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ABSTRACT 

 

Monitoring human energy expenditure (EE) is important in many health and sports 

applications, since the energy expenditure directly reflects the intensity of physical activity. 

The actual energy expenditure is unpractical to measure; therefore, it is often estimated from 

the physical activity measured with accelerometers and other sensors. Previous studies have 

demonstrated that using a person’s activity as the context in which the EE is estimated, and 

using multiple sensors, improves the estimation. In this study, we go a step further by 

proposing a context-based reasoning method that uses multiple contexts provided by multiple 

sensors. The proposed Multiple Contexts Ensemble (MCE) approach first extracts multiple 

features from the sensor data. Each feature is used as a context for which multiple regression 

models are built using the remaining features as training data: for each value of the context 

feature, a regression model is trained on a subset of the dataset with that value. When 

evaluating a data sample, the models corresponding to the context (feature) values in the 

evaluated sample are assembled into an ensemble of regression models that estimates the EE 

of the user. Experiments showed that the MCE method outperforms (in terms of lower root 

means squared error and lower mean absolute error): (i) five single-regression approaches 

(linear and non-linear); (ii) two ensemble approaches: Bagging and Random subspace; (iii) an 

approach that uses artificial neural networks trained on accelerometer-data only; and (iv) 

BodyMedia (a state-of-the-art commercial EE-estimation device). 

 

 

Keywords: human energy expenditure estimation; machine learning; regression; ensembles; 

context; wearable sensors. 



 

 

1. Introduction 

Human energy expenditure (EE) directly reflects the intensity of physical activity, which 

makes it important for sports training, weight control, management of metabolic disorders 

(e.g., diabetes), and other health goals. There are various approaches that can reliably 

estimate the EE. Direct calorimetry measures the total heat output of a person in an accurate 

way, but is only usable in laboratory conditions. The slightly less accurate indirect 

calorimetry analyzes the respiratory gases and requires wearing a breathing mask, making it 

impractical for everyday use. Doubly labeled water is both accurate and convenient, but can 

measure only long-term EE. Finally, self-reporting is highly unreliable. Therefore, if both 

accuracy and convenience are required, a different approach is needed. 

With the increasing accessibility and miniaturization of sensors and microprocessors, 

ubiquitous monitoring systems are becoming a practical solution for measuring the EE. Such 

systems primarily measure the physical activity with accelerometers, but can include 

additional sensors that indirectly measure the metabolic activity, such as a heart rate monitor 

or thermometer. The main challenge is how to estimate the EE from wearable sensor outputs 

accurately, irrespectively of the participant’s activity, ambient conditions and other 

circumstances, i.e., contexts. 

Recent studies in the EE-estimation field showed that machine learning (ML) techniques 

applied on sensor data can accurately estimate the EE [1][2][3]. In these studies, the EE 

estimation is defined as a process of transforming the sensor data into METs, where one MET 

is defined as the energy expended at rest. MET values usually range from 0.9 (sleeping) to 

over 20 (extreme exertion). Researchers usually use an indirect calorimeter to estimate the 

actual EE in METs with a high accuracy, which is later used as the ground truth during the 

ML phase. 

In this study, we propose a novel, Multiple Contexts Ensemble (MCE) approach, which is 

applied to the task of EE estimation. The MCE approach uses multiple contexts extracted 

from sensor data and performs context-based reasoning in order to estimate the EE. In 

general, context is any information that characterizes the circumstances in which an 

event/situation occurs [4]. In our application, the context information is represented by the 

eight features extracted from the sensor data: activity, heart rate (HR), breath rate (BR), 

acceleration counts, chest skin temperature, galvanic skin response (GSR), arm skin 

temperature and near-body ambient temperature. Each of these features is used as a context in 

which ML models are built using the remaining features as training data. More precisely, for 

each value of each context feature, a regression model is trained using the subset of the 

dataset that corresponds to that particular context (feature) value. For example, for the 

activity of the user, a regression model is trained for each activity (sitting, walking, running, 

etc.) using the rest of the features as training data (HR, BR, body temperature, etc.). When 

evaluating a data sample, a custom ensemble of regression models is assembled from the 

previously constructed set of models, i.e., the models that correspond to the context (feature) 

values in the evaluated sample. The final estimation is provided by aggregating the outputs of 

the assembled models. This way, context-based reasoning is performed, which provides the 

benefit of combining multiple “viewpoints” when estimating the EE, resulting improved 

accuracy compared to previous approaches.  



 

 

The remainder of this paper is organized as follows: Section 2 presents the background of 

the study and reviews the related relevant methods; Section 3 describes the proposed MCE 

approach; Section 4 presents the experimental setup, including the description of the activity 

scenario, the sensor equipment, the evaluation technique, and the description of the 

competing approaches; Section 5 presents the experimental results and a discussion; and 

lastly, Section 6 offers concluding remarks. 

2. Background and Related Work 

The first automatic methods for EE estimation included supervised ML, i.e., regression 

learning techniques. In particular, linear regression was used to map a single accelerometer 

output to EE [5][6][7][8]). The accelerometer output was often expressed in “counts”, an 

aggregate acceleration measure reported by devices such as ActiGraph. To estimate the EE, 

investigators used these "counts" to develop linear regression models. Although numerous 

studies showed reasonably good correlation between the counts and the EE [5][9], the 

estimation accuracy of accelerometer count-based linear regression was shown to contain 

systematic errors and vary with the type of activities, resulting in overestimations for the 

walking activity and underestimations during the moderate intensity lifestyle activities [10]. 

