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Abstract

Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray
analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with
antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with
an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly
outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-
modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine,
and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around.
Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while
PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by
MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG
class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying
the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with
human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-
pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.
sysmed-immun.eu/EAR.
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Introduction

The human immune system consists of an innate and an

adaptive branch. The latter encompasses B cell driven antibody-

mediated humoral and T cell driven cellular immune responses.

Both types of adaptive immune responses are highly connected

with each other by the involvement of MHC class I and MHC

class II peptide complexes (for review see [1]). In short, MHC class

I complexes are found on all nucleated cells presenting intracel-

lularly derived peptides to cytotoxic CD8-positive T cells. MHC

class II complexes are found on professional antigen-presenting

cells such as dendritic cells, macrophages and B cells, presenting

peptides derived from extracellular uptake of proteins to CD4-

positive T cells [2]. For instance, the B cell receptor (membrane

bound immunoglobulin) binds antigenic (protein) structures, these

complexes are then engulfed, bound proteins are dissected into

peptides, which are finally presented by the MHC class II complex

to the T cell receptor of CD4-positive T cells [3]. These

interactions are instrumental in making the decision whether

and what type of immune responses (T cell mediated cellular

versus B cell mediated humoral response) are going to be

promoted. In case of humoral immune responses, the T and B

cells express co-stimulatory signals along with cytokines, driving

forward the antigen- as well as immune complex-driven differen-

tiation and maturation of B cells into antibody-secreting plasma

cells [4]. On B cells, the antigen/epitope binding site designated

paratope is located at each tip of the two Fab fragments that are

displayed by membrane-bound monomeric IgM constituting the B

cell receptor [5]. Once the antigen-decorated B cell gains T cell

help, the B cell might be induced to perform a immunoglobulin
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(Ig) class switch to IgG synthesis [6]. Class switching is partly

supported by the synergy of B cell receptor crosslinking and

nucleic acid/immune complex-driven engagement of the Toll-like-

receptor system. These processes either lead to T cell-dependent

or T cell-independent antibody responses [7],[8],[9].

Epitope Analysis
Two types of epitopes i. continuous and ii. discontinuous

epitopes participate in epitope-antibody-reactivities (EAR). B cell

epitopes are most commonly discontinuous (also called conforma-

tional or assembled), consisting of segments of multiple chains

brought together by the folding of the protein (antigen) [10]. Only

about 10% of all epitopes recognized by antibodies are thought to

be continuous (also called linear or sequential) [11]. Whole protein

arrays [12] generally detect both types of epitopes of an antigen

within one single measure. Whereas the exact nature of a

discontinuous epitope has usually to be specified by sophisticated

X-ray crystallography [13], peptides displayed on microarrays are

experimentally used to determine continuous epitopes [14] [15].

This is why most work on epitope profiling is focused on

continuous epitopes.

Epitope Prediction
The first attempts to predict continuous B cell epitopes were

based on propensity scales [16]. Current state-of-the-art epitope

prediction generally uses machine learning approaches. Larsen

et al. [17] trained a Hidden Markov Model (HMM) on epitopes in

conjunction with random amino acid sequences. The antigenicity

of amino acids was then derived from the ratios of their emission

probabilities by the epitope HMM and the random HMM. The

area under curve (AUC) of receiver operating characteristic

(ROC) of such a classifier in combination with a hydrophobicity

scale was 0.671. Söllner and Mayer [18] used decision tree and

nearest neighbor machine learning algorithms. They utilized over

1,000 attributes related to relative positions of amino acids in the

sequences and over 250 propensity scales. The post test probability

(a measure similar to accuracy) of the best classifier was 69.31%. In

the studies cited below, the classifiers used have been trained and

tested on B cell epitopes from the Bcipep database [19] as positive

examples and random peptides as negative examples (except for

Rubinstein et al. [13], who apparently used epitope and non-

epitope parts of the same antigens as positive and negative

examples). Saha and Raghava [20] employed a recurrent neural

network. The accuracy of the trained network was 65.93%. Chen

et al. [21] used the support vector machine learning algorithm.

Their attributes were frequencies of amino acid pairs and five

propensity scores. The resulting accuracy was 73.71%. El-

Manzalawy et al. [22], [23] used support vector machines in

combination with a subsequence kernel. Their attributes were all

subsequences of peptides up to a certain length, including

subsequences with gaps. The AUC of the subsequence kernel

classification was 0.812 and the accuracy 73.37% ([23], original

data set). They reimplemented Chen et al.’s [21] method, which

yielded an AUC of 0.717 and an accuracy of 65.65%. The

difference compared to the accuracy reported by Chen et al. is

probably due to differences in the exact composition of the data

set. Results reported by El-Manzalawy et al. confirm the

superiority of the subsequence kernel classification. Rubinstein

et al. [13] used the naive Bayes machine learning algorithm. Their

attributes were the frequencies of amino acids, the structural

properties of proteins and a number of propensity scores. With all

these attributes, the AUC was 0.55 and the accuracy was 70.6%. If

only the best attributes were selected, the AUC and the accuracy

increased to 0.59 and 80.4%, respectively. This large increase (in

accuracy) may be due to the fact that apparently the whole data set

was used in attribute selection instead of only the training set.

In this manuscript the analysis is based on a large data set of

EAR determined by the high-density peptide array technology

platform at the Rostock Epitope Screening Center (RESC) [14],

[15], [24]. The peptide arrays were probed with commercially

available intravenous immunoglobulin preparations (IVIG). IVIG

is a purified IgG fraction usually prepared from the serum of

between 1,000 and 15,000 healthy donors per batch and is

intended for medical use in a number of conditions [25], [26]. see

File S1. The data set was used to compare two computational

methods for predicting the occurrence of continuous B cell

epitopes. The methods were based on machine learning and the

use of position weight matrix (PWM) analysis. Epitope classifica-

tion was then related to predictions of MHC class I and class II

binding and known X-ray structures of antigen-antibody com-

plexes.

Materials and Methods

Peptide Array Data
Our epitope profiling methods are described in detail in [14]

[15]. Different batches of high-density peptide microarrays (each

carrying about 5,000 individual, usually 15mer, peptides in

triplicate) were employed to screen for EAR. The chip content

consisted of peptides mostly derived from human proteins

supplemented with random peptides, peptides from non-human

proteins or those with mutated sequences or non-standard amino

acids (File S2). The peptide chips were incubated with commercial

intravenous immunoglobulin fractions (IVIG). IVIG preparations

from several commercial vendors were used (Omrix, Israel; Sclavo

Vena NIV, Italy; Tegeline, Laboratoire Français du Fractionne-

ment et des Biotechnologies LFB, France; Octagam, Octapharma

GmbH, Langenfeld, Germany; Intratect, Biotest Pharma GmbH,

Dreieich, Germany). More detailed informaton on the statistics of

the used samples as well as on the nature of IVIG is given in File

S1. For staining of the peptide chips, IVIG was usually used at

0.125 mg/ml. Bound antibodies from the IVIG preparations were

visualized by processing the arrays with a fluorescently tagged

secondary antibody, a goat Fab-fragment antibody directed

against the Fc part of human IgG [14]. The data depth of

scanned images was 16-bit, i.e. signals ranged from 0 to 65,535.

