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Abstract

Starting renal replacement therapy (RRT) for patients with chronic kidney disease (CKD) at

an optimal time, either with hemodialysis or kidney transplantation, is crucial for patient’s

well-being and for successful management of the condition. In this paper, we explore the

possibilities of creating forecasting models to predict the onset of RRT 3, 6, and 12 months

from the time of the patient’s first diagnosis with CKD, using only the comorbidities data from

National Health Insurance from Taiwan. The goal of this study was to see whether a limited

amount of data (including comorbidities but not considering laboratory values which are

expensive to obtain in low- and medium-income countries) can provide a good basis for

such predictive models. On the other hand, in developed countries, such models could allow

policy-makers better planning and allocation of resources for treatment. Using data from

8,492 patients, we obtained the area under the receiver operating characteristic curve

(AUC) of 0.773 for predicting RRT within 12 months from the time of CKD diagnosis. The

results also show that there is no additional advantage in focusing only on patients with dia-

betes in terms of prediction performance. Although these results are not as such suitable for

adoption into clinical practice, the study provides a strong basis and a variety of approaches

for future studies of forecasting models in healthcare.

Introduction

In recent years chronic kidney disease (CKD) has reached a global prevalence as high as 11–

13% with the majority in the stage 3. It is observed that the prevalence is higher for women

than for men [1]. Asia records the highest prevalence worldwide, led by Japan and followed by

Taiwan. A study showed that the overall prevalence of CKD stages 1–5 was 15.46% with an

incidence of 27.21/1,000 people per year in Taiwan. The estimated average dwelling time was

5.37 years, which means that a person with CKD will either die or progress into the end-stage
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renal disease (ESRD) within 5 years [2]. The incidence of ESRD is rising with diabetic

nephropathy accounting for nearly 45%. In 2015, the proportion of ESRD patients receiving

haemodialysis and peritoneal dialysis is 87.5% and 8.5%, respectively [3]. The increase in

ESRD populations worldwide is of a great concern for many countries as ESRD expenditures

is consuming increasing proportions of the healthcare budget. In Taiwan, although ESRD

patients represent only 0.15% of the total population, they are responsible for 7% of the total

annual budget of Taiwan’s NHI Program owing to their use of dialysis [4, 5]. The prohibitive

cost of renal replacement therapy (RRT), either dialysis or renal transplantation, makes it a

huge burden for the health system. Often, CKD patients are not aware about their disease

management, indicating a lack of education of patients about possible disease outcomes [2].

The RRT has been available in affluent countries for more than 50 years, with rapid growth

in the number of people treated during this period. The use of dialysis to treat ESRD varies

substantially between geographical regions, probably because of differences in population

demographics, prevalence of ESRD, and factors affecting access to and provision of RRT [5, 6].

According to the 2016 United States Renal Data System (USRDS), 35.4% of ESRD patients do

not receive adequate pre-ESRD care [7]. As a result, patients are often referred to a nephrolo-

gist when the disease gets complicated. Late referral is a strong factor for unplanned dialysis [8,

9]. Unplanned dialysis is defined as an emergency (life threatening) situation that occurs when

a patient does not have a permanent access device (e.g., peritoneal catheter or arteriovenous

fistula) yet [10]. However, if reliable indicators are made available for the doctors to forecast

the necessity of dialysis in the foreseeable future, then both the doctor and the patient can pre-

pare better for treatment in advance.

There is an ongoing debate among nephrologists regarding the optimal time to initiate dial-

ysis for CKD patients. The Initiating Dialysis Early and Late (IDEAL) study was a randomised

controlled trial study intended to investigate the influence of dialysis timing against mortality

risk. This study revealed no differences between early and late dialysis towards mortality risk

[11]. Escoli et al. study argued against early initiation of RRT citing higher mortality in these

subset of patients [12]. Although there is no definitive evidence on the optimal time to initiate

RRT, Kidney Dialysis outcomes Quality Initiative guidelines suggest to consider both the glo-

merular filtration rate (GFR) and clinical condition [13]. Although physicians and nephrolo-

gists are advised to closely monitor the decline in GFR of CKD patients, lack of infrastructure

prevents many health care facilities from monitoring it [14].