This limitation is probably due to the insufficient information provided by the counts and the 

simplicity of the linear model. Efforts were made to improve the estimation accuracy by 

using a richer representation of the accelerometer output consisting of multiple features 

[11][12], as well as non-linear regression methods such as artificial neural networks (ANNs) 

[1][13][14] or support vector machine for regression (SVR) [15][16]. These approaches were 

experimentally shown to substantially improve the accuracy compared to earlier work [17].  

Researchers soon realized that single-regression approaches cannot accurately estimate 

the intensity of physical activity across a range of activities, and that different activities 

require different EE equations. Crouter et al. [18] used the acceleration counts in order to 

divide the activities into three categories and assigned the following EE estimations: 1 MET 

to inactivity and two regression equations for light and intense activity, thus achieving a 

better estimate than previous single-regression methods. The advances in the accelerometer-

based recognition of activity type allowed finer-grained activities as the context for EE 

estimation [2][20][19]. Lester et al. [21] used a Naive Bayes classification model to first 

recognize three activities (rest, walking and running) from the accelerometer's data, and then 

to apply the appropriate regression equations in order to estimate the EE. They also 

considered GPS and barometer information to estimate the slope of walking/running, and 

showed that additional sensor information improves the EE estimation. However, even with 

these three types of sensors (accelerometer, GPS, and barometer) they still encountered two 

problems: (i) EE underestimation of activities that are not characterized by acceleration, but 

are still energy demanding, e.g., carrying a box and (ii) EE underestimation of activities that 

follow an intense activity, i.e., the "cool-down" effect (sitting after intense running). Both 

problems can be solved by sensing other physiological parameters such as the HR and BR. In 

our previous work [22], we showed that by using data from multiple sensors one can more 

accurately estimate the EE. This may seem as an additional burden to the user, because it 

requires additional sensors attached to him/her. However, today's commercial wearable 



 

 

devices already provide multiple sensors packed in a single enclosure, e.g., BodyMedia, 

Basis, Empatica wristband, etc. 

The BodyMedia armband sensor uses both multiple sensors and multiple regression 

models. Vyas et al., [3], the research team of the BodyMedia, proposed a method that uses an 

activity recognition model that recognizes dozens of activities which are used as the context, 

and then it combines multiple regression models according to the probabilities for the 

recognized activities. They showed that by using multiple sensors: an accelerometer, two 

thermometers, GSR and heat-flux sensors, the estimation of the EE significantly improves. 

Additionally, a recent review showed that it is the most accurate EE estimation consumer 

device [23].  

The aforementioned studies showed that: (i) using multiple regression models for 

different user's activities (i.e., context) outperforms single-regression approaches, and (ii) 

using multiple features extracted from multiple sensor data provides more accurate EE 

estimation than using only acceleration data (even when multiple acceleration features are 

extracted). In this work we improve upon these findings and propose a method that uses 

multiple features extracted from multiple sensor data, and uses not only the activity as the 

context, but multiple contexts, so that each measurement can be placed in multiple contexts 

simultaneously (e.g., activity = running, HR = high, BR = moderate, etc.). 

3. Multiple Context Ensemble Approach 

The proposed MCE is a general approach which can be applied to various reasoning tasks 

about the user's health and condition. The only requirement is that the data to reason about 

can be represented by multiple context features. This is usually the case when the reasoning 

task includes multiple sources of information, for example data streams provided by multiple 

sensors.  

The application of the MCE approach to the task of EE estimation is shown in Figure 1. It 

consists of three phases: context extraction, context modeling and context evaluation. In the 

first phase the data provided from multiple sensors is used in order to extract eight features. 

In the second phase, each of these eight features is individually exploited as the user's 

context, and the other seven features to model the EE in the context of the first feature. That 

is, for each value of each feature a regression model is trained on the subset of the dataset that 

corresponds to that particular value using a regression learning method. In the evaluation 

phase a custom ensemble of regression models is assembled from the previously constructed 

set of models, i.e., the models that correspond to the context (feature) values in the evaluated 

data sample. The final EE estimation is provided by aggregating the outputs of the ensemble 

models by using an aggregation technique such as averaging, median or stacking. Each of the 

phases is described in the following three subsections. 
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Figure 1. Multiple Contexts Ensembles (MCE) EE estimation algorithm. 



 

 

3.1. Context Extraction 

In the context extraction phase, raw sensor data are acquired and the multiple contexts are 

extracted. This phase is similar to the feature-extraction phase commonly used in ML tasks. 

We refer to features as contexts, because in our approach each feature is individually used as 

a context in order to train multiple regression models. In this study, each feature represents 

unique information about the user: activity, acceleration peak counts (similar to a pedometer), 

HR, BR, chest body temperature, arm body temperature, GSR, and near-body temperature. 

More details about the sensor equipment and the raw sensor data are provided in Subsection 

4.2. 

Similar to feature values in ML, each context has values (context values), e.g., "sitting" 

for the activity context (see Figure 1). In our case most of the extracted features were in 

numerical format, i.e. numbers that represent the user's heart-rate, temperature, etc. In order 

to train a reasonable number of models for different context values, a discretization procedure 

was performed. The discretization process allows us to group data samples with similar 

context values, e.g., data samples with "very low" HR value.  

Each numerical feature was discretized using the split criterion proposed by Yong et al. 

