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Abstract—This paper presents a method for human activity 

recognition and energy expenditure estimation with two tri-axial 

accelerometers. Recognizing the activity of a person and 

measuring his/her energy expenditure is important for the 

management of several diseases. In the CHIRON project we aim 

to monitor congestive heart failure patients using wearable 

sensors and a smartphone. Our method uses a classifier for 

activity recognition constructed with machine learning. 

Attention was paid to the complexity of the attributes for 

machine learning, resulting in the omission of the most complex 

attributes in order to prolong the battery life. The recognized 

activity serves as an input to a classifier for energy expenditure 

estimation, which was also constructed with machine learning. 

The best-performing classifier turned out to be a composite of 

two activity-specific classifiers and a general classifier. Its mean 

absolute error was 0.91 metabolic equivalents of task (MET). 

I. INTRODUCTION 

The energy expenditure of a person closely corresponds to 
the amount of physical activity. This information is important 
for medical, lifestyle and sports-training purposes. Most 
research on the subject was probably done in the sports 
medicine to optimize the training and diet of athletes. 
However, the amount of physical activity is also critical for 
cardiovascular health [1], which was the focus of our work. 

There are several methods for estimating the human 
energy expenditure. Direct calorimetry [2] measures the heat 
output of a person. It is the most reliable method, but can only 
be used in laboratory conditions. It measures the energy 
expenditure over medium periods of time (hours). Indirect 
calorimetry [3] measures the amount of inhaled and exhaled 
oxygen and CO2, which is linked to the expended energy. It is 
fairly reliable and can be used in field conditions, even over 
short periods of time (minutes). However, it cannot be used in 
everyday life, since it requires a breathing mask. Doubly-
labeled water [4], which is water labeled with deuterium and 
oxygen-18, can be used to measure the amount of exhaled 
CO2. It is also fairly reliable and can in principle be used in 
everyday life, but only over long periods of time (days or 
weeks). It is also quite expensive. A diary of activities is very 

simple, but tends to be unreliable. Finally, accelerometers and 
other wearable sensors are moderately reliable, inexpensive, 
and can be used in everyday life over short periods of time. 
Given the increasing ubiquity of such sensors, they seem to be 
the most promising tool for energy expenditure estimation. 

In this paper we present a method for activity recognition 
and energy expenditure estimation using two wearable 
accelerometers. The method was developed in the CHIRON 
project [5], which will monitor congestive heart failure 
patients using wearable sensors connected to a smartphone. 
The activity type, energy expenditure and their relation to the 
heartbeat are important for the health of such patients. Two 
accelerometers were judged to be the right number 
considering the tradeoff between the reliability of the activity 
recognition and energy expenditure estimation on one hand, 
and the burden on the patients on the other hand. A heart-rate 
monitor and skin-temperature sensor were also considered, but 
experimental results showed no benefit. This is not surprising, 
since changes in the heart rate and skin temperature can have 
many causes. 

The rest of the paper is structured as follows: after 
discussing the related work in Section II, we present the 
experimental setup in Section III. The development and 
testing of the method for activity recognition and energy 
expenditure estimation are described in Section IV, and the 
conclusions are drawn in Section V. 

II. RELATED WORK 

Most methods for energy expenditure estimation using 
wearable sensors seek linear or nonlinear relations between 
the energy expenditure and the accelerometer outputs. The 
most basic methods use one accelerometer and one linear 
regression model. The estimation accuracy could be 
improved by multiple regression models [6] and complex 
attributes [7]. The regression method by Crouter et al. [8] is 
currently among the most accurate. It uses one accelerometer 
attached to the hip. In the first step it classifies a person’s 
activity into sitting, ambulatory activity or lifestyle activity. 
In the second step it uses a linear regression model for the 
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ambulatory activity and an exponential regression model for 
the lifestyle activity. Sitting is always considered to have the 
energy expenditure of 1 metabolic equivalent of task (MET, 1 
MET is the energy expended at rest). 

Some methods use a human kinematic model, from which 
the kinetic energy required for the movement can be 
computed [9]. The movement is estimated using 
accelerometers attached to the body.  However, this requires 
the integration of acceleration data, which can amplify 
sensing errors, and the use of many accelerometers. 