Given quality data on dialysis, relevant information such as time to start dialysis can be pre-

dicted with Machine Learning (ML) algorithms. ML algorithms are a category of Artificial

Intelligence (AI), which aims at simulating human intelligence by discovering patterns and

using inference on the available data [15]. AI is being increasingly used to assist diagnosis,

therapy, automatic classification and rehabilitation. For example, ML algorithms have been

applied for the prediction of starting RRT within a few months to a year [16–20], and predic-

tion of acute kidney injury that required RRT within a few hours to a few days [21–24]. How-

ever, the existing work uses laboratory (and demographic) data for the analysis and prediction

of RRT. While the results also showed that laboratory data are the most potent predictors for

RRT, they are—as mentioned before—not always available.

In this paper we explore the possibilities of using ML models to predict whether a CKD

patient will require RRT (i.e., either to start dialysis or undergo transplantation) at some point

in the next 3, 6, or 12 months, based only on the comorbidities of patients. While the patients

whose data was used to train the models started RRT based on their clinical status and labora-

tory data, so the decision was made as well as possible, we try to approximate this decision

with more limited data. The advantage of this approach is that it can be used on data easily

extracted from hospital databases and that it does not rely on GFR or other laboratory data,
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which may be expensive for the health system to obtain several times in a row for patients in

low- and medium-income countries. In addition, such models can be of high benefit for the

policy-makers, hospital managers, and insurance companies, as they provide a better insight

into the trends and thus allow for better allocation of resources.

Objective

The objective of our study is to develop a screening tool based on disease history using various

ML models to predict upcoming RRT at the time of CKD diagnosis, and to validate these mod-

els. A further goal is to identify what comorbidities (such as diabetes) play major role in the

models that forecast the onset of RRT for different time periods. This tool may serve both med-

ical doctors and CKD patients in better healthcare planning and management of resources.

Methods

Study design

The study design is a retrospective study. A group with the outcome of interest (hemodialysis,

peritoneal dialysis, or renal transplantation, i.e., RRT) within a time period of 3, 6, or 12

months after CKD diagnosis is matched with a control group who did not enter RRT within

this time period. Retrospectively, the researcher determines individuals who were exposed to

CKD diagnosis for the first time in each of the study groups. The procedure for processing the

data and building the ML model is shown in Fig 1.

Data source

The dataset is derived from Taiwan’s national health insurance research database (NHIRD)

and consists of patients’ healthcare insurance information and claims data [25]. NHIRD is one

of the largest and most comprehensive health insurance databases running under the Ministry

of Health and Welfare of Taiwan. It includes data from primary outpatient departments and

inpatient hospital care settings covering 99% of the Taiwanese population, i.e., approximately

23 million people, and is one of the most powerful data resources for biomedical research in

that region. Among other data, NHIRD also contains diagnoses for each patient’s visit to the

doctor. However, NHIRD does not contain laboratory values.

In our study, we analysed a subset of anatomised secondary data, i.e., from 1998 to 2011.

This study has been exempted by the Institutional Review Board of Taipei Medical University

beforehand.

Patient selection

The selected subset of data included 23,948 patients. They were further filtered by selecting

only those with the CKD diagnosis, which had to occur before RRT. The time of RRT was

determined with the first occurrence of hemodialysis, peritoneal dialysis or renal transplanta-

tion. This resulted in 19,954 patients.