[24]. It is the most commonly used supervised discretization technique in the ML community, 

which finds such splits for a given feature that the standard deviation of the class (EE) value 

in each interval of the feature is minimized. The standard deviation reduction (SDR) achieved 

by a given split is calculated by the formula: 

𝑆𝐷𝑅 = 𝑠𝑑 𝑇 −  
|𝑇1|

|𝑇|
× 𝑠𝑑 𝑇1 + 

|𝑇2|

|𝑇|
× 𝑠𝑑(𝑇2)  

 

[1] 

where T is the set of data samples before the split, T1 and T2 are the sets that result from the 

binary split, |T| is the number of data samples in the set T, and sd(T) is the standard deviation 

of the class value. The discretization procedure tests all the possible splits and selects the one 

with the highest SDR. This is repeated as long as at least 10% of the data samples remain in 

each interval. This resulted in 46 discrete context values – around 6 per context on average. 

3.2. Context Modeling 

In the second phase, the context modeling is performed by first partitioning the data into 

multiple subsets using each feature as a context, and then learning a regression model using 

the subsets. 

In order to explain the context modeling phase, consider the dataset shown in Figure 2. It 

consists of three features (activity, HR and BR) and a target feature (EE in MET). A 

conventional ML approach would apply a single ML algorithm to learn a single regression 

model. More advanced approaches may use an ensemble-based approach and learn multiple 

models on multiple subsets of the dataset. These subsets are usually created by using 

techniques such as bootstrapping (sampling with replacement) [25], and modifying the 

dataset in the feature space (e.g., Random Subspace method, which randomly chooses a 

subset of features multiple times) [26]. Even though these techniques have proven to be 

successful in numerous ML applications [27], they do not take the nature of the domain into 

account. In EE estimation and other tasks dealing with a human in an environment, the 

context is known to be very important [23] and is also close to how humans reason about 



 

 

such situations. Because of that, MCE uses each of the features as a context, and the 

reasoning is performed using multiple contextual views of the data. 

An example of such context-based data partitioning is shown in Figure 2, where the BR 

feature is used as the context. Therefore, the dataset is partitioned according to each feature 

value (low, medium and high), resulting in three subsets. This way, each subset contains data 

samples with similar values for the chosen context value. In the next step, for each of the 

subsets a regression model is trained. The same procedure is performed for the other two 

features, i.e., activity and HR, resulting in nine regression models (a model for each feature 

value). When evaluating a data sample, only the models that correspond to the particular 

feature values are invoked in order to evaluate it. This way each data sample is evaluated by 

an ensemble constructed of three models that correspond to the three contexts. 

Figure 2 also shows the advantage of using intervals (discrete values) instead of 

numerical values. In particular, the discrete values for BR are used to create the subset for the 

BR feature.  

Activity
Heart rate

(min-1)

Breath rate

(min-1)

EE

(METs)

Standing Low: 50 Low: 10 1.3

Sitting Medium: 85 Low: 12 1.5

Sitting Low: 60 High: 29 1.3

Standing Medium: 92 High: 31 1.6

Sitting Medium: 91 Low: 12 1.6

Running High: 135 Medium: 23 2.9

Sitting Medium: 102 Low: 12 2.0

Running High: 138 Medium: 32 3.3

Sitting Low: 59 Low: 16 2.1

Standing High: 145 Medium: 19 1.7

Running High: 144 High: 36 2.8

Breath rate

Breath rate = Low Breath rate = Medium Breath rate = High

m breath rate = low

Subset data corresponding to the 

low breath rate

Subset data corresponding to the 

medium breath rate
Subset data corresponding to the 

high breath rate

Activity
Heart rate

(min-1)

Breath rate

(min-1)

EE

(METs)

Standing 50 10 1.3

Sitting 85 12 1.5

Sitting 91 12 1.6

Sitting 99 12 2.0

Sitting 59 16 2.1

Activity
Heart rate

(min-1)

Breath rate

(min-1)

EE

(METs)

Running 135 23 2.9

Running 138 32 3.3

Standing 145 19 1.7

Activity
Heart rate

(min-1)

Breath rate

(min-1)

EE

(METs)

Sitting 60 29 1.3

Standing 92 31 1.6

Running 144 36 2.8

m breath rate = medium m breath rate = high

 

Figure 2. Context-based data partitioning. 

For the application of MCE to EE estimation, 46 regression models were constructed (for 

each discrete value of each context). The MCE method does not restrict the choice of the 

regression learning algorithm; therefore we used and later compared the results achieved by 



 

 

five linear and non-linear regression learning methods as implemented in the WEKA ML 

toolkit [28]. More details about these methods are provided in Subsection 4.4. 

By constructing multiple models corresponding to different contexts of the user, the MCE 

considers multiple views on the reasoning problem. This way, the MCE not only exploits the 

complementarity of multiple models like most other ensemble approaches, but also contains 

models that tend to be more accurate for a particular context than those trained on the whole 

training set. The reason for that is that each model is trained on a subset of the training set 

that is more homogeneous than the whole set, and used in the context of this subset, i.e., to 

reason about data samples similar to the ones in the subset. In other words, in our approach 

we try to semantically split the domain (dataset) into meaningful viewpoints and not on some 

statistics about the data (as most of the ensemble-based approaches). 

3.3. Context Evaluation 

When evaluating a data sample, a custom ensemble is constructed from the models that 

correspond to the context (feature) values of that sample. In the context evaluation phase, the 

estimations from each of the context models are combined in order to provide the final 

estimation of the EE. For example, consider the scenario shown in Figure 1 using three 

contexts: a user is sitting with the HR of 50 min–1 and BR of 10 min–1. Suppose that the HR 

value falls in the second HR interval (low), and the BR value into the first BR interval (very 

low). The data sample will thus be evaluated by the models mA=sitting, mHR=low and mBR=very low, 

whose outputs will be aggregated by an aggregation method in order to estimate the final EE. 