Intensities given in the manuscript and in the supplements

represent the average signals of the triplicates. If a peptide was

measured in more than one experiment, the highest average signal

intensity reached was further used. In each experiment, one chip

was probed with secondary antibody alone to determine its

background staining irrespectively from IVIG primary antibodies.

Information on the analyzed peptide sets, the distribution of the

signals and the reproducibility of the measurements are provided

in File S2.

Data Set Preparation
The data set preparation with the associated workflow is

illustrated in Figure 1. In total, the EARs of 75,534 peptides (full

analysis set) were measured. From those, all peptide sequences

were removed whose signals from the secondary antibody alone

were larger than signals from IVIG. These signals, designated non-

specific background reactivities, are due to direct binding of

secondary antibodies to specific peptide sequences. This operating

procedure resulted in a basic peptide set of 59,546 sequences.

These peptides were further divided into three categories with

respect to signal intensities: 6,841 peptides with signals above

10,000 after subtraction of background values of secondary

Classification of Epitope-Antibody-Reactivities
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antibodies alone are designated ‘‘binders’’; at the opposite end,

20,437 peptides with intensities below or equal to 100 after

background subtraction are designated ‘‘non-binders’’. These two

groups are considered to be of high confidence with respect to

recognition or non-recognition of antibodies present in IVIG

preparations forming the input data set (see File S2 listing signal

intensity distributions and the statistics of the peptide content). The

group with in-between signals has not been analyzed further to

exclude peptides that run the risk of being wrongly assigned. The

peptides that bind antibodies are considered to contain at least one

epitope, i.e., one antibody binding site. The input data set was split

in half by random sampling to form a training and a test set (see

File S2 for the procedure). The training set consisted of 3,420

peptides that were reactive with antibodies (‘‘binding’’) and 10,218

peptides that were not (‘‘non-binding’’). The test set consisted of

3,421 binding and 10,219 non-binding peptides, respectively.

Most of the peptides studied were 15 amino acids in length (12,436

in the training, 12,420 in the test set). More information on

sequence and origin of the peptides of the training set along with

their measured signals are listed in Table S1. Their assignments to

different classification groups defined in this paper are also

indicated. The test set peptides are provided in a similar way in

Table S2. This table includes prediction scores. The training and

test sets contain roughly three times more non-binding than

binding peptides. Such imbalanced data sets might reduce the

performance of classifiers trained by machine learning algorithms

[27]. To handle imbalanced data sets, two methods were applied,

random oversampling and undersampling. The first method

duplicates randomly chosen data in the smaller class (binding in

our case). The second method removes randomly chosen data

from the larger class (non-binding in our case). These two

methods, while simple, were shown to outperform more sophis-

ticated ones [27]. Both methods of over- and undersampling

perfectly balanced both classes. When training the final classifier

for epitope prediction, oversampling was used to take advantage of

all information contained in the training set. When choosing the

best attributes and machine learning algorithms, undersampling

enabled fair comparison while offering greater speed and

simplicity.

Generation of Position Weight Matrices (PWMs)
The peptide sets were divided into binding and non-binding,

and for each group a 20615 PWM (20 standard amino acids615

peptide positions) was constructed that described the frequency of

each amino acid at each position [28]. Next, these primary PWMs

were used to construct a ratio PWM containing the ratios of the

frequencies of the amino acids at each position in the ‘‘binding’’

versus the ‘‘non-binding’’ PWM. A ratio higher than one

corresponds to a more enriched amino acid at this position in

‘‘binding’’ peptides, while a value smaller than one means the

opposite. A higher ratio thus also indicates that the amino acid is

more likely to be present in epitopes. This ratio is termed ‘‘epitope

propensity’’. Position-dependent propensity values were calculated

by averaging the ratio PWM values for each amino acid for all

positions. Individual peptide sequences were ranked by computing

PWM scores. Such scores are calculated by multiplying the ratios

of the relative frequencies of each amino acid at each position in a

peptide sequence.

Workflow of Machine Learning with an Ensemble
Classifier (ML-advanced)

An ensemble approach was used for epitope prediction. The

training was done in two steps. In the first step, each peptide pi

from the training set was first represented by eight attribute vectors

a1(pi), …, a8(pi). Then eight base classifiers C1, …, C8 were trained,

one for each attribute set. Each of the base classifiers used one of

the attribute vectors as input and returned the probability that the

peptide represented by the attribute vector contains an epitope. In

the second step of machine learning, the probabilities returned by

the base classifiers formed a new attribute vector: aM(pi) = [-

C1(a1(pi)), …, C8(a8(pi))]. To assign this new attribute vector to each

peptide, five-fold cross-validation was used. The training set was

split into five subsets, the base classifiers C1, …, C8 were trained on

four of them and then used to estimate the epitope probabilities for

the last one. This was repeated five times with a different split each

time, so that all the peptides were assigned the probabilities.

Finally, a meta-classifier CM was trained on aM(pi) to compute the

final probability that a peptide contains an epitope.

The testing of the classifier for epitope prediction followed the

same two-step procedure as training. Each peptide qi from the test

set was represented by eight attribute vectors a1(qi), …, a8(qi) and

classified with the eight base classifiers C1, …, C8. The outputs of

these classifiers were joined into a new attribute vector aM(qi) and

classified with the meta-classifier CM, returning the final proba-

bility CM(aM(qi)) that the peptide qi contains an epitope. The

procedure we describe is similar to stacking [29,30]. The

difference is that in stacking, all base classifiers are trained on

the same attribute vectors, however, different machine learning

algorithms are used. Stacking thus attempts to exploit the

advantages of multiple machine learning algorithms, whereas

our procedure in addition takes advantage of multiple ways to

represent the data. This approach can, however, use multiple

learning algorithms as well since a different algorithm can be

employed to train each base classifier, including another level of

stacking. The data set on which the classifiers were trained was

balanced using random oversampling for all base classifiers. The

meta-classifier was trained on both, the balanced and the original

(imbalanced) training set.

Each of the eight attribute vectors used in machine learning

consisted of different attributes:

N Frequencies of amino acids in the peptide (e.g., the frequency

of alanine)

N Differences between the frequencies of the amino acids (e.g.,

the frequency of alanine minus the frequency of cysteine)

N Frequencies of the subsequences of the peptide up to a certain

length (e.g., the frequency of alanine-alanine-cysteine)

N Physico-chemical properties of the amino acids (e.g., the

average acidity)

N Frequencies of amino acid classes based on their physico-

chemical properties (e.g., the frequency of acidic amino acids)

N Frequencies of the subsequences consisting of amino acid

classes instead of individual amino acids (e.g., the frequency of

acidic-neutral-acidic-neutral)

N Frequencies of pairs of amino acids with a certain distance

between them (e.g., the frequency of the pair (alanine, cysteine)

with the distance 3 between them)

N Frequencies of amino acids occurring at a certain distance

from the first position in the peptide (e.g., the frequency of

alanine at the distance 3 from the first position).

The attributes are described in more detail in File S3 (2.

Attributes for machine learning). Several parameters in our

machine learning procedure have been tuned. Firstly, each of

the attribute vectors has been computed in various ways, which

were controlled by attribute parameters. Secondly, each of the

base classifiers has been trained by various machine learning

Classification of Epitope-Antibody-Reactivities
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algorithms, each of which has its own parameters – more on this in

File S3 (4. Machine learning algorithms). And thirdly, the same is

true for the meta-classifier. The tuning procedure is described in

File S3 (3. Parameter tuning).