The patients were further filtered with respect to the time between the diagnosis of CKD

and initiation of RRT. As mentioned, three intervals were tested: 3, 6, and 12 months. When

the interval of n months was tested, we selected only those patients who had data for n months

after they were diagnosed to have CKD. This filter ensured that the observed patients were

labeled with the correct classes with respect to the entire observed period. The resulting num-

ber of patients for each interval is shown in Fig 1.
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Outcome definition

The aim of this study is to predict the outcome (RRT) at the time of CKD diagnosis. We define

the CKD diagnosis time as the day the patient is first diagnosed with CKD (ICD-9-CM code

585). Patients are then followed for the next n months with n equal to 12, 6, and 3 months (pre-

diction period). For each of the three values of n, if RRT occurs within n months, the patient is

labeled as 1, otherwise he/she is labeled as 0. When predicting the patient’s outcome, only data

prior to CKD diagnosis time (observation period) is taken into account. Fig 2 shows the rela-

tions between outcome definition, and observation and prediction periods.

Fig 1. Data processing and model building procedure.

https://doi.org/10.1371/journal.pone.0233976.g001
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Feature extraction

The data of the observation period include patient’s diagnoses recorded by the physician at

each patient’s visit. Each diagnosis in the database represents a feature, where for each patient’s

visit, the diagnosis is set to 1 if it was diagnosed, otherwise it is set to 0. Afterward, all the

patient’s visits are combined together into a single machine-learning instance, resulting in one

instance per patient. The visits are combined in four ways using raw, percentage, Boolean, and

time approach.

• Raw approach: For each diagnosis, this approach counts the number of its occurrences by

the time CKD was diagnosed.

• Percentage approach: For each diagnosis, we calculate the percentage of its occurrences with

respect to all the patient’s visits.

• Boolean approach: Each diagnosis is set to 1 if it occured at least once, or 0 if it never

occured.

• Time approach: This approach is similar to the Boolean approach. However, instead of set-

ting just one Boolean value for the entire observation period, we divide the observation

period into several subperiods. Then we determine whether the diagnosis occurred (1) or

not (0) for each subperiod. These values are then weighted for all the observed subperiods

and summed up, where higher weights are given to more recent periods.

In this study, we divided the observation period into seven six-months subperiods and the

remaining period, starting from the CKD diagnosis time. The weights for these periods were

calculated as wi ¼
1

2

� �i
, where i = 1, . . ., 7 is the interval index, with i = 1 is being the most

recent interval, and i = 7 being the most remote one. The remaining period had the same

weight as the most remote interval. As a result, the sum of these weights is 1.

Data preprocessing

The data were preprocessed with four methods in order to determine whether preprocessing

could improve the results. More precisely, three methods, i.e., feature selection, filtering and

dimensionality reduction, were individually applied before ML, while the fourth approach—

data balancing—was implemented by the ML algorithms.

Fig 2. Relations between various time events used to define the RRT outcome.

https://doi.org/10.1371/journal.pone.0233976.g002
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Feature selection. Three feature selection approaches were evaluated. The first approach

consisted of calculating the correlations between diagnoses, i.e., features, and RRT. Then we

removed the diagnoses with the absolute correlation lower than 0.1.

The second approach selected only those diagnoses that are related to CKD, i.e., comorbidi-

ties. The set of comorbidities was defined based on [26] and included acute glomerulonephri-

tis, chronic glomerulonephritis, diabetes mellitus, essential hypertension, hyperlipidemia,

polycystic kidney disease, renal stone, systemic lupus erythematosus, congestive heart failure,

coronary artery disease, cerebrovascular disease, and proteinuria.

The third approach found the relevant diagnoses based on mutual information with class

and contribution to Random Forest classifier performance, where diagnoses were sequentially

added to the input data until the performance of the classifier stopped increasing. This method

was part of the winning approach of the Sussex-Huawei Locomotion-Transportation (SHL)

recognition challenge 2018 [27].

Filtering. The data analysis also included the selection of only those patients that had dia-

betes type 2 or type undefined before or at the time of CKD diagnosis. Such a filtering

approach aimed at determining whether better ML models could be obtained if the data of a

more homogeneous group of patients is used.

Dimensionality reduction. The dataset included 5,624 diagnoses, thus we had 5,624 fea-

tures. The first approach to reduce this large number of features was feature selection as

described above. In addition, we also evaluated an additional approach that reduced the num-

ber of features by combining them into a lower number of features. More precisely, we applied

Principal component analysis (PCA), which is a statistical procedure that converts (possibly)

correlated features into a set of values of linearly uncorrelated features, i.e., components. The

first 50 PCA components, i.e., those with the highest variance, were selected for further

analysis.

