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ABSTRACT 
Monitoring human energy expenditure is important in many 
health and sport applications, since the energy expenditure 
directly reflects the level of physical activity. The actual 
energy expenditure is unpractical to measure; hence, the 
field aims at estimating it by measuring the physical 
activity with accelerometers and other sensors. Current 
advanced estimators use a context-dependent approach in 
which a different regression model is invoked for different 
activities of the user. In this paper, we go a step further and 
use multiple contexts corresponding to multiple sensors, 
resulting in an ensemble of models for energy expenditure 
estimation. This provides a multi-view perspective, which 
leads to a better estimation of the energy. The proposed 
method was experimentally evaluated on a comprehensive 
set of activities where it outperformed the current state-of-
the-art. 
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INTRODUCTION 
Human energy expenditure (EE) directly reflects the level 
of physical activity, which makes it important for sports 
training, weight control, management of metabolic 
disorders (e.g., diabetes) and other health goals. True EE is 
difficult to measure by traditional means. Direct calorimetry 
measures the total heat output of a person in an accurate 
way, but is only usable in laboratory conditions. The 

slightly less accurate indirect calorimetry analyzes the 
respiratory gases, which requires a breathing mask. Doubly 
labeled water is both accurate and convenient, but can 
measure only long-term EE. Finally, self-reporting is highly 
unreliable. 

With the increasing accessibility and miniaturization of 
sensors and microprocessors, ubiquitous monitoring 
systems are becoming a practical solution for measuring 
EE. Such systems primarily measure the physical activity 
with accelerometers, but can include additional sensors that 
indirectly measure the metabolic activity, such as a heart 
rate monitor or thermometer. The main challenge is how to 
estimate the EE from sensor outputs accurately, 
irrespectively of the user’s activity, ambient conditions and 
context in general. 

Early approaches to EE estimation ignored the context and 
used simple regression on accelerometer outputs. As the 
field matured, it became clear that a context-dependent 
approach in which a different regression model is used for 
different activities of the user improves the performance. In 
this paper we go a step further and use multiple sensors and 
therefore multiple context components, resulting in an 
ensemble of models for EE estimation. We show 
experimentally that such an ensemble outperforms the 
current state-of-the-art. 

RELATED WORK 
The first methods for EE estimation with wearable sensors 
used linear regression to map the accelerometer output to 
EE. The accelerometer output was often expressed in 
“counts”, an aggregate acceleration measure reported by 
devices such as Actigraph [4, 6, 10]. More recent 
approaches used a richer representation of the 
accelerometer output consisting of multiple features, as well 
as non-linear regression methods such as artificial neural 
networks and model trees [9, 11]. These approaches were 
experimentally shown to substantially improve upon the 
early Actigraph-based work. 

Researchers soon realized that different contexts require 
different energy-expenditure equations [6, 10]. This 
realization resulted in the state-of-the-art Actigraph-based 
approach by Crouter et al. [2], which assigned 1 MET 
(Metabolic Equivalent of Task) to inactivity and used two 
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different (non-linear) regression models for light and 
intense activity. Lester et al. [7] used three predefined EE 
estimation formulas for rest, walking and running. They 
also considered GPS and barometer information to estimate 
the slope of walking/running. The reported results are 
promising, but the range of activities was quite limited. The 
advances in the accelerometer-based activity recognition 
allowed finer-grained activities as the context for EE 
estimation [1, 8, 11]. The current state-of-the-art is 
probably the commercial SenseWear device by BodyMedia 
[12], which uses the activity as the context, and combines 
multiple context-dependent regression models according to 
the probabilities for their respective contexts. It also uses 
multiple sensors: an accelerometer, two thermometers, 
galvanic-skin-response and heat-flux sensors. 

Our work uses not only the activity as the context, but 
utilizes multiple context components from multiple sensors, 
so that each measurement can be placed in multiple 
contexts simultaneously (e.g., activity = running, heart rate 
= high, breath rate = moderate, etc.). This gives us the 
benefit of multiple “viewpoints” from which one can 
estimate the EE, and later combine them in order to achieve 
greater accuracy than a single context component.  

ENSEMBLES OF MULTIPLE SENSORS 
In general, the context is any information that characterizes 
the circumstances in which an event occurs [3]. In our 
approach, the context consists of eight context components 
that mostly correspond to the sensors used: activity (A), 
acceleration peaks count (AP), heart rate (HR), breath rate 
(BR), chest skin temperature (CST), galvanic skin response 
(GSR), arm skin temperature (AST) and ambient 
temperature (AT). An ensemble of multiple sensors consists 
of multiple regression models for EE estimation, which 
correspond to the context components. For each possible 
value of a context component, a different model is built 
(e.g., one model for activity = running, another for activity 
= lying). Therefore, for each data sample a custom 
ensemble is assembled from the models that correspond to 
the contexts of that sample (e.g., if the sample contains 
running with a high heart rate, the models for activity = 
running and heart rate = high are included in the ensemble).  