The related literature suggests various aggregation methods, including averaging, median, 

aggregating with learning − stacking, and similar. In this study, we tested the first two 

(averaging and median), which are the simplest for implementation but still enabled the MCE 

approach to achieve significantly better performance than other ensemble methods that use 

the same aggregation technique (i.e., MCE with averaging outperformed Bagging and 

Random subspaces, which also use averaging). We plan to experiment with more advanced 

techniques in future work.  

4. Experimental Setup 

4.1. Participants and Activity Scenario 

A total of ten healthy participants (age 27.2 years (SD = 3.1); BMI 24.1 kg∙m-2 (SD = 2.3); 

weight 78.2 kg (SD = 10.9)) completed a two-week study (each participant was recorded 

during one day for approximately eight hours). Before testing, height and weight (one layer 

of clothes, no shoes) were measured via the InBody-720 body-composition analyzer. Prior to 

participation, informed consent was obtained from the participants. Each participant was 

observed by a medical supervisor during the execution of a comprehensive pre-defined 

activity scenario. The activity scenario included 15 different atomic activities, which were 

categorized into seven activity types according to the intensity and the type, as presented in 

Table 1. 

 

 

 



 

 

Table 1. Activity scenario. 

Activity type Atomic activities METs 

Sedentary Lying, sitting, standing, on all fours, kneeling 1.0−1.5 

Light household 

activities and exercise 

Washing dishes, working on a PC, lying and doing light 

exercise, walking doing light chores 
1.5−2.5 

Moderate to vigorous 

household activities 
Scrubbing the floor, shoveling snow – digging 2.5−3.5 

Walking Walking on a treadmill with 4 km/h 4.0 

Running Running on a treadmill with 8 km/h 8.0 

Light cycling Light stationary cycling: 1 W/kg of body mass, 65 RPM 5.0 

Vigorous cycling  Vigorous stationary cycling: 2 W/kg of body mass, 65 RPM 7.5 

4.2. Sensors 

An example of a person wearing the sensor equipment and walking on a treadmill is shown in 

Figure 3. The equipment consists of the following wearable sensors: two 3-axis 

accelerometers, a Zephyr sensor, and a BodyMedia sensor. Each of the sensors used in this 

study provided different information about the user's EE. Because the BodyMedia sensor is 

the state of the art EE estimation sensor, its MET output was used for comparison. 

Additionally, a Cosmed indirect calorimeter was used to provide the ground truth for the EE 

estimation. 

 
Figure 3. A participant wearing the sensor equipment while walking on a treadmill. 



 

 

Indirect calorimeter − Oxygen uptake (VO2) during each activity was measured breath-

by-breath and averaged every ten seconds using the Cosmed K4b2, a light-weight portable 

indirect calorimeter. Prior to each test, the Cosmed unit was calibrated according to the 

manufacturer’s guidelines. This sensor data were used as the ground truth for the regression 

learning algorithms and for the evaluation of the performance of the tested EE-estimation 

methods. 

Accelerometers − The Shimmer sensor platform was used to measure the accelerations 

of the user. The chosen platform contains a 3-axis accelerometer and uses Bluetooth 

communication for sending data in real-time. To record the participants' acceleration, 50 Hz 

data-sampling frequency was used. Each participant wore two accelerometers while 

performing the activities. They were attached to the participants' chest and thigh using elastic 

Velcro straps. The placement was chosen as a trade-off between the physical intrusiveness 

and the performance achieved for the activity recognition in prior studies of activity 

recognition [29][30]. The results achieved in those studies [29][30] showed that from the 6 

placements analyzed (chest, waist, right and left thigh, right and left ankles), the combination 

of the chest and the thigh is the most suitable (tradeoff between the number of sensors and the 

accuracy) for the activity recognition task, achieving the accuracy of 93%.  

Zephyr − The Zephyr BioHarness sensor is a commercial sports strap worn on the chest 

with direct contact to the skin. It measured the participants’ HR, BR, and chest skin 

temperature, which were used as contexts. 

BodyMedia − The BodyMedia sensor is a state-of-the-art commercial sensor for EE 

estimation, which was worn on the left upper arm as suggested by the manufacturer. It served 

as a benchmark for EE estimation, and additionally provided the data for GSR, ambient 

temperature and arm skin temperature used as features for EE estimation. The ambient 

temperature is an estimation of the ambient temperature near the arm. 

4.3. Data Preprocessing  

A custom PC application was created to record, preprocess and synchronize the multiple 

sensor data. During the recordings, the accelerometers' data were acquired on a laptop using 

Bluetooth and were manually labeled with the corresponding activity, which was later used 

for the training of the activity-recognition classification model. The data provided from the 

other sensors was labeled with the appropriate timestamp and stored locally in the sensor's 

internal memory. Afterwards, they were transferred into a database for offline analysis 

together with the accelerometer data and the activity labels. Once the multiple sensor data 

were saved into the database, they were synchronized using the unique timestamp for each 

data sample.  In the next step, they were segmented using a sliding window of ten seconds. In 

each data window, eight context features were extracted from the sensor data, as shown in 

Table 2. 

 

 

 

 

 



 

 

Table 2. The sensors and the appropriate contexts extracted. 