Data balancing. The dataset is very unbalanced with respect to the class, i.e., RRT. More

precisely, the majority class, i.e., no RRT, represents 87% of data for the twelve-months predic-

tion period, 94% for the six-months prediction period, and 96% for the three-months predic-

tion period. To overcome this issue, data balancing should be used. In our experiments, we

balanced the data by applying weights to instances, i.e., patients, where the weights were

inversely proportional to class frequencies in the database.

Model development

We evaluated 10 ML algorithms that are implemented in the Python packages Scikit-learn [28]

and XGBboost [29]: Decision Tree, Bagging Decision Trees, Random Forest, XGBoost, Sup-

port Vector Machines, Simple Gradient Descendent, Nearest Neighbors, Gausian Naive Bayes,

Logistic Regression, and Neural Network.

Decision Tree algorithm implements a tree structure, where each internal node represents a

condition for a feature, each branch represents satisfaction of the node condition, and each ter-

minal node determines the class assigned to the instances that met the conditions of the inter-

nal nodes on the path from the root node to the terminal node [30].

Bagging Decision Trees applies a set of decision trees, where each decision tree is built only

on a random subset of data. The final classification is determined by the voting mechanism,

i.e., the most voted prediction is the final prediction [31].

Random Forest upgrades Bagging Decision Trees with random feature selection. More pre-

cisely, when partitioning a node, a subset of features is randomly selected and only those fea-

tures are considered during the partitioning [31].

PLOS ONE Using machine learning models to predict the initiation of renal replacement therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0233976 June 5, 2020 6 / 18

https://doi.org/10.1371/journal.pone.0233976


Extreme Gradient Boosting (XGBoost) is an upgrade of Random Forest, where models (in

our experiment, Decision Trees) are built sequentially to minimize the errors and maximize

the influence of the best models. To minimize the errors, gradient descendent algorithm is

applied. In addition, over-fitting avoidance mechanisms are applied such as tree-pruning and

regularization [29].

Support Vector Machines (SVM) algorithm is a binary classifier that maps the input data in

a very high-dimension feature space with a non-linear transformation (also known as the ker-

nel trick), and applies a linear decision surface in the feature space to discriminate between the

two classes [32].

Simple Gradient Descendent (SGD) is an algorithm that in the selected setup trains the lin-

ear SVM classifier. It also applies minibatches, regularizers and other mechanisms for avoiding

over-fitting [33].

Nearest Neighbors classifier finds the nearest (closest) neighbors in the feature space by the

means of Euclidean distance, and applies a majority vote on classes of these nearest neighbors

to determine the class [34].

Gaussian Naive Bayes method applies Bayes’ theorem with the assumption of conditional

independence between every pair of features given the class value [35].

Logistic Regression applies the logistic function to predict the probability of the default

class in a two-class problem. It is a linear model, since the features are summed up linearly

using weights, however, the predictions are transformed using a non-linear logistic function

[36].

Neural Network model represents a (significant) enhancement of the logistic regression

method. Similarly to logistic regression, it linearly combines the features and applies a

(non-linear) transformation on the result. This is then upgraded by stacking several such

transformations into layers, thus obtaining several hidden layers (in addition to the input,

i.e., features’ layer, and the output, i.e., class layer), where each layer represents a different

level of abstraction. In addition, several mechanisms can be applied to improve the

performance and prevent overfitting, such as regularization, dropout, training in batches

etc. [37].

The key parameter values of the applied algorithms are shown in Table 1. Note that the

default parameter values have been used with respect to their implementation in Scikit-learn

[38] and XGBboost [39] packages, with the exception of Neural Network, whose parameters

were set as shown in Table 1.

Table 1. Parameter values of evaluated ML algorithms.