III. HARDWARE AND DATA 

We used Shimmer accelerometers [10], which – apart from 
a tri-axial accelerometer – include a microcontroller, and a 
Bluetooth and 802.15.4 radio. The accelerometers measure the 
acceleration along three perpendicular axes with a 
configurable frequency (we chose 50 Hz). Because of the 
limitations of the available smartphones, we used Bluetooth to 
transmit the data to the smartphone or PC, where the activity 
recognition and energy expenditure estimation took place. 

To develop and test our method, data consisting of 
acceleration measurements during activities with different 
energy expenditures were required. The data was recorded for 
five subjects. Each subject wore four accelerometers on the 
chest, right ankle, right thigh and right wrist, to study the 
performance of different sensor placements. Each subject 
performed a test scenario that served two purposes. The first 
was to provide the basic activity types that we wanted to 
recognize, and the second was to provide a range of activities 
with different energy expenditures (basic and complex). The 
activities in the scenario are shown in Table I. The basic 
activities to be recognized are labeled as such. The MET 
values for the energy expenditure were sourced from The 
Compendium of Physical Activities [11]. 

TABLE I.  ACTIVITIES IN THE TEST SCENARIO 

Activity Basic Energy expenditure (MET) 

Lying Yes 1.0 

Sitting Yes 1.0 

Standing Yes 1.2 

Walking Yes  

... normally (4.8 km/h)  3.3 

... quickly (6.4 km/h)  5.0 

... downstairs  3.0 

... upstairs  5.0 

Running Yes  

... slowly (8 km/h)  8.0 

... normally (10.8 km/h)  11.0 

Cycling Yes  

... normally (20.9 km/h)  8.0 

... quickly (25.7 km/h)  11.0 

... stationary normally (100 W)  7.0 

... stationary quickly (150 W)  10.5 

Kneeling Yes 1.0 

On all fours Yes 1.5 

Sitting doing light activities  1.5 

Walking doing light chores  2.3 

Scrubbing the floor  3.8 

Sweeping outdoors  4.0 

Sit-ups  8.0 

Jumping jacks  8.0 

IV. METHOD AND RESULTS 

Our main task was to estimate the energy expenditure of a 
person, but we also wanted to recognize the type of his/her 
activity. The latter is both interesting in itself and a useful 
input to the energy expenditure estimation. Both tasks were 
tackled in essentially the same way. The stream of 
acceleration data was split into windows of length N, each 
window overlapping with the previous one by one half of its 
length. Several attributes were computed from the acceleration 
within each window. These attributes formed a vector, which 
was fed into a machine learning algorithm. The algorithm 
constructed a classifier which either recognized the activity 
within the window or estimated the energy expenditure. The 
former is a classification task and the latter regression, but for 
a lack of a better term we use “classifier” for both. 

In both tasks three combinations of accelerometer 
placements were tested. One accelerometer was always placed 
on the chest, since earlier experiments showed this to be 
optimal for the activity recognition [12]; in addition the torso 
represents the largest part of the body mass, requiring the most 
energy to move. The other accelerometer was placed either on 
the ankle, thigh or wrist. The performance of the classifier for 
both the activity recognition and energy expenditure 
estimation was tested using the leave-one-person-out method. 
This means that the classifier was trained on four subjects and 
tested on the fifth. The procedure was repeated five times, 
using a different subject for testing each time. 

A.  Activity Recognition 

The length of the window for the activity recognition was 
set to 2 s, which means that each window contained N = 100 
acceleration measurements. Longer windows yielded higher 
recognition accuracies, but some short activities were missed 
if the length was more than 2 s. The following attributes were 
computed for each window. Since the method must run on a 
smartphone and should conserve the battery charge, we had to 
pay attention to the time complexity of the attribute 
computation; it is listed for each group of attributes. 