Sensor Contexts 

Shimmer 

accelerometers 
Activity, acceleration peaks count 

Zephyr Heart rate, breath rate, chest skin temperature 

BodyMedia  Galvanic skin response, arm skin temperature, ambient temperature 

Except for the activity and the acceleration peak counts, all other features are provided 

directly by the sensors (Zephyr, BodyMedia or Cosmed) and are computed by averaging the 

raw sensor data in the ten-second intervals. The physiological signals provided by the Zephyr 

and BodyMedia (HR, BR, etc.) differ from participant to participant and were additionally 

normalized. After empirical analysis of the data, we used the 15-minutes lying activity data 

recorded at the beginning of the activity trials in order to calculate the average resting value 

for each sensor, which was subtracted from each subsequent sensor value. 

To extract the acceleration peak counts and the activity of the user from the acceleration 

data, they were first filtered using a band-pass filter [31]. The acceleration peak counts is the 

number of times the length of the acceleration vector stops increasing and starts decreasing or 

vice versa in the 10-second interval. For the activity recognition we used a previously 

developed classification method based on ML [29][32]. The method uses the data from the 

two accelerometers (chest and thigh), extracts 128 features and applies a Random forest 

classification model to recognize the atomic activities of the user: lying, sitting, standing, 

walking, running, cycling, bending, on all fours and kneeling. It achieved 93% accuracy on a 

one-second recognition interval. For the EE, the majority activity value was chosen for each 

ten-second window interval. A similar implementation of our activity recognition method 

achieved the best recognition performance at the international competition in activity 

recognition − EvAAL-2013 [33][34].  

4.4. Evaluation Techniques 

The evaluation of the method was performed using the leave-one-person-out cross-validation 

technique [35]: models were trained on the data of nine people and tested on the remaining 

person. This procedure was repeated ten times, once for each person. The same procedure 

was performed for the activity recognition classifier, whose output was used as a feature in 

the EE estimation. This evaluation technique is the most commonly used in the ML 

community if the model is intended to be used on a user different from the ones used for 

training, which is the case in the EE estimation [14]. This method yields an estimate of how 

well the model would do if it were applied to a population on which it was not trained. As for 

the evaluation metrics, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) 

were used, since they are the most commonly used metric in the EE estimation domain. They 

are defined as follows:  
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(2) 

where q is the number of data samples, EEestimated is the estimated EE and EEtrue is the ground-

truth EE measured by the Cosmed device. 

For each comparison, tests to confirm the statistical significance of the MAE and RMSE 

results were performed using paired Student's T-test with a significance level of 5%. 

4.5. Competing Approaches 

This subsection briefly presents the methods to which we compared the MCE approach. In 

particular, two types of comparisons were made: relative and absolute. The relative 

comparison compares the MCE to conventional ML approaches: single regression and 

ensembles. That is, the same dataset with the eight extracted features was used to evaluate 

both the MCE and the conventional ML methods. This comparison was proposed in order to 

confirm the hypothesis that context-based partitioning of the data improves the accuracy 

compared to conventional ML methods. On the other hand, the absolute comparison 

illustrates the accuracy of the MCE on an absolute scale, i.e., compared to estimations 

provided by the BodyMedia state-of-the-art commercial device and to an algorithm that is 

established as state-of-the-art accelerometer-based EE estimation commonly used in medical 

applications.  

First, we compared the MCE to single-regression learning methods. This means that we 

trained single models on all the eight features. We tested five regression learning methods 

that are also commonly used in the EE literature: multiple linear regression (MLR) [36], 

support vector machine for regression (SVR) [37], Gaussian processes for regression (GPR) 

[38], model trees (M5P) [24], and multilayer perceptron feedforward artificial neural network 

(ANN) [39]. MLR is the simplest approach: it finds a linear function using all of the features 

in that matches the target variable, i.e., the EE [36]. The next method, SVR, is an extension of 

the classical SVM (commonly used for classification) adapted to regression, i.e., numeric 

output. The main characteristic of SVR is that the kernel function used for building the model 

ignores the training data samples close to the model hyperplane (within a pre-defined 

threshold) [37]. Similar to SVR, GPR is another non-linear, kernel-based method; however 

the theory behind the GPR is different compared to the SVR and is based on the Bayesian 

probability theory and assuming that the target variable follows a multivariate Gaussian 

distribution [38]. The next method, M5P is a model tree. The difference compared to standard 

decision/regression tree is that each leaf contains a linear function instead of a single value 

[24]. The last method is the ANN which is a popular non-linear regression learning method 

[39]. ANNs are composed of interconnecting artificial neurons, which are arranged in layers 

where each unit receives inputs from its immediately preceding layers. Each neuron 

computes a summation of its inputs weighted by a weight vector, and then applies an 



 

 

activation function, which can be a logistic or linear function. In our case we used an ANN 

with one hidden layer and logistic learning function. Each of the five algorithms was used as 

implemented in the WEKA ML toolkit [28]. In addition to using these algorithms to build 

single-regression models as a baseline for comparison, we also used them to train base 

learners in the ensemble schemes constructed by our MCE algorithm. 

Next, because MCE is an ensemble of regression models, we also compared it to two 

commonly used ensemble learning methods: Bagging [25] and Random subspaces [26]. 

Bagging is an approach that is based on bootstrapping, i.e., training multiple models on 

different subsets of the whole training dataset, constructed by sampling the whole dataset 

with replacement, and then aggregating the outputs from each model by averaging 

(regression) or voting (classification). Random subspace is an ensemble method proposed by 

Ho [6], which also modifies the training data; however, this modification is performed in the 

feature space. That is, a pre-defined number of features are selected randomly from the whole 

feature set. This procedure is repeated multiple times, creating a different training set for each 

selection. Then, for each training set, a regression model is built. Similar to Bagging, the final 

output is provided by aggregating the outputs from each model by averaging (regression) or 

voting (classification). Please note that for both ensemble techniques, the same five base 

machine learning algorithms were compared as in the single-regression learning. 