Algorithm Key parameter values

Bagging Decision Trees Number of trees = 10

Random Forest Number of trees = 10

XGBoost Number of trees = 100, max tree depth = 3, learning rate = 0.1

Support Vector

Machines

Kernel = rbf, C = 1.0

SGD Loss = log, penalty = l2, max iterations = 1000

Nearest Neighbors Number of neighbors = 5

Logistic Regression penalty = l2, max iterations = 100

Neural Network Sizes of hidden layers = [100, 20], solver = adam, activation = relu, batch size = 10, max

iterations = 200

https://doi.org/10.1371/journal.pone.0233976.t001
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Experiments and results

Experiment execution and performance metrics

Each experiment consisted of one ML algorithm and a combination of data preprocessing

approaches (filtering, feature selection etc.). The evaluation was performed with stratified

10-fold cross-validation. This method split the dataset into 10 folds, where all the folds had the

same ratio of RRT and non-RRT patients. Afterwards, the ML algorithm was applied 10 times,

each time selecting a different fold for testing purposes and learning on the other nine folds.

As the main performance metric we selected the Area Under the Radio Operator Charac-

teristic Curve (AUC). Note that the final AUC was the mean of AUCs obtained at all the folds.

In addition to the AUC, we also observed sensitivity and specificity of the ML models. AUC

measures how good is a model that classifies patients into two classes, for example, RRT and

non RRT. AUC is also often used to estimate the optimal model’s threshold to be used in real

situations [40]. Different healthcare providers in different situations may be interested in dif-

ferent trade-offs between sensitivity and specificity. AUC is an aggregate measure of a model’s

quality across all such trade-offs. The ROC (which AUC is based on) allows one to select the

desired trade-off, which corresponds to a threshold to be applied to the model’s output.

In the presented experiment, sensitivity measures the capability of the ML model to suc-

cessfully predict RRT for patients who did in fact have RRT in the observation period. In a sim-

ilar fashion, specificity shows the capacity of the ML model to correctly predict the absence of

RRT for patients without RRT in the observation period [41]. Sensitivity and specificity have

been defined by Yerushalmy [42] and have been used in medical literature since then.

Results of ML algorithms predicting 12 months ahead

In this experiment we tested the effect of all the implemented data preprocessing approaches

on the results of ML algorithms. Since the number of combinations of preprocessing

approaches is large, we evaluated only the effect of one data preprocessing approach at a time.

The only exception was data balancing, which was always tested, i.e., for each combination, we

tested with and without data balancing.

The results were sorted with respect to the AUC and the top 10 results are shown in

Table 2. Note that these top 10 results were obtained with no feature selection, no filtering, and

no dimensionality reduction. In addition, Fig 3 shows the data processing parameters of the

algorithms that obtained AUC> 0.7. On the horizontal axis, each bar represents an instance

of ML algorithm in combination with data preprocessing. The vertical axis shows the AUC

Table 2. Top 10 algorithms in combination with data processing, when predicting twelve months ahead. Results are sorted with respect to AUC. These top 10 results

were obtained with no feature selection, no filtering, and no dimensionality reduction.

Model Features Balance AUC Sensitivity Specificity

Logistic Regression time no 0.778 0.129 0.983

XGBoost percentage no 0.773 0.057 0.993

SGD time no 0.773 0.145 0.978

Logistic Regression time yes 0.773 0.623 0.781

XGBoost time no 0.773 0.049 0.994

XGBoost raw no 0.772 0.036 0.995

XGBoost Boolean no 0.772 0.042 0.995

Logistic Regression percentage yes 0.769 0.581 0.794

Logistic Regression percentage no 0.769 0.0667 0.992

SGD time yes 0.768 0.583 0.796

https://doi.org/10.1371/journal.pone.0233976.t002
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and data preprocessing parameters. More precisely, it shows from top to bottom: AUC, the

used features, data balancing, feature selection, filtering and dimensionality reduction. The

AUC values are shown with the bar height, while the data preprocessing parameters are shown

with black (horizontal) lines. For example, the algorithm on the extreme left (AUC = 0.778)

uses Logistic Regression, time features, no data balance and no feature selection, as well as no

filtering and no dimensionality reduction. The ROC curves obtained with the ML algorithms

are shown in Fig 4A.