Simplified Machine Learning Using Human
Understandable Attributes (ML-simple)

The ensemble approach was designed for maximum prediction

accuracy. However, for (qualitative) analysis and interpretation, a

more simplified approach was applied. It uses only frequencies of

amino acid subsequences up to length 5 (including the frequencies

of single amino acids) and physico-chemical properties of amino

acids as attributes because they are readily interpretable. To

Figure 1. Data set preparation and computational workflow for the prediction of epitope-antibody-reactivities (EAR) determined
for IVIG antibodies. Rectangles represent groups of peptides (numbers in each group are indicated), boxes with rounded corners indicate the
applied classification approaches. 1All peptides printed on the microarrays 2Removal of false positive (binding) peptides (e.g. those reactive with
secondary antibodies) 3Separation of peptide set according to signal intensities of EAR into non-binders, binders and unassigned peptides
4Classification approach ML-advanced = machine learning with an ensemble classifier 5Number of peptides predicted to be non-binding/binding,
separated into those predicted correctly (underlined) and incorrectly 6Classification approach PWM = position weight matrix 7Classification approach
ML-simple = simplified machine learning using human-understandable attributes 8Capital letters A–H indicate subsets of peptides assigned in
supplementary information table S1 and explained there in the legend.
doi:10.1371/journal.pone.0078605.g001

Classification of Epitope-Antibody-Reactivities
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obtain a human-understandable classifier, the RIPPER machine

learning algorithm was applied [31]. It produces rules with the

following form:

IF (a1,val1) AND (a2$val2) … THEN class = binding

…

ELSE IF (an–1,valn–1) AND (an$valn) … THEN class = binding

ELSE class = non-binding

The letters ai indicate the attributes, vali the values these

attributes may take and n the total number of attribute

comparisons. Each rule applies to a certain number of peptides

and each rule classifies a subset of them correctly. We found that

even such a rule set is difficult to read, mostly because each

attribute occurs in multiple rules, so we provide a summary

instead. Each row of the summary consists of three items. The first

is the attribute. The second is whether the attribute should be

lower or higher than some value in order for the class to be

binding (,vali or .vali, the exact value is omitted). The third item

is the percentage of peptides that the rules containing this attribute

classified correctly, out of all the binding peptides in the data set.

This item signifies the importance of the attribute. With the

intention to reach a balance between simplicity and accuracy, the

human-understandable attributes were used in combination with

logistic regression machine learning algorithms (File S3, 4.

Machine learning algorithms).

Presentation of Performance Measures
The epitope prediction performance is presented in terms of the

classification accuracy and the area under curve (AUC) of receiver

operating characteristic (ROC). The accuracy is defined as the

number of correctly classified instances divided by the total

number of instances. As in case of our data set, the score may be

somewhat misleading since the numbers of instances belonging to

each class are unequally distributed. The AUC is not sensitive to

class imbalances and is a more general measure than the accuracy

itself. The details of both measures are explained in File S3 (5.

Epitope prediction performance measures).

Prediction of MHC Peptide Binding
The NetMHC 3.2 [32] and NetMHCIIpan 1.1 server [33]

online services were used to predict whether the peptides under

study can be presented by MHC class I and class II complexes.

These servers have been chosen because of their high web-based

functionalities, availability, common use and high acceptance in

the scientific community. The ten most common MHC alleles

have been taken for analysis, see File S4 (3. MHC class I and class

II prediction servers). Individual outputs of the servers for the

peptides of the training set are given in Table S1. The MHC

servers set a value of .0.5 as indication for binding. To compare

predictions of both servers with measures of our peptide arrays, we

plotted ROC curves for both MHC classes. The binding/non-

binding classifications derived from peptide array analysis were

taken as true values. This allowed us to express the degree to

which the MHC predictions agreed with our peptide array

measures.

Analysis of PDB Structures
In total, 509 crystal structures of antibody and protein antigen

complexes have been identified in Protein Data Bank and IMGT/

3DStructure-DB (status January 2010). High quality protein

complexes at resolutions of lower than 3.0 Å showing protein

complexes with peptide lengths of more than 25 amino acids were

selected, the similarity in binding of interfacial residues was

mapped and redundant complex structures were removed. If more

than 20% interfacial residues turned out to be identical within

comparable antibody-protein complexes, the one with higher

crystallization resolution was taken. The final data set of antibody/

protein antigen complexes was composed of 81 crystal structures.

Their PDB IDs are listed in Table S4. Amino acids of the

Figure 2. Performance comparison of the tested classifiers for
IVIG binding prediction on the test set peptides. ROC analysis for
our machine learning approach with an ensemble classifier (ML-
advanced), the machine learning method of El-Manzalawy et al. (2008)
[22,23] and a PWM approach using an PWM derived from the training
set. Both machine learning approaches were trained on the original
training set (‘‘original’’: three times more non-binding than binding
peptides) and on the balanced training set (‘‘balanced’’: equal number
of binding and non-binding peptides) and finally applied on the test
set. AUC values are indicated as well. Note that the curves based on the
original and balanced training set of our ML-advanced method show
almost complete overlap.
doi:10.1371/journal.pone.0078605.g002

Table 1. AUC and accuracy of binding prediction for IVIG
antibodies using the eight base classifiers that are a part of
the ML-advanced machine learning approach*.

Attribute vector AUC Accuracy

Frequencies of amino acids 0.870 80.7%

Difference between frequencies 0.868 80.3%

Frequencies of subsequences 0.867 80.5%

Physico-chemical properties 0.873 81.2%

Frequencies of amino acid classes 0.866 80.5%

Frequencies of subsequences
of classes

0.865 80.6%

Frequencies of pairs of amino acids 0.873 81.2%

Frequencies of amino acids at a
distance from first position

0.863 80.3%

*The base classifiers were cross-validated on the balanced training set (equal
number of binding and non-binding peptides). Balanced data was chosen
because the base classifiers were always trained on balanced data, the original
data were only used in the final step of merging their results. The training set
was chosen instead of the test set because comparing various methods on the
test set can lead to selecting them based on those results, which defeats the
purpose of an independent test set.
doi:10.1371/journal.pone.0078605.t001

Classification of Epitope-Antibody-Reactivities
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antibody-bound peptide that made up an epitope were determined

from the solvent accessible surface areas at the epitope-paratope

interface as described previously [34]. The enrichment of amino

acids in these epitopes was computed as follows: For each amino

acid its cumulative count in an epitope was divided by the total

number of residues in that epitope. Then these values were

averaged over all epitopes and the percentage of each amino acid’s

frequency was determined. For combined frequencies, the relative

frequencies of single amino acids in epitopes were averaged.

Results

Prediction of peptide binding to antibodies present in IVIG was

based on a data set containing EAR for 75,534 distinct continuous

peptide sequences. From this full analysis set, 9.05% (6,841 of

75,534 peptides) showed high confidence EAR with background-

corrected signals of greater than 10,000. They were derived from

altogether 870 different human protein sequences. Though these

IVIG antibodies have been collected from thousands of sera of

healthy donors, these data show that a large number of peptides of

human origin are reproducibly recognized by IVIG samples. With

the help of this data set, machine learning and PWM approaches

have been applied to determine how well EAR can be predicted. A

scheme of the workflow that provides a directed walkthrough of

each step conducted is outlined in Figure 1. First an elaborate

machine learning approach was established which used an

accurate but difficult to interpret ensemble classifier (ML-

advanced). Then, a simplified machine learning approach was

conducted using human-understandable attributes and rules (ML-

simple). The principle advantage of the additional PWM approach

was that it is more readily readable and facilitates to point to

position effects and amino acid patterns that can be experimentally

explored.