Because the final goal of the approach is to be used in real-life applications, we also 

compared it to a commercial device for EE estimation. A recent review showed that 

BodyMedia commercial sensor is the most accurate EE estimation consumer device [23]. 

Therefore, we compared the MCE's estimated MET to the MET output of the BodyMedia 

commercial sensor (it should be noted that the BodyMedia sensor averaged the MET 

estimation over 1-minute interval, while our methods over 10-second interval). This 

comparison illustrates the accuracy of our method on an absolute scale (compared to a device 

which is already used in real life).   

Finally, we re-implemented and compared the results to an approach that is widely 

accepted in the medical and sports research community [1][14]. It is an approach that uses an 

ANN trained with 6 features extracted from the chest accelerometer data only: 10th, 25th, 50th, 

75th and 90th percentiles of the acceleration peak counts, and the lag one autocorrelation. The 

approach was first introduced by Staudenmayer et al. [14] and further improved by Trost et 

al. [1], and is a state-of-the-art approach if a single accelerometer data is used to estimate the 

EE. From this point on, we refer to this method as ANN-Acc (ANN trained only on 

accelerometer data). 

5. Experimental Results and Discussions 

Table 3 compares four approaches in terms of RMSE and MAE: single regression, Random 

subspace, Bagging and our MCE. The five base learners explained in Subsection 4.5 were 

tested for each of the approaches. The best performing base learner is marked with bold. 

Additionally, the best performing approach for each base learner is marked with a gray 

background. 

The results achieved by the single-regression methods show that in general the methods 

that use simple learning functions, e.g., linear or polynomial (SVR, GPR and MLR) are better 



 

 

compared to the more complex ones such as ANN an M5P. This is in a way expected since 

ANNs and M5P are more susceptible to overfitting, and this problem is particularly likely to 

harm the performance when the testing data are from a person that is not used in the training 

data. When these same methods are used as base learners in the two ensemble schemes, i.e., 

Random spaces and Bagging, the results are similar to the single regression, except for the 

ANN and M5P, for which a slight improvement is achieved. However, when our ensemble 

method (MCE) uses the same base learners, the achieved RMSE and MAE are significantly 

better (lower) compared to the other three approaches. The difference ranges from 0.08 

METs to 0.24 MET for the RMSE, and from 0.05 to 0.21 MET for the MAE.  

The improvements of our MCE compared to the single-regression approach confirms the 

general rule in ensemble learning, i.e., ensembles tend to train multiple weak learners, and by 

combining the learner's outputs they create a stronger and more robust model [40]. The 

further comparison to the two standard ensemble approaches (Random subspace and 

Bagging) shows the advantage of using the nature of the domain (context) to resample the 

training data instead of using bootstrapping (Bagging) or randomly selecting features 

(Random subspaces).  

The MCE approach is general and can use different techniques for aggregating the 

outputs of each model into a final one. In the tests shown in Table 3 we used the simplest 

aggregation technique, i.e., averaging. This technique was also used by the other two 

ensemble approaches: Bagging and Random subspaces, making the results more comparable. 

We additionally tested the performance achieved by the median technique. 

Table 4 shows the comparison of the RMSE and MAE achieved by averaging compared 

to the median technique. The results show that the RMSE and MAE achieved by the median 

are almost always better (lower), except for the RMSE achieved by the M5P. The rationale 

why the median should work better is that by choosing the median value the models that are 

not accurate for some situations are not taken in consideration, which is not the case if the 

average is chosen. Because SVR by using the median achieved the best overall results (0.825 

RMSE and 0.601 MAE), it is used in all further analysis. 

Since the MCE consists of eight contexts, we additionally show the results if only a single 

context is used. In Figure 4, one can see that the MCE's EE estimation is better than the 

estimations provided by each of the base learners individually using RMSE metrics. This 

shows the advantage of using an aggregation function, i.e., by combining the individual 

models outputs using a median, the ensemble outperformed the individual models. This result 

is in accordance with the hypothesis presented by Dietterich [40], who studied the process of 

combining (aggregation) of the decisions provided by multiple models. He showed that it is 

better to find a good aggregation function instead of choosing the best single model, which 

also leads to stronger generalization.  

Of particular interest is the comparison with the first regression model, which uses the 

activity as the only context: it only uses different regression models for different activities, 

like in several pieces of related work [18][21][3]. The results show that by combining 

multiple contexts one should expect better performance than by only using the activity as the 

context, i.e., a decrease of the RMSE by 23%.  

 



 

 

Table 3. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for the MCE's MET 

estimation compared to single regression, Random subspace and Bagging using 5 base learners: 

artificial neural network (ANN), support vector regression (SVR), multiple linear regression (MLR), 

Gaussian processes for regression (GPR), and model tree (M5P). The best performance achieved by 

each of the aggregation techniques for each base learner is marked with bold. The overall best 

performance for each aggregation technique is marked with a gray background. 

 
Base learner 

Single 

regression 

Random 

subspace 
Bagging MCE 

R
M

S
E

 ANN 1.094 1.059 1.054 0.850 

SVR 0.962 1.033 0.965 0.851 

MLR 0.967 1.033 0.969 0.854 

GPR 0.967 1.081 0.968 0.883 

M5P 1.113 0.991 0.966 0.887 

      
 

 

    

M
A

E
 

ANN 0.820 0.770 0.740 0.613 

SVR 0.703 0.749 0.705 0.613 

MLR 0.713 0.766 0.715 0.622 

GPR 0.714 0.818 0.715 0.645 

M5P 0.787 0.734 0.688 0.637 

 

 

Table 4. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) achieved by the MCE 

using two aggregation techniques: average and median; and five base learners: artificial neural 

network (ANN), support vector regression (SVR), multiple linear regression (MLR), Gaussian 

processes for regression (GPR), and model tree (M5P). The best performance achieved by each of the 

approaches for each base learner is marked with bold. The overall best performance for each base 

learner is marked with a gray background. 