 The average acceleration along the three axes of the 
accelerometer, and the average length of the 
acceleration vector; O (N) 

 The variance of the above four accelerations, the 
index of dispersion (= variance / average), and the 
detection of movement (= index of dispersion > 0.016, 
determined experimentally); O (N) 

 The maximum and the minimum of the four 
accelerations, and the difference thereof; O (N) 

 The speed of change between the maximum and the 
minimum of the four accelerations; O (N) 

 The orientation along the three axes; O (N) 

 The sum of the absolute differences between the 
consecutive lengths of the acceleration vector; O (N) 

 The frequency of the movement along the y-axis 
(vertical when the person is upright) computed by 
FFT, and the energy (= squared sum of FFT 
elements); O (N log N) 

 The correlation between all the pairs of axes; O (N
 2
) 



The activity recognition was tested with four machine 
learning algorithms implemented in the Weka toolkit 0 using 
the default parameter values: Naïve Bayes, C4.5 decision 
trees, Random Forest and Support Vector Machine (SVM). 
The results are shown in Table II. One can see that the 
Random Forest was the best algorithm, while the differences 
between the sensor placements were small. The best 
placement seems chest + ankle (the best accuracy is 
underlined in the table). The experiment with the Random 
Forest algorithm and the chest + ankle placement was repeated 
without the two attribute groups with the above-linear 
complexity. The resulting accuracy was 85.1 %, which is 
better than the 82.3 % underlined in Table II, so these 
attributes were omitted. 

TABLE II.  CLASSIFICATION ACCURACY OF ACTIVITY RECOGNITION (%) 

 Naïve Bayes C4.5 Random Forest SVM 

Chest + ankle 68.0 72.8 82.3 81.6 

Chest + thigh 69.5 70.1 80.3 75.8 

Chest + wrist 56.8 71.4 81.1 75.4 

 

B. Energy Expenditure Estimation 

The length of the window for the energy expenditure 
estimation was set to 10 s, which means that each window 
contained N = 500 acceleration measurements. Some of the 
attributes could not be reasonably computed for shorter 
windows, and we had no practical need for finer-grained 
estimation. The following attributes were computed for each 
window. Time complexities are all linear or constant, so we 
did not consider omitting any attributes. 

 The most prevalent activity computed by the activity 
recognition; O (N) 

 The average length of the acceleration vector; O (N) 

 The area under the absolute acceleration along the 
three axes of the accelerometer, the area under the 
length of the acceleration vector, and the four areas 
squared; O (N) 

 The sum of the areas and the squared areas of the 
acceleration along the three axes; O (1) 

 The area under the absolute gravity-subtracted 
acceleration along the three axes; O (N) 

 The number of times the length of the acceleration 
vector stops increasing and starts decreasing or vice 
versa; O (N) 

 The change in the velocity of the accelerometer along 
the three axes; O (N) 

 The integral of the change in the kinetic energy due to 
the movement along the three axes; O (N) 

 The sum of the integrals of the changes in the kinetic 
energy along the three axes; O (1) 

The energy expenditure estimation was tested with six 
machine learning algorithms implemented in the Weka toolkit 
0 using the default parameter values: Linear Regression, 
Multi-Layer Perceptron artificial neural network, Support 
Vector Regression (SVR), M5P model trees, M5Rules and 
REPTree regression trees. The results are shown in Table III. 

One can see that the REPTree is the best algorithm. However, 
since it constructs regression trees, it can only output a limited 
number of energy expenditures based on the training data, and 
cannot interpolate and extrapolate on new data. Therefore we 
considered the most suitable algorithm to be the Multi-Layer 
Perceptron. The best sensor placement was wrist + ankle (the 
error of the most suitable algorithm is underlined in the table). 

TABLE III.  MEAN ABSOLUTE ERROR OF ENERGY EXPENDITURE 

ESTIMATION (MET) USING THE GENERAL CLASSIFIER 
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Chest + ankle 5.09 1.65 3.29 2.18 1.56 1.41 

Chest + thigh 6.75 1.66 3.68 2.38 5.97 1.58 

Chest + wrist 6.57 1.39 3.94 4.95 4.69 1.30 

 

Fig. 1 shows the estimated vs. true energy expenditure 
using the Multi-Layer Perceptron. The largest errors occurred 
at large energy expenditures, which correspond to running and 
cycling. The reason for this is probably that most activities 
were not so energetic, which caused the classifier to adapt 
more strongly to the less energetic ones. We tackled this 
problem by constructing separate classifiers for running and 
cycling. The classifiers were trained on the recordings of these 
two activities only, and used to classify the activities 
recognized as running and cycling. 