Epitope Prediction
Classifiers for epitope prediction were trained on the training set

and applied to the test set. Both sets contained three times more

non-binding than binding peptides, but this may not necessarily be

the case for potential new data. Thus, we investigated the

performance of classifiers trained on the original training set as

well as on balanced data sets containing an equal number of

binding and non-binding peptides. In the first scenario, the

proportion of binding vs. non-binding peptides in the test set is

considered to be the same as in the training set. In the second

scenario, binding and non-binding peptides are assumed to be

equally likely in training and test set. Firstly, the performance of

the eight base classifiers used in machine learning was evaluated.

Table 1 shows the performance achievable with relatively simple

classifiers providing a baseline for the final ensemble classifier. As

shown by the AUC and the accuracy of each of the base classifiers,

their performances were quite similar. Thus, none of them could

be excluded from the ensemble. The final ensemble classifier ML-

advanced was compared to the PWM approach using the

unbalanced data set as well as to the classifier by El-Manzalawy

et al. [22], [23] that was taken as state-of-the-art in epitope

prediction. AUC scores and accuracies characterized ML-

advanced as slightly better compared to the machine learning

according to El-Manzalawy when trained on both, the original

and balanced training sets (Table 2). Details in terms of the

number of correctly predicted peptides for all three approaches are

shown in Table 3. The corresponding ROC curves are visualized

in Figure 2, together with those derived from PWM classification

of the training set. They corroborated the slightly better

performance of our ML-advanced approach compared to the

El-Manzalawy machine learning and illustrated the superiority of

machine learning in comparison to PWM analysis. Predictions for

individual peptides in the training and test set can be found in

Table S1 and Table S2, respectively. The ensemble classifier of

ML-advanced outperformed the base classifiers (compare results in

Table 2 with the balanced results in Table 1). The difference in

terms of the AUC is modest, ranging from 0.01 to 0.02, but the

difference in terms of the accuracy is larger, at least by 2.5

percentage points. To determine the attributes that enable the

prediction of ‘‘binding’’, peptides of the training set were classified

in a machine learning approach named ML-simple (see Methods)

by using attributes reflecting human-readable rules. The rule

summary (Table 4) shows that attributes significantly associated

with prediction of ‘‘binding’’ were in particular high aromaticity,

low polarity and high tyrosine content. However, the moderate

percentages of correctly classified peptides for the individual

attributes illustrate once more the advantage of using an ensemble

approach for the most accurate prediction.

Stratification of Classifiable and Unclassifiable Peptides
While experimenting with various attributes and machine

learning algorithms, we discovered that many of them can predict

epitopes with an accuracy of around 80%. Not all classifiers

misclassified the same peptides, which is why combining the

classifiers into an ensemble improved the performance (as seen in

Table 1 and Table 2). However, it seemed that 15–20% of the

peptides resisted correct first round classification irrespective of the

method used. To investigate this phenomenon further, we divided

the peptides of the training set into ‘‘1st degree classifiable’’ and

‘‘1st degree unclassifiable’’ and analyzed each group separately.

For this, we used the interpretable attributes, namely the

frequencies of amino acid subsequences up to length 5 and

physico-chemical properties of amino acids, and logistic regression

as the machine learning algorithm (note, that these attributes and

this algorithm were used in all the experiments in this subsection).

The division of the data set was carried out by splitting the whole

original training set into five subsets. Each of the subsets was

divided into classifiable and unclassifiable peptides by a classifier

trained on the remaining four subsets. Those that were classified

correctly were considered classifiable and the rest unclassifiable.

All five classifiable subsets were then merged into a single set of 1st

degree classifiable peptides and the same was done for the 1st

degree unclassifiable ones. The assignment of particular peptides

to these classes is listed in Table S1. Finally, a classifier was cross-

validated on the 1st degree classifiable and unclassifiable peptides

separately. The respective performances of these classifiers are

shown in Table 5. The accuracy on all peptides of the training set

Table 2. AUC and accuracy of epitope predictions on the test
set*.

Original training set Balanced training set

ML-advanced El-Manzalawy ML-advanced El-Manzalawy

AUC 0.884 0.874 0.883 0.868

Accuracy 85.9% 83.9% 83.7% 82.8%

*Comparison of our final ensemble classifier (machine learning approach ML-
advanced, see Figure 1) to the classifier by El-Manzalawy et al. [22] [23]. Both
were trained on the original training set (three times more non-binding than
binding peptides) and on the balanced training set (equal number of binding
and non-binding peptides) and finally applied on the test set. The results on the
balanced training set can directly be compared to those in Table 1.
doi:10.1371/journal.pone.0078605.t002

Classification of Epitope-Antibody-Reactivities

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78605



reached 83%, which may be expected based on Table 1 and

Table 2. The accuracy on the 1st degree classifiable peptides was

close to 100%, which was also as expected. The value did not

reach 100% because the classifier was exclusively trained on the 1st

degree classifiable peptides, whereas the classifier that divided the

peptides into classifiable and unclassifiable was trained on all

peptides of the training set. However, the accuracy on the 1st

degree unclassifiable peptides was also high (91.5%), which was

not expected. To understand this phenomenon, we introduced

rules for 1st degree classifiable and unclassifiable peptides

separately. The rule summary is provided in Table 6, and the

complete rule set in File S3 (6. EAR Rules). Table 6 explains the

unexpectedly high classification cross-validation accuracy on the

unclassifiable peptides: The 1st degree classifiable and unclassifi-

able peptides are exactly the opposite of each other with respect to

the attributes most useful for classification. For example, if a

peptide is classifiable, it is likely to bind if it has a high aromaticity;

if it is unclassifiable, it is likely to bind if it has a low aromaticity.

Because of this opposite behavior, a classifier that correctly

classifies one of the two groups must fail on the other. The

classifier that was trained on the whole training set correctly

classified the larger group (classifiable) and failed on the smaller

one (unclassifiable). However, when the classifier that was trained

on the 1st degree unclassifiable peptides was used, it no longer

faced the contradiction between the groups and thus performed

well.