The results show that the highest AUC is obtained when no feature selection, no filtering,

and no dimensionality reduction is applied (Fig 3). While the highest AUC is achieved without

data balancing, data balancing ensures a much more reasonable trade-off between sensitivity

and specificity without reducing the AUC much (see, for example, the results of Logistic

Fig 3. AUCs obtained with the ML algorithms with data preprocessing details, where only AUCs> 0.7 are shown.

https://doi.org/10.1371/journal.pone.0233976.g003
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Regression in rows 1 and 4 in Table 2). Finally, features obtained with the time approach were

the best ones.

These results are also confirmed by S1 Table–S5 Table in S1 File. These tables show statistics

of AUC for each feature extraction approach, data preprocessing and ML algorithm indepen-

dently. Note that to obtain a better trade-off between sensitivity and specificity, we decided to

always apply data balancing.

Results of ML algorithms predicting six and three months ahead

The procedure for the twelve-months-ahead prediction was also applied for six- and three-

months ahead. However, we did not compare the approaches for feature selection, filtering

and dimensionality reduction, since none of them were good for the twelve-months-ahead

prediction. The ROC curves obtained with the ML algorithms when predicting six months

ahead are shown in Fig 4B, while Fig 4C shows the ROC curves when predicting three months

ahead.

The results show that, similarly to the twelve-months-ahead prediction, data balancing

ensured better trade-off between sensitivity and specificity in comparison to when no balanc-

ing was used. In addition, the features obtained with the time approach were the best ones (see

Fig 4. The best ROC curves of each ML model, obtained by testing various configurations in terms of feature

extraction, data balancing, feature selection, filtering and dimensionality reduction, for A) 12 months, B) 6 months, C)

3 months. The AUC values are shown in brackets. D) AUCs obtained with Logistic Regression for various prediction

periods.

https://doi.org/10.1371/journal.pone.0233976.g004
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S6 Table–S7 Table in S1 File). The best ML models were Logistic Regression and SGD. Since

Logistic Regression is simpler to interpret, we use it for further analysis.

Further analysis with Logistic Regression

The best results were obtained with Logistic Regression in combination with time features and

data balancing, and without feature selection, filtering or dimensionality reduction. The per-

formance of Logistic Regression at various prediction periods including confusion matrices

and ROC curves is shown in Table 3 and Fig 4D. In addition, confusion matrix of twelve-

months model is shown in Table 4, while confusion matrices for six- and three-month models

are shown in S8 Table–S9 Table in S1 File.

Fig 5 shows the coefficients that are obtained when predicting twelve months ahead. Note

that here we only show 10 most important features/diagnoses, i.e., those with the highest abso-

lute coefficients. Some of these features, such as disorders of lipoid metabolism and renal fail-

ure are self explanatory in predicting, while others have a large overlap with a variety of

diseases. For example, lipid abnormalities are common in patients with nephrotic syndrome

in the form of hypercholesterolemia and hypertriglyceridemia. Some of these patients may as

well be unresponsive to therapy and progress to CKD. In addition, CKD per se has hypertrigly-

ceridemia. Hence lipid abnormalities are common in a variety of renal diseases which may

Table 3. Performance metrics for various prediction periods.

Prediction period AUC Sensitivity Specificity

Twelve months 0.773 0.623 0.781

Six months 0.778 0.568 0.832

Three months 0.777 0.504 0.863

https://doi.org/10.1371/journal.pone.0233976.t003

Table 4. Confusion matrix for twelve-months-ahead prediction.

Predicted

No Yes

True No 5819 1628

Yes 394 651

https://doi.org/10.1371/journal.pone.0233976.t004

Fig 5. Diagnoses with the highest importance, i.e., coefficients, when applying Logistic Regression for twelve-months-ahead prediction.

https://doi.org/10.1371/journal.pone.0233976.g005
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progress to CKD. