's route

is modified in such a way that the tourist is near the

restaurant during the previously chosen meal-time.

3.1 Travelling Salesman Problem

In this section the TSP solution algorithm is discussed. As

mentioned earlier, the TSP solves a sub-problem in the

general knapsack problem. Therefore, its execution time

needed to be in the range of several milliseconds. Because

the TSP is a NP-hard problem, finding an optimal solution

sometimes may be very difficult and computationally

expensive. Therefore, for its implementation, we considered

an open source algorithm [8], which finds a near optimal

solution. It is a greedy approach with additional optimization

mechanism. The empirical tests showed that for our scenario

(up to 200 POIs) it almost always finds the optimal solution,

and also the execution time is acceptable i.e., several

milliseconds.

The original algorithm implementation does not take into

account a start and end POI. It just connects POIs until a

complete path connecting all the POIs is completed.

However, in our implementation in some cases, fixed start

and end POIs were needed. For this reason two modified

versions of the original algorithm were implemented. The

first one considers only a start POI and finds the appropriate

path using the start POI constraint. This implementation is

used in the case the tourist wants to start the sightseeing in

the nearest POI. The nearest POI is calculated using the GPS

signal of the tourist's smartphone. The second modified

version considers not only the start POI, but also the end

POI. This version is used in the case of a selected meal-time.

In this case the path is divided into two parts: before and

after lunch. In the first part the end POI is fixed, which is the

restaurant. In the second part, the start POI is fixed, again the

restaurant POI.

3.2 Algorithm Implementation Optimizations

Once the algorithms were implemented and the number of

POIs increased in the range of a 100, few time-related

problems emerged.

The first problem was related to the computation of the

distance and duration between each of the POIs. To

accurately compute the distance and the duration between

the POIs, we used the Google maps distance matrix API [5].

Because the API calls are limited, we decided to save the

distances into a database. An update of the distances is

triggered only when new POI is entered into the database.

However, the problem with too many database calls still

existed. For each TSP execution, a new distance matrix was

computed and therefore too many database calls were

executed. That means if 20 POIs are analyzed, then the

matrix has size of 20 x 20, which results in 400 database

calls. To speed up this process, we decide to save a matrix

that contains all the POIs distances into the RAM memory.

This way, every time a distance is required, the result is

taken out of RAM instead of calling a database. This

solution, significantly decreased the time execution.

The second problem that appeared was related to the

calls to the TSP algorithm. As mentioned earlier, the TSP

problem is NP-hard and thus its execution is computationally

expensive process. Therefore, we had to limit the calls to this

algorithm. In our first implementation, the TSP was called

every time a new POI was added to the solution list. This

resulted into too many calls, especially when the number of

POIs increased up to 100. Therefore, a solution that limits

the calls to the TSP algorithm was suggested. This solution,

calls the TSP algorithm only when the time needed to visit

all the POIs reached a predefined threshold of 80% of the

total available time. In other words, when the time needed to

visit the POIs reaches 80% of the total available time, the

TSP is called to estimate the exact path duration. Otherwise,

every time a POI is added, the path is estimated simply by

adding the path duration to the nearest POI.

4 IMPLEMENTATION

The sightseeing route planning algorithm was implemented

in a more general trip planning application ‒ e-Turist [4].

The general idea of this application is to provide a help to

tourists which plan to visit Slovenia. The help consists of a

POIs recommendation and organization, route planning, etc.

An example of a sightseeing route planning is shown in

Figure 2. The figure shows a 2-day trip plan with 11 POIs.

The POIs are ordered by their location and the order of

visiting is marked with consecutive letters from the

alphabet. The POIs marked with yellow color are alternative

POIs, which were excluded from the final solution because

of the user's time-constraints. However, the user can still

decide to visit these alternative POIs. Also a time duration

estimation is provided for each day. The estimation is based

on the POIs visit durations and the path duration time.

5 CONCLUSION

The paper presented an approach to sightseeing route

planning. Our task was combining theoretically well-defined

computational problems on one side, and everyday-life

decisions and constraints on the other side. In particular, in

this paper we discussed two well-known problems: knapsack

and travelling salesman problem, and their practical

implementation in everyday life task ‒ route planning. The

algorithms were adapted in such way that they find near

optimal solution in with minimum delay, almost in real-time.

The final result is a list of tourist attractions ordered by their

location and attractiveness.

Acknowledgement

This work was supported by Slovenian ministry of

education, science and sport: call for proposals for co-

funding of projects developing e-services and mobile

applications for public and private non-profit organizations.

The authors would like to thank Andrej Tratnik, Vito Janko

and Maja Somrak for the help provided in the system

implementation and programming part.

Figure 2: Example of sightseeing suggested route for two-day trip.

References:

[1] Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander, J.

(2000). "LOF: Identifying Density-based Local

Outliers". Proceedings of the 2000 ACM SIGMOD

international conference on Management of data.

SIGMOD '00: 93–104.

[2] Dynamic Programming Knapsack 0-1 Problem.

http://www.geeksforgeeks.org/dynamic-programming-

set-10-0-1-knapsack-problem/

[3] e-Turist project information.

http://dis.ijs.si/e-turist/

[4] e-Turist web application.

http://e-turist.ijs.si/

[5] Google Directions API.

https://developers.google.com/maps/documentation/dist

ancematrix/

[6] Knapsack problem

http://en.wikipedia.org/wiki/Knapsack_problem

[7] Travelling salesman problem.

http://en.wikipedia.org/wiki/Travelling_salesman_probl

em

[8] Travelling salesman problem, Python implementation:

https://github.com/dmishin/tsp-solver