Propensities of Amino Acids
Although inferior in prediction efficacy, the ratio PWM of the

amino acid distribution in binding versus the non-binding peptides

of the training set helped to pinpoint amino acids important for

IVIG binding. The matrix indicates a higher frequency of tyrosine

(Y), tryptophan (W) and phenylalanine (F) in binding and a higher

incidence of glutamic acid (E) and glutamine (Q) in non-binding

peptides (Figure 3). Clear-cut position-specific effects for these

amino acids within the peptides were not observed. However, the

detected ranges in values (indicated by minimum and maximum)

in the PWM for many amino acids raise the possibility that

position effects may exist: it is conceivable that even strong EARs

of particular antibodies with a particular binding pattern have

been obscured due to overlapping binding of thousands of

different antibodies. To investigate the properties of 1st degree

classifiable and unclassifiable peptides in more detail, we

investigated the epitope propensities (ratios of the frequency in

binding vs. non-binding peptides) of the 20 standard amino acids

in each group separately. 1st degree classifiable and unclassifiable

peptides show an opposite behavior in terms of epitope

propensities (Figure 4): those amino acids that have higher epitope

propensities in 1st degree classifiable peptides (and to a lesser

degree in all peptides), have lower propensities in unclassifiable

peptides, and vice versa. Numeric values of epitope propensities

are listed in Table S3. The analysis demonstrated a strong

overrepresentation of amino acids Y, W and F in the ‘‘binding’’

subset of 1st degree classifiable peptides. In contrast, in particular

Q and E as well as serine (S), alanine (A) and asparagine (N) were

more frequent in the ‘‘non-binding’’ peptides. Both observations

were already visible in the graph for the whole training set and

coincided with the PWM on the whole training set described

above (Figure 3). PWM analysis on the 1st degree classifiable \

Table 3. Performance of the classifiers illustrated by confusion matrices of the prediction of IVIG binding on the test set.

Classifiers trained on:

Original training seta Balanced training seta

Classifierb Prediction Actual bindersc Actual non-bindersc Actual bindersc Actual non-bindersc

ML-advanced Binding 2,420 916 2,735 1,539

Non-binding 1,001 9,303 686 8,680

2-PWM Binding 2,162 1,260 n.d.d n.d.d

Non-binding 1,260 8,958 n.d.d n.d.d

El-Manzalawy Binding 2,253 1,033 2,416 1,453

Non-binding 1,168 9,186 1,005 8,766

aTraining sets consist of either three times more ‘‘non-binding’’ than ‘‘binding’’ peptides (original) or an equal number of both groups (balanced).
bOur classifiers (ML-advanced, PWM with treshold 2.45; see Figure 1 for workflow) and the classifier of El-Manzalawy et al. [22] [23].
cCorrect predictions are underlined.
dnot determined.
doi:10.1371/journal.pone.0078605.t003

Table 4. Rule summary for the whole training set when
applying the simplified machine learning approach consisting
of human-understandable attributes (ML-simple) for
prediction of IVIG binding.

Attributea Low\highb Classified correctlyc

Aromaticity High 53.8%

Polarity Low 27.7%

Frequency of tyrosine High 26.2%

Hydrophobicity Low 22.5%

Frequency of arginine High 19.7%

Summary factor 2 High 16.7%

Acidity Low 11.4%

Preference for b-sheets Low 4.3%

Summary factor 5 High 3.0%

aDetails on the attributes, including the two summary factors ‘‘Summary Factor
2’’ and ‘‘Summary Factor 5’’ that combine 494 amino acid properties, are given
in File S3 (2. Attributes for Machine Learning).
bWhether the rules state the value of the attribute should be high or low for a
peptide to be binding.
cThe percentage of binding peptides that were correctly classified by rules
containing the attribute. This percentage roughly corresponds to the
importance of the attribute.
doi:10.1371/journal.pone.0078605.t004
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unclassifiable peptides corroborated these rules and epitope

propensities as well (File S4, 2. Additional PWM Results).

Application of PWM Analysis to Restricted Peptide Sets
Since 8.5% of the 1st degree unclassifiable peptides were not

classified correctly when a classifier was cross-validated on them,

we further divided the peptides into 2nd degree classifiable and

unclassifiable (Table 7). Again, a classifier was cross-validated on

each of the 2nd degree subsets separately. The accuracy on the 1st

degree unclassifiable\2nd degree classifiable peptides was 97.5% as

expected, while the accuracy on the 1st degree unclassifiable\2nd

degree unclassifiable peptides was only 65%. This is as good as

simply classifying all of them as non-binding by default (66.4%).

Propensity graphs showed that the amino acid distributions were

almost indistinguishable for all 1st degree unclassifiable and 1st

degree unclassifiable\2nd degree classifiable peptides (Figure 5),

likely because both sets largely overlap (roughly 90%). However,

the amino acid distribution of the 274 residual 1st degree

unclassifiable\2nd degree unclassifiable peptides was unlike any

of the groups investigated so far. In contrast to the failure of the

machine learning approach on these 274 peptides, the PWM-

derived heat map (Figure 6) outlines specific amino acids at distinct

peptide positions that distinguish ‘‘binding’’ from ‘‘non-binding’’

peptides. This PWM classification on a limited number of peptides

left only very few peptides unclassifiable (see ‘‘3rd degree

classifiable’’ versus ‘‘3rd degree unclassifiable’’ peptide sets in

Figure 1). The high AUC of 0.962 and accuracy of 88.7% (ROC

curve provided in File S4 (2. Additional PWM results)) indicate

that amino acid specific position effects specified in small EAR

data sets play a major role in epitope recognition and antibody

binding.

Evidence for Two Types of EAR
Our machine learning approaches initially identified two main

classes of peptides, 1st degree classifiable and unclassifiable

peptides (see above; Table 5). In order to directly relate this

classification to information on the amino acid composition, the

characteristics of respective peptides were visualized with the help

of two ratio PWMs in separate scatter graphs for the ‘‘binding’’

and ‘‘non-binding’’ peptides (Figure 7). The visualization indicated

that the 1st degree classifiable and unclassifiable peptides disperse

into two distinguished groups for both, the ‘‘binding’’ and ‘‘non-

binding’’ peptides, due to their opposite physico-chemical

characteristics. Based on this behavior, we propose that there

are two types of EAR for ‘‘binding’’ peptides: The designation

Type I EAR describes the 1st degree classifiable while Type II

Table 5. Performance for the whole training set, 1st degree classifiable and 1st degree unclassifiable peptides employing the
simplified machine learning approach with human-understandable attributes (ML-simple) for prediction of IVIG binding*.

Training set 1st degree classifiable 1st degree unclassifiable

AUC 0.860 0.999 0.956

Accuracy 83.0% 98.8% 91.5%

Number of peptides 13,638 10,922 2,716

*Comparison of AUC and accuracy when the classifier was 10-fold cross-validated on all the peptides in the original training set, or on peptides that the first classifier
classified correctly (1st degree classifiable) or incorrectly (1st degree unclassifiable), respectively. All classifiers used the interpretable attributes and logistic regression.
doi:10.1371/journal.pone.0078605.t005

Table 6. Rule summary for the 1st degree classifiable and unclassifiable peptides employing the simplified machine learning
approach with understandable attributes (ML-simple) for the prediction of IVIG binding.

Attributea 1st degree classifiable 1st degree unclassifiable

Low\highb Classified correctlyc Low\highb Classified correctlyc

Aromaticity High 74.3% Low 53.3%

Polarity Low 58.7% High 27.5%

Frequency of arginine High 31.5% Low 34.0%

Frequency of tyrosine High 20.7% Low 16.9%

Summary factor 5 High 15.1% Low 15.2%

Antigenicity High 7.3% Low 8.7%

Hydrophobicity Low 4.7% High 6.5%

Frequency of histidine Low 3.9%

Frequency of cysteine Low 10.4%

Preference for reverse turns High 10.4%

Occurrence in turns Low 10.4%

Frequency of alanine High 8.7%

aDetails on the attributes are given in File S3 (2. Attributes for Machine Learning).
bWhether the rules state the value of the attribute should be high or low for a peptide to be binding.
cThe percentage of binding peptides that were correctly classified by rules containing the attribute. This percentage roughly corresponds to the importance of the
attribute.
doi:10.1371/journal.pone.0078605.t006
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EAR indicates the 1st degree unclassifiable peptides bound by

IVIG antibodies. The amino acid propensity and PWM analyses

argue that Type I EAR peptides are characterized by high Y, W

and F and low E, Q, S, A and N amino acid content while for

Type II EAR it is the other way around.