 

Figure 1.  Estimated vs. true energy expenditure using the general classifier. 

Besides the two classifiers for running and cycling, we 
also trained a classifier on all the activities except running and 
cycling. These three activity-specific classifiers were tested 
with the same six machine learning algorithms as the general 
classifier (trained on all the activities) using the chest + wrist 
sensor placement. We compared the performance of the 
activity-specific classifiers with the performance of the 
general classifier when tested on running, cycling and all the 
other activities separately. The results are shown in Table IV. 
One can see that the activity-specific classifiers for running 
and cycling outperformed the general classifier on the 
activities recognized as running and cycling, which was to be 
expected. Surprisingly, the classifier trained on the other 
activities only did not outperform the general classifier on the 



activities not recognized as running and cycling. The reason 
may be that running and cycling were sometimes not 
recognized correctly: in such cases the classifier trained on the 
other activities was used to estimate the energy expenditure, 
and it naturally did worse than the general classifier. 

TABLE IV.  MEAN ABSOLUTE ERROR OF ENERGY EXPENDITURE 

ESTIMATION (MET) USING THE GENERAL AND ACTIVITY-SPECIFIC CLASSIFIERS 
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General        

... tested on running 3.28 1.56 3.08 1.83 1.52 1.40 

... tested on cycling 7.92 3.39 5.96 4.14 6.17 2.84 

... tested on the others 5.88 0.87 1.83 2.36 3.88 1.48 

Activity-specific       

... tested on running 3.12 1.48 2.90 1.48 1.49 1.20 

... tested on cycling 7.09 3.04 2.71 3.84 5.35 2.75 

... tested on the others 6.33 2.19 6.48 6.59 4.46 1.44 

 

Based on the results in Table IV we constructed the final 
composite classifier, which consisted of two activity-specific 
classifiers and the general classifier. The first activity-specific 
classifier was used to estimate the energy of the activities 
recognized as running, and was constructed by the Multi-
Layer Perceptron (its error is underlined in the table, as are the 
errors of the following two classifiers). The second activity-
specific classifier was used for cycling, and was constructed 
by the SVR. All the other activities used the general classifier 
constructed by the Multi-Layer Perceptron. Fig. 2 shows the 
estimated vs. true energy expenditure for the composite 
classifier. Its mean absolute error was 0.91 MET. 

 

Figure 2.  Estimated vs. true energy expenditure using the final composite 

classifier. 

V. CONCLUSION 

We developed a method for recognizing the activity of a 
person and estimating his/her energy expenditure using two 
accelerometers placed on the chest and wrist. For the energy 
expenditure estimation we investigated many attributes and 
several machine learning algorithms. We also considered ways 

to combine multiple classifiers, resulting in the final 
composite classifier with the mean absolute error of 0.91 
MET, which is a substantial improvement over the single-
classifier approach with the error of 1.39 MET. One can see in 
Fig. 2 that the composite classifier estimated the energy 
expenditure very accurately for most subjects; it only had 
difficulties with Person 4, who apparently has unusual 
movement patterns. Cardiologists judged such accuracy 
adequate for the monitoring of congestive heart failure 
patients. 

 In the future we will mostly focus on an efficient 
implementation of our method. Since the Shimmer sensors are 
capable of some limited processing, we will attempt to find a 
way to distribute the computation of the attributes for machine 
learning between the sensors and the smartphone, that 
maximizes the battery life. We will also pay attention to an 
energy-efficient transmission of data between the sensors and 
the smartphone. Finally, we will consider implementing the 
activity recognition and energy expenditure estimation in 
dedicated hardware. In order to do that, the classifier for the 
activity recognition will have to be trained with the SVM 
algorithm instead of Random Forest, since the latter constructs 
highly complex classifiers, but otherwise our method seems 
well-suited to hardware implementation. 
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