  RMSE   MAE 

   Base learner  Average Median   Average Median 

SVR 0.851 0.825   0.613 0.601 

ANN 0.850 0.840   0.613 0.594 

MLR 0.854 0.830   0.622 0.610 

GPR 0.883 0.872   0.645 0.637 

M5P 0.887 0.893   0.637 0.633 
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Figure 4. Root Mean Square Error (RMSE) for the MCE's EE estimation compared to each of the 

context models (base learners) used individually. 

Figure 5 shows a scatter plot comparing the ground-truth and estimated MET values for 

different activities. Three approaches are compared: our MCE approach, the EE output of the 

BodyMedia sensor, and the ANN trained on chest-accelerometer data only (ANN-Acc). The 

results show that in general, the estimations of the MCE better match the true Cosmed values 

(the diagonal line in Figure 5) for almost all of the activities. The BodyMedia sensor has 

comparably good performance for the sedentary activities and for the more dynamic, exercise 

activities (walking, cycling, running), which is probably because the device is intended for 

physically active users. On the other side, for everyday light and moderate household 

activities the performance is significantly worse than the MCE's estimations. In addition, the 

results in Figure 5 show that the ANN-Acc approach largely underestimates the METs for the 

dynamic activities, especially for the cycling activity. This was in a way expected, because 

this method uses only the torso acceleration, while the cycling activity is an activity that does 

not include a lot of torso movement, but has a relatively high MET value.  

The results achieved by the ANN-Acc approach show that acceleration information alone 

is not sufficient for accurate EE estimation. This is especially notable during the running 

activity and activities that are not characterized by high accelerations, but are still EE 

demanding, e.g., cycling (light and intense) and moderate-to-vigorous intensity household 

activities (digging, scrubbing the floor, etc.). These results are in accordance with the 

findings of Trost et al. [1], who also showed the highest RMSE values during these activities, 

except for the cycling activity which was completely omitted in their scenario. Staudenmayer 

et al. [14] also investigated and showed that worse results should be expected during the 

cycling activity when only torso-placed accelerometer is used to estimate the EE. 
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Figure 5. Measured and estimated METs for different types of activities using the MCE approach, EE 

output of the BodyMedia sensor and ANN trained on chest-accelerometer data only (ANN-Acc). 

The comparison in Figure 5 has a drawback because it averages the estimated EE over 

one type of activity, and thus allows the errors of the methods (underestimations and 

overestimations) to cancel each other. For this reason we further analyzed the performance 

using the MAE and RMSE. 

Table 5 presents the results for the MCE, BodyMedia and ANN-Acc EE estimations for 

all the activities and for different activity types individually. When calculated for all the 

activities, the MCE has significantly lower MAE and RMSE compared to the BodyMedia and 

ANN-Acc. Per-activity analysis shows that the MCE also has significantly lower RMSE and 

MAE for all activity types compared to the BodyMedia and ANN-Acc approach: on average 

0.45 (RMSE) / 0.25 (MAE) lower than the BodyMedia, and 0.94 (RMSE) / 0.67 (MAE) 

lower than the ANN-Acc. The averaging issue (canceling the errors), which is present in 

Figure 5, is confirmed with the running activity in Table 5. That is, according to Figure 5 

BodyMedia better match the EE estimation, however the RMSE and MAE statistics in Table 

5 showed that MCE achieves significantly lower errors: 1.27 difference in RMSE and 0.79 

difference in MAE. 

The difference in performance of the ANN-Acc compared to the other two (MCE and 

BodyMedia) additionally confirms that acceleration information is not sufficient for accurate 

EE estimation. These results are in accordance with the findings of Lester et al. [21], Liu et 

al. [17], and Vyas et al. [3], who showed that by using multiple sensors one can overcome 

this problem.  



 

 

Table 5. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for the MCE's EE 

estimation compared to the BodyMedia sensor and the ANN-Acc regression model. The best 

performance for each activity type is marked with bold. 

 Activities MCE BodyMedia ANN-Acc 

R
M

S
E

 

Overall activities 0.825 1.326 1.763 

Sedentary  0.571 0.957 1.374 

Light HH & exercise 0.807 1.248 1.236 

Mod-Vig HH & sports 1.094 1.938 1.519 

Walking 0.992 1.165 1.203 

Cycling light 0.932 1.250 2.004 

Cycling vigorous 1.205 1.778 3.988 

Running 1.192 2.458 3.351 

M
A

E
 

Overall activities 0.601 0.848 1.266 

Sedentary  0.410 0.490 0.950 

Light HH & exercise 0.630 1.000 0.960 

Mod-Vig HH & sports 0.880 1.560 1.140 

Walking 0.770 0.830 0.960 

Cycling light 0.670 1.010 1.730 

Cycling vigorous 0.940 1.290 3.800 

Running 0.970 1.760 3.110 

 

6. Conclusions 

This study presented a novel context-based ensemble method called MCE. The method was 

applied to the task of human EE estimation using multiple sensors. It builds upon the work of 

Crouter et al. [18], Lester et al. [21], and Vyas et al. [3], who showed that single-regression 

models cannot accurately estimate the EE over a range of activities, and that using multiple 

models based on the context (in their case the activity) significantly improves the EE 

estimation. It goes a step further in that it uses not only the activity as a context, but multiple 

contexts (HR, BR, GSR, etc.), resulting in an ensemble of models invoked for the contexts in 

which the participant is at a particular moment.  