To explain the ensembles, let us consider a simple version 
with only three context components: activity (A), heart rate 
(HR) and breath rate (BR). Since HR and BR have 
numerical values, we first discretize their values into M and 
L intervals, respectively. The activity feature is already 
discrete and contains N activities. The context components 
are shown in the first row of Figure 1 and their discrete 
values (intervals) in the second row.  

In the next, training phase, for each discrete value (e.g., 
A_1) of each context component (e.g., A), a regression 
model (e.g., MA_1) is trained. The training dataset for the 
model is a subset of the whole training dataset. It contains 
only the data samples which have the corresponding 
component value; thus, the model for the first activity MA_1 

is trained only on the data samples that contain the activity 
A_1. Once the training data is selected, the model is trained 
using an arbitrary regression method.  

Activity Heart rate Breath rate

A_1 A_2 A_N… HR_1 HR_2 HR_M… BR_1 BR_2 BR_L…

MA_1 MA_2 MA_N… MHR_1 MHR_2 MHR_M… MBR_1 MBR_2 MBR_L…  
Figure 1. Multiple sensors ensemble scheme.  

In the final, estimation phase, the EE of a data sample 
(feature vector) is estimated by an ensemble consisting of a 
subset of previously trained models. The models included 
in the ensemble are invoked according to the context 
component values. The final EE estimation is provided by 
combining the outputs of all invoked models. For example, 
consider the following scenario: a user is running with the 
heart rate of 140 min–1 and breath rate of 35 min–1. Let us 
assume that running is the second of the N modeled 
activities (A_2), the heart-rate value falls into the second 
heart-rate interval (HR_2), and the breath-rate value into 
the first breath-rate interval (BR_1). The data sample will 
thus be evaluated by the models MA_2, MHR_2 and MBR_1, 
whose outputs will be combined (e.g., by averaging, 
choosing the median, etc.) to estimate the final EE. 

EXPERIMENTS 

Experimental Setup 
The sensor equipment consisted of two Shimmer three-axis 
accelerometer1, a Zephyr BioHarness sensor2, a BodyMedia 
SenseWear sensor3, and a Cosmed indirect calorimeter4. 
Each of the sensors used in this study provided different 
information about the user's EE. For the final evaluations 
we used the features shown in Table 1. 

The two accelerometers were placed on the chest and the 
right thigh because our previous tests showed that those 
placements perform best for activity recognition [5]. The 
Zephyr sensor ‒ a commercial sports strap ‒ was worn on 
the chest, and measured the user's heart rate, breath rate, 
and chest skin temperature. The BodyMedia SenseWear 
sensor ‒ a state-of-the-art commercial device for EE 
estimation ‒ was worn on the left upper arm. It served as a 
benchmark, and additionally measured the user's galvanic 
skin response, ambient temperature and arm skin 
temperature. Finally, the true EE was measured on a breath-
by-breath basis with the Cosmed indirect calorimeter. The 
Cosmed equipment consists of a sensing unit, a wireless 
transmitter unit, a mask and a shoulder-belt system. The 
output from this sensor in MET was used as the target value 
for training and evaluating the EE estimation models. 

                                                           
1 http://www.shimmer-research.com/ 
2 http://www.zephyr-technology.com/products/bioharness-3 
3 http://sensewear.bodymedia.com/ 
4 http://www.cosmed.com/quarkcpet 
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accelerometers 

Activity, acceleration peaks count C
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Zephyr Heart rate, breath rate, chest skin temperature

BodyMedia  
SenseWear 

Galvanic skin response, arm skin 
temperature, ambient temperature 

Cosmed Reference METs 

M
E

T
 

Table 1. Features per sensor. 

Almost all of the features were provided directly from the 
sensors, except for the activity and the acceleration peaks 
count. These two features were extracted from the 
acceleration data. For the activity recognition, we used our 
previous experience and developed a method based on 
machine learning [5]. The method uses the data from the 
two accelerometers (chest and thigh) and applies a Random 
forest classification model to recognize the user activity. 
The acceleration peaks count is the number of times the 
length of the acceleration vector stops increasing and starts 
decreasing or vice versa. 

A 90-minute (excluding breaks) scenario was designed to 
capture a wide range of everyday activities and exercises 
with various EEs. The scenario is shown in Table 2, 
together with the average EEs for each activity as measured 
with the Cosmed sensor. It was recorded by ten volunteers 
aged 24–33, mean 27.3; BMI 20–28.9, mean 24.1. The 
resulting dataset consisted of approximately 1,000,000 raw-
data samples per volunteer. 