PDB Epitope-paratope Structures
For validation of the existence of these two types of EAR, we

looked at structural data in the Protein Data Bank PDB database

describing epitope-paratope interactions. We calculated the

combined relative frequency of the amino acids thought to be

typical for Type I and Type II EAR within the epitopes of 81

complexes (see Table S4). For Type I EAR the analysis was

Figure 3. Ratio PWM of amino acids in peptides that were ‘‘binding’’ versus those that were ‘‘non-binding’’ to IVIG antibodies. The
PWM has been created using all 15-mer peptides from the training set. Each component of the PWM corresponds to the ratio of the frequency of the
occurrence of a given amino acid (row) at a given peptide position (column) in ‘‘binding’’ vs. ‘‘non-binding’’ peptides. Amino acids Y, W, and Y have
the highest binding ratios, whereas amino acids E, Q, and N have the lowest ratios. Green shading represent amino acids that are more abundant in
‘‘binding’’ peptides than in ‘‘non-binding’’ ones (threshold.2). In contrast, red shading labels amino acids that are more abundant in ‘‘non-binding’’
peptides (threshold ,0.7). The range of values in each column and row is indicated by minima (Min) and maxima (Max).
doi:10.1371/journal.pone.0078605.g003

Figure 4. Analysis of amino acid enrichment in IVIG ‘‘binding’’ versus ‘‘non-binding’’ peptides for all, the 1st degree classifiable and
1st degree unclassifiable peptides of the training set. Amino acid propensities for the indicated groups were determined by dividing the
frequency of amino acids in ‘‘binding’’ peptides (recognized by IVIG) by the frequency of amino acids in non-binding peptides. Results are sorted by
decreasing epitope propensity assigned to the whole training set group. A propensity score .1 means that an amino acid is more likely to occur in
the ‘‘binding’’ peptides, a score ,1 more frequent in the ‘‘non-binding’’ ones, respectively. The analysis is position-independent.
doi:10.1371/journal.pone.0078605.g004
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focused on the presence of Y, W and F. For Type II EAR amino

acids E, Q and N were taken. Amino acids S and A were not

regarded since they appear to be generally enriched in protein-

protein contacts [35] [36] and were expected to unspecifically

increase the combined frequencies for Type II EAR. The

structures 1TZI and 2DD8 have been identified to be particularly

supportive for epitopes of Type I EAR: Both complexes display a

high ratio of Y+W+F compared to N+Q+E in the residue

compositions of both epitopes. Interestingly, both harbor Y and F

(11.11% of Y and F for 1TZI, and 16.67% of Y and 4.17% of F for

2DD8) rather than W (0% for both structures). On the opposite

side, N+Q+E content is zero for 1TZI and negligible for 2DD8

(0% of N and E, and 4.17% of Q). The top candidates for Type II

EAR based on a strong overrepresentation of N+Q+E versus

Y+W+F are represented in complexes 2FD6 and 2J4W. There are

no amino acids Y, W and F in the epitopes of either of them. The

average content of N+Q+E is 11.8% (17.65% of N, 11.76% of Q

and 5.88% of E) in 2FD6 and 11.1% in 2J4W (6.67% of N, 0% of

Q and 26.67% of E). All these examples illustrate that crystal

structures of epitopes bound by antibodies can be identified that

resemble peptides designated Type I and Type II EAR.

Peptide Binding to MHC Class I and Class II Complexes
The NetMHC [32] and NetMHCIIpan [33] servers were used

to predict the binding of the peptides in the training set to MHC

complexes. The rationale of this analysis was that B cells do not

commonly undergo a class switch from IgM- to IgG-producing B

cells without T cell help. Determinants of peptides recognized by

IVIG antibodies might have either been directly presented by

MHC class II molecules to T cell receptors of CD4-positive helper

T cells or indirectly by peptides derived from the same antigen/

protein being engulfed by corresponding B cell receptor antigen

complexes. The predicted peptide-MHC interactions were deter-

mined for all the peptides, and for the 1st degree classifiable and

unclassifiable peptides separately (Figure 8). The performance

measures for MHC class II reached an AUC of 0.617, suggesting

that peptides bound by antibodies can indeed be presented by

MHC class II molecules. If performance was computed for the 1st

degree classifiable and unclassifiable peptides separately, the

results were AUCs of 0.678 and 0.400, respectively. These results

indicate that for the 1st degree classifiable peptides, the prediction

of MHC class II binding is even better than for the whole training

set, while for 1st degree unclassifiable peptides the performance

dropped. Interestingly, for MHC class I peptide binding, the

performance measures were very close to those for prediction of

MHC class II binding (Figure 8). Possibly, Type I EAR binding

rules are partly shared in peptide binding to MHC class I and class

II complexes.

Discussion

The human immune system is capable of generating around

1010 to 1012 different antibodies by genomic recombination. A

recent estimation even reached an antibody repertoire of more

than 1016 different immunoglobulins [5]. Due to the nature of how

antibody repertoires are generated on the genome level, numerous

of these antibodies most likely utilize mutual principles of epitope

recognition – the reason why common EAR rules can be extracted

and employed. In this paper, EAR predictions have been applied

to stratify potential epitope sets that define two different types of

IVIG-specific EAR. A set of IVIG-specific epitopes has been

determined as starting point for future experimental and

computational validation.

Advanced Machine Learning for Epitope Prediction
The classifier trained by our ensemble machine learning

approach (ML-advanced) for epitope prediction succeeded in

most cases in surpassing the one that was selected as a benchmark

(El-Manzalawy et al. [22] [23]). The difference was modest, but

not insignificant considering that even relatively simple approach-

es perform quite well on our peptide data set. The better

performance of our ML-advanced approach was documented in

the number of correctly recognized binding as well as non-binding

peptides both, when trained on the original and on balanced

training sets (Table 3). When the classifiers were trained on the

Figure 5. Analysis of amino acid enrichment in IVIG ‘‘binding’’ versus ‘‘non-binding’’ peptides for the 1st degree unclassifiable
peptides of the training set after a further split into 2nd degree classifiable and unclassifiable ones. For legend, see Figure 4. The red
curve is the same as in Figure 4, however, the scale is different here.
doi:10.1371/journal.pone.0078605.g005
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original training set, the number of mistakes on the binding

peptides is larger, which may indicate that capturing the properties

of binding peptides is more difficult than those of the non-binding

peptides. Once the classifiers were trained on the balanced

training set, both favored the identification of binding peptides

because they are more numerous in the balanced training set than

in the test set. However, the classifier used by El-Manzalawy et al.