The presented MCE approach has a number of strengths. First, the novel reasoning with 

the use of multiple contexts enables more accurate and more context-specific EE estimation 

compared to conventional single-regression approaches (linear models, non-linear regression 

models, ANN-Acc), conventional ensemble approaches (Bagging and Random subspace), 

and the state-of-the-art BodyMedia device. Second, we showed that using multiple contexts 

can provide better accuracy than using only the activity of the user as the context. Third, our 

methodology is independent of the ML algorithm used for training; therefore, any algorithm 

that performs well on a given problem can be used. This may be beneficial if limited 



 

 

processing power or memory is available, since simple algorithms such as linear regression 

can be used. It also means that the MCE approach can be applied to classification problems. 

In our previous studies we already showed that the context-based reasoning significantly 

improves the accuracy in activity recognition domain [41] (by using classification models) 

and in the fall detection domain (by using expert rules) [30].  

There are also a few limitations that warrant consideration. First, since it is not easy to 

obtain valid, multi-sensor measurements useful for EE estimation, our method was developed 

using data from a limited number of people in controlled activity trials. Since ML and pattern 

recognition algorithms perform best when applied to population groups and/or activities that 

are identical or similar to those used to train the model, it remains an open question whether 

the models developed in the present study perform acceptably in independent samples of 

people performing similar or different activities remains. This issue is also relevant when 

comparing the MCE to the EE output of the BodyMedia sensor, whose EE estimation model 

was trained on a scenario different from ours (but not in the case of the ANN-Acc approach, 

where the model was trained and tested the same way as the MCE). Second, some may argue 

that the improvement in the EE-estimation accuracy is not worth the trouble of introducing 

such a complex methodology. However, once the context structure is defined and the models 

trained, the use is simple and requires relatively low computational power. The results show 

that the difference in the errors – if they do not cancel each other out – can amount to several 

hundred calories per day. This is probably most valuable for people who are particularly 

interested in precisely matching the caloric intake and output (because of engaging in certain 

sports or calorie restriction lifestyle, suffering from diabetes etc.). 

In the future we plan to implement and release the MCE approach as readily usable 

software package or a plug-in for the WEKA ML toolkit [28]. First, this will make it 

accessible to researchers and practitioners from various areas and remove its complexity as a 

barrier to use. And second, it will make it easy to test it on various ML problems. While the 

approach was developed specifically for ambient-intelligence and healthcare problems, where 

humans are measured with sensors, it can in principle be used on any ML problem. It may no 

longer be possible to interpret (some of) the features as contexts, and contexts there may not 

be as important as in ambient intelligence and healthcare, but the MCE approach may still 

perform well. 
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Abbreviations 

MCE    =  Multiple Contexts Ensemble 

EE   =  Energy Expenditure 

HR   =  Heart Rate 

BR   =  Breath Rate 

GSR   =  Galvanic Skin Response 

MET   =  Metabolic Equivalent of a Task 

MLR  = Multiple Linear Regression  

SVR  =  Support Vector machine for Regression  

GPR  = Gaussian Processes for Regression 

M5P   = Model trees  

ANN  = Artificial Neural Network 

ANN-Acc =  ANN trained only on accelerometer data 

RMSE   =   Root Mean Squared Error  

MAE    =  Mean Absolute Error 



 

 

Author bios 

 

Dr. Hristijan Gjoreski is a researcher at the Department of Intelligent Systems at Jožef Stefan 

Institute. His research interests include context-based reasoning, wearable computing and ambient 

intelligence. He holds a Ph.D. degree in Information and Communication Technologies from the Jožef 

Stefan International Postgraduate School. Contact him at hristijan.gjoreski@ijs.si. 

 

 

Dr. Boštjan Kaluža is the head of the Agents Group at the Department of Intelligent Systems at Jožef 

Stefan Institute. His research interests include agent and multi-agent systems in general, the analysis 

of agent behavior in ambient-intelligence and security domains, machine learning and heuristic 

search. He holds a Ph.D. degree in New Media and e-Science from the Jožef Stefan International 

Postgraduate School. Contact him at bostjan.kaluza@ijs.si. 

 

 

Prof. Dr. Matjaž Gams is the head of the Department of Intelligent systems at Jožef Stefan Institute, 

and professor at the University of Ljubljana and Jožef Stefan Postgraduate School. His research 

interests include ambient intelligence, machine learning, agents, hybrid learning and reasoning. He 

holds a Ph.D. degree in Computer and Information Science from the University of Ljubljana. Contact 

him at matjaz.gams@ijs.si. 



 

 

 

 

Dr. Radoje Milić, MD, is the head of the head of Exercise Physiology Lab at the Institute of Sport 

– Faculty of Sport, University of Ljubljana, Slovenia. His research interests include sports medicine, 

exercise physiology and exercise performance analysis. Contact him at radoje.milic@fsp.uni-lj.si 

 

 

 

Dr. Mitja Luštrek is the head of the Ambient Intelligence Group at the Department of Intelligent 

Systems at Jožef Stefan Institute. His main research interest is ambient intelligence, particularly the 

analysis of human behavior using sensor data. He holds a Ph.D. degree in Computer and Information 

Science from the University of Ljubljana. Contact him at mitja.lustrek@ijs.si.  

 