The proposed approach was implemented in Java using the 
WEKA machine learning toolkit [14]. First, the data from 
each sensor was synchronized using the starting 
timestamps. A sliding window of ten seconds was applied 
to segment the sensor data. Such length of the window was 
empirically determined as reasonable for the estimation of 
the EE. Because each sensor provides data with different 
sampling frequencies, the value within each window was 
averaged. For the non-numeric features such as the activity, 
the majority value was used. Additionally, because the data 
is user-specific, it was normalized using the first lying 
interval in the test scenario (shown in Table 2). The average 
value for each sensor data from this resting interval was 
computed. It was used as a calibration (reference) value and 
was subtracted from each sensor value. Once the feature 
vectors were formed, each numeric feature was discretized 
into four intervals using the Yong split criterion [13] 
implemented in WEKA. The discretization procedure was 
used only to define the ensemble structure as shown in 
Figure 1. Afterwards, the EE of each testing data sample 
was estimated depending on the values it contained for each 
context component. To train the regression models, four 
methods were compared: linear regression, Gaussian 
processes, multilayer perceptron (artificial neural network) 
and SMOReg (support vector regression). Finally, the 
median of the outputs of the invoked models was used as 
the final result. 

Activity EE (MET) 
Lying 1.19 MET 
Sitting 1.26 MET 
Standing 1.26 MET 
Walking slowly on a treadmill (4 km/h) 3.50 MET 
Walking quickly on a treadmill (6 km/h) 5.03 MET 
Running slowly on a treadmill (8 km/h) 7.80 MET 
Stationary cycling lightly (1 W/kg) 4.91 MET 
Stationary cycling vigorously (2 W/kg) 7.22 MET 
Kneeling 1.30 MET 
On all fours 1.77 MET 
Lying doing light exercise 1.28 MET 
Sitting doing light activities 2.30 MET 
Walking doing light chores 2.30 MET 
Scrubbing the floor 2.65 MET 
Shovelling snow, digging 3.40 MET 

Table 2. Test scenario. 

The method evaluation was performed with the leave-one-
person-out cross-validation technique; that is, models were 
trained on the data of nine people and tested on the 
remaining person. The same was done with the activity 
recognition classifier, whose output was used as a feature 
the in EE estimation. This procedure was repeated ten 
times, for each person. As the evaluation metric, we chose 
the mean absolute percentage error (MAPE; the mean 
absolute error divided by the true value), since it is the most 
common metric in the EE estimation domain [12]. 

Results 
To evaluate our ensemble approach, we compared the 
previously mentioned four standard regression methods. In 
addition, as a baseline for comparison, we evaluated the 
same regression methods without the ensemble scheme, i.e., 
single regression models were constructed over the whole 
feature set. Also the results were compared to the MET 
output of the BodyMedia SenseWear commercial sensor. It 
should be noted that the SenseWear averages over 1 minute 
while our methods over 10-second intervals. 

The results presented in Figure 2 show that for each 
method, the ensembles significantly outperform the 
baseline, as well as the SenseWear sensor. The multilayer 
perceptron method achieves the best 27.5% MAPE, which 
is by 7 percentage points better than the SenseWear. Thus, 
the further analysis is performed only for this method. 

28.5% 28.8%
27.6% 27.5%

34.1%33.9% 33.6%
32.2%

34.3%

20%

25%

30%

35%

Linear 

regression

Gaussian 

processes

SMOReg Multilayer 

perceptron

SenseWear

Ensemble BaselineMAPE

 
Figure 2. Comparison of the MAPEs for different methods. 

Since the ensembles consist of eight context components, 
we additionally show the results achieved by each of the 
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context models used individually. In Figure 3 one can see 
that the MAPE of the final method is better than the 
MAPEs of the individual models. This shows that even by 
combining the models using a simple median of their 
outputs, the ensemble outperformed the individual models. 

36.8%
34.8% 34.0% 33.2%

39.4%
36.3% 38.7%

38.8%

27.5%

20%

25%

30%

35%

40%

Activity Peak 
count

Breath 
rate

Heart    
rate

Chest 
temp

GSR Ambient 
temp

Arm     
temp

Ensemble

MAPE

 
Figure 3. Comparison of the context models used individually. 

Figure 4 shows a scatter plot comparing the true and 
estimated MET values for different activities. The results 
show that in general, the estimations by the ensembles 
compared to the other two approaches better match the 
actual Cosmed MET values (the diagonal line in Figure 4). 
The SenseWear sensor has better estimations for the more 
dynamic activities (running, cycling and walking) 
compared to the everyday activities, which is probably 
because the device is intended for physically active users. 
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Figure 4. Comparison between the true and predicted MET 

values for different activities. 

CONCLUSION 
The paper presented a novel approach to human EE 
estimation using ensembles of multiple sensors. The key 
idea is to use not only a single regression model at a time, 
but an ensemble of models, each of which is constructed for 
a particular context corresponding to a different sensor. 
This provides a multi-view perspective, which leads to a 
better estimation of the EE. This can benefit all who are 
interested in precisely managing their caloric output 
because of their health condition, sports activity etc. 

The proposed method was experimentally evaluated on a 
special comprehensive scenario and compared to state-of-
the-art approaches. The results showed that the proposed 
ensembles significantly outperformed the competing 

approaches. In the future we first plan to focus on more 
sophisticated methods for combining the outputs of the 
models in an ensemble. 
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