(2008) [22,23] slightly outperformed our machine learning

approach at high true and false positive (binding) rates (see

ROC curves in Figure 2), which means when the number of

recognized binding peptides will be maximized at the expense of

misclassifying non-binding ones. The most interesting aspect of

our ensemble classifier was probably in the way how the attributes

were combined. Eight different attribute vectors were used to

describe peptide characteristics, each of them consisted of a

number of related attributes. Each vector gave fairly accurate

Figure 6. Ratio heat map based on amino acid propensities of IVIG ‘‘binding’’ versus ‘‘non-binding’’ peptides for the 2nd degree
unclassifiable peptides. The rows represent the individual amino acids, the columns the positions within the 15mer peptide. The heat map color
reflects the ratio between the PWM values (frequency of the occurrence of a given amino acid at a given peptide position) for the ‘‘binding’’ and the
‘‘non-binding’’ peptides in the set. Pink color indicates high propensity (overrepresentation in ‘‘binding’’ peptides), while blue color indicates low
propensity (underrepresentation in ‘‘binding’’ peptides). Standard hierarchical clustering using Euclidean distance was performed on rows and
columns.
doi:10.1371/journal.pone.0078605.g006

Table 7. Performance for 1st degree unclassifiable peptides, further split into 2nd degree classifiable and unclassifiable peptides
employing the simplified machine learning approach with understandable attributes (ML-simple) for prediction of IVIG binding*.

All 1st degree
unclassifiable

1st degree unclassifiable
\2nd degree classifiable

1st degree unclassifiable
\2nd degree unclassifiable

AUC 0.956 0.992 0.683

Accuracy 91.5% 97.8% 65.0%

Number of peptides 2,716 2,442 274

*Comparison of AUC and accuracy when the classifier was 10-fold cross-validated on peptides of the 1st degree unclassifiable set or on its peptide subsets that the first
one classified correctly (2nd degree classifiable) or incorrectly (2nd degree unclassifiable), respectively. All classifiers used the interpretable attributes and logistic
regression.
doi:10.1371/journal.pone.0078605.t007
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epitope predictions, but some of their attributes failed on different

peptide subsets, demonstrating that using only one attribute vector

does not lead to an optimal solution. The alternative solution of

using a single attribute vector had three disadvantages: (1) we

could not have used the best machine learning algorithm for each

attribute vector, (2) the combined vector could turn out to be too

long – a problem for some machine learning algorithms, and (3)

the attributes could not be combined in a ‘‘smart’’ way, which we

could accomplish with the ensemble approach.

Limits of Epitope Prediction
The design of a high-performance classifier for epitope

prediction raises the principle question on the limits of such

machine learning approaches. There may be representations of

Figure 7. Distribution of peptides initially scored as 1st degree classifiable and unclassifiable by ML-simple using PWM measures.
Peptides of the training set were assigned to the groups 1st degree classifiable and unclassifiable by our ‘‘simplified machine learning using human-
understandable attributes’’ (ML-simple) approach. They were further divided into peptides reacting with IVIG (‘‘binding’’; panel A) or not reactive with
IVIG (‘‘non-binding’’; panel B). In a next step each peptide was assigned values using two ratio PWMs. The x-axis values derive from a PWM that was
based on all peptides present in the training set. They are calculated by multiplying the ratios of the relative frequencies of each amino acid at each
position in a peptide sequence for the group ‘‘binding’’ (panel A) and ‘‘non-binding’’ (panel B), respectively. The y-axis values were calculated in the
same way, however, only the 1st degree unclassifiable peptides present in the training set were used as input of the PWM. Each peptide is
represented by one dot. Peptides in red in panel A correspond to the type I EAR while those in black depict the type II EAR.
doi:10.1371/journal.pone.0078605.g007

Figure 8. Performance chart for the assignment of peptides to the class ‘‘binding’’ to IVIG antibodies based on MHC binding.
Separate ROC curves and AUC values for all peptides of the training set, the 1st degree classifiable and unclassifiable peptides are presented. True
positive peptides are those that are scored as MHC binding and at the same time were found to bind IVIG in the experiments. Predictions for MHC
class II binding based on the NetMHCIIpan server (A) or for MHC class I binding based on the NetMHC server (B).
doi:10.1371/journal.pone.0078605.g008

Classification of Epitope-Antibody-Reactivities

PLOS ONE | www.plosone.org 12 November 2013 | Volume 8 | Issue 11 | e78605



peptides, which could be used as attributes for machine learning,

that capture all relevant epitope features for antibody binding and

ignore all properties irrelevant for antibody binding. It appears

that such a representation needs to include the information on

whether a peptide belongs to the classifiable or unclassifiable

group (at least 1st degree, if not also 2nd). However, we do not yet

know how to obtain this information without knowing the class of

the peptide (binding or non-binding). It is also possible that one

simply cannot do much better on a data set such as ours.

Obviously, some peptides belong to groups that have common

characteristics, which can be learned by machine learning

algorithms, so they are classified correctly – these are the 1st

degree classifiable ones. The remaining peptides are not classified

correctly because their broad characteristics point to the wrong

classification, while the immune system classifies them based on

more specific characteristics most likely by using different modes of

antibody binding.

Epitope Antibody Reactivities
Since antibodies are thought to recognize epitopes of around 8

to 12 amino acids in length [37], a 15-mer peptide in principle

enables binding of more than one antibody, e.g. in different

orientations to the same peptide molecule. Thus, each peptide in

fact represents numerous epitope binding sites. Further, since assay

signals for each peptide represent the sum of EAR to thousands of

individual peptide molecules of the same sequence, different

antibody species with similar binding specificities can contribute.

When large EAR data sets are studied, it seems plausible that

positional information remains obscured by antibodies with

overlapping binding specificities that might have different prop-

erties. For instance, a peptide with one tyrosine at a certain

position might attract antibodies that just recognize tyrosine

residues irrespective of other surrounding amino acids, i.e. this

EAR would be position-independent. Alternatively, such a peptide

might bind to antibodies in a tyrosine position-dependent manner

that appreciate the nature of specific amino acids in the

neighborhood of this residue. Hence, bound classifiable and

perhaps also bound unclassifiable peptides interact either with a

group of distinct general-purpose antibodies each sharing common

structural features or with a group of highly specific antibodies. In

the latter case, position-specific epitope binding preferences might

be obscured by the number of overlapping antibody binding

specificities. Tailored peptide sets, e.g. with specific permutations

at certain positions, well characterized antibody sets and

streamlined computational approaches that focus on position

effects might be applied in the near future to distinguish these

kinds of antibody reactivities.

In the case that small numbers of peptides are studied,

preferences of specific amino acids at specific peptide positions

can be visualized by PWM analysis (see Figure 6). PWM

approaches using small data sets reveal information on position

effects as long as antibodies are forced to bind to one epitope

position by restricting the size of linear peptides so that any type of

sliding is prohibited. Thus, the remaining few 2nd degree

unclassifiable peptides in our data set might be recognized by

quite structurally distinct antibodies limited in diversity, each one

displaying diverse binding modes in an amino acid position-

specific manner. In future studies, these assumptions can be tested

as recently demonstrated [38].

Type I EAR
The typical classifiable epitopes bound by IVIG antibodies

(Type I EAR) share several properties expected from the literature:

high frequency of tyrosine [16], low hydrophobicity [39] and high

antigenicity (compare to Table 6). They have secondary structure

features implemented in ‘‘high summary factor 2’’ implying the

occurrence of turns, coils and bends [40], and low preference for

b-sheets. Amino acids enriched in turns are common in epitopes

[41]. The strongest trait of our Type I EAR peptides is their

aromaticity (tyrosine, tryptophan and phenylalanine), which has

been observed before to be relevant for epitopes [16]. Somewhat

surprisingly, our bound peptides tend to be non-polar, while

epitopes were described to be polar [16]. However, this is probably

due to the emphasis on aromaticity, since three of the four

aromatic amino acids are non-polar. Antibody generation giving

rise to Type I EAR might directly be induced by T cell activation

elicited by peptide binding to MHC class II complexes, see ROC

curve of 1st degree classifiable peptides that are predicted to be

binding to MHC class II with a higher AUC score than all

peptides of the training set (Figure 8).

Type II EAR
A second class of epitopes are represented by 1st degree

unclassifiable peptides bound by IVIG (Type II EAR). Their

properties are opposed to those of Type I EAR peptides, i.e. they

are specifically enriched in polar amino acids asparagine,

glutamine and glutamic acid and display low aromaticity. The

polarity in this group here would fit previous epitope descriptions

[16]. Antibodies binding to these peptides are suspected to have

been generated independently of specific MHC-peptide presenta-

tion to T cell receptors, see ROC curve of 1st degree unclassifiable

peptides (Figure 8).

Peptide Binding to MHC Class I and Class II Complexes
Since only short stretches of amino acids are presented by MHC

molecules, MHC class I and class II peptide epitopes are more

likely to resemble continuous epitopes in respect to MHC binding

and T cell receptor recognition. The MHC epitope prediction

performed on peptides classified by machine learning indicated

that the binding of each set of peptides to MHC class I and class II

might share common principles of protein-protein interaction

modes with antigen-antibody-recognition. With respect to the two

MHC classes I and II, both types of peptides (1st degree classifiable

and unclassifiable) show a similar behavior. However, while 1st

degree classifiable peptides show higher AUC scores for binding

prediction to MHC class I and II than the peptides of the whole

training set, the 1st degree unclassifiable peptides perform worse.

An AUC score of smaller than 0.5 in MHC peptide binding

prediction indicates that peptides bound by Type II EAR

antibodies are not preferentially presented by MHC complexes

(Figure 8). By comparing B cell epitope with MHC epitope

predictions on the 1st degree classifiable peptides, both predictions

(epitope binding to antibodies vs. to MHC complexes) seem to

correlate to some degree with each other, even though different

types of epitope interactions are described. Most likely, binding

modes that favor EAR and binding modes involved in peptide

binding to MHC class I and class II share basic principles of

constraints, in particular in regard to EAR of classifiable peptides.

Eliciting IgG Antibody Responses
Two modes of inducing antibody responses can be considered:

(1) Type I EAR antibodies might have been induced by peptide

presentation via MHC class II plus T cell receptor mediated

induction of secondary signals that lead to costimulation of B cells.

(2) Antibodies that recognize Type II EAR peptides might have

evolved in a T cell-independent manner. As reviewed by Pone

et al. [7], activation of the B cell receptor alone or in conjunction

with Toll-like-receptor engagement can lead to polyclonal and
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antigen-specific immunoglobulin production and class switching

independently of any T cell help. For instance, autoantigenic

properties of hnRNPs (hnRNP-A/B antigens) appear to be

mediated by associated nucleic acids binding to Toll-like receptors

TLR7 and 9 [42]. Relating both types of EAR to existing

assumptions and models describing humoral immune responses

indicates that possibly Type I EAR might have been derived from

T cell-dependent and Type II EAR from T cell independent

antibody formation. In case both EAR types result from different

modes of eliciting antibody responses, antibody structures speci-

fying both EAR types might have been diverged over time in

evolution and should by now differ from each other by their

paratope structures.

Physiology of IVIG
The existence of two distinct EAR modes on the epitope level

might have counterparts on the corresponding paratope level of

binding antibodies. The question is whether these two EAR

groups can be related to specific types of antibody species and

whether paratope binding rules can be established in the future as

well. It will be instrumental to study in more detail more selected

epitope-paratope interactions, e.g. by molecular modeling, to

pinpoint subgroups with respect to binding modes and to

determine the underlying structural (and maybe also dynamic)

features. In particular, antibodies present in IVIG are capable of

binding to a significant extent to continuous peptides of human

origin, implying that antibodies circulating in the human body

should under physiological conditions bind peptides floating

around in the human blood stream. The physiological role of

antibodies binding to circulating peptides can now be monitored

by making use of IVIG specific peptide panels. During therapeutic

application of IVIG, half-lives of human antibodies present in

IVIG preparations might be determined in the circulation.

Adverse reactions seen while administering IVIG preparations

might be partly explained by instant formation of immune

complexes due to specific antibody reactivities present in IVIG

preparations. IVIG antibodies binding to specific peptides present

in the circulation should have shorter half-lives than antibodies

that do not find peptide binding partners. The IVIG data set

established here might serve as a benchmark to explore the nature

of antibody paratopes interacting with peptide/protein epitopes.

Numerous sequencing efforts are currently undertaken to deter-

mine immunoglobulin repertoires of circulating human B cells

[43]. In the near future, the presence of Type I and Type II EAR

of epitope-paratope structures might be experimentally verified in

conjunction with ongoing antibody repertoire analysis.

Immunological Perspectives
Antibodies from healthy human donors have been found by

epitope profiling of IVIG preparations to bind to a vast number of

peptides of human origin. In absolute terms, the human immune

system should not have any antibodies directed against their own

proteome [44]. However, due to the way how antibodies are

generated, sophisticated mechanisms have to be in place either to

prevent or to minimize B cells from generating autoreactive

antibodies [45] or to remove B cells (e.g. by autophagy) to

eliminate the generation of highly reactive auto-antibodies [46,47].

Possibly, the immunoglobulin locus including the machinery

regulating humoral in conjunction with cellular immune responses

has been modified over millions of years under constraints to select

immunoglobulin structures harmless to their own organisms. Basic

antibody structures and regulatory mechanisms might have been

generated preventing the formation of highly reactive antibodies

that bind to own peptide/protein structures. About 25% of

peptides in our training and test sets were scored as ‘‘binding’’ to

IVIG with high confidence. However, this percentage ignores the

number of peptides tested in total and is probably overestimated.

With respect to the 75,534 peptides of the full analysis set the

percentage drops to 9.05%. This percentage might now be an

underestimate: for higher confidence we ignored probably

numerous potentially true positive (binding) peptides in the range

below signal 10,000. Our EAR analysis leads to the hypothesis that

under physiological conditions immunoglobulins possibly contrib-

ute to the homeostasis of the immune system [48] by constantly

capturing circulating peptides that originate from human proteins.

The postulated scavenger function of eliminating self-peptides

should not lead to inflammatory processes as exemplified by

autoimmune diseases.

Note. These data sets have been donated to the DREAM

Challenge to encourage other immunoinformatic groups to test

their algorithms, see http://wiki.c2b2.columbia.edu/dream/

index.php/D5c1. A webserver for predicting EAR of peptide

sequences is available at www.sysmed-immun.eu/EAR.
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approach, (4) the machine learning algorithms, (5) the
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File S4 (1) Additional machine learning results: Confusion

matrices of dividing peptides into classifiable and unclassifiable.

(2) Additional PWM results: heat maps for the 1st degree

classifiable and unclassifiable peptides, respectively; ROC curve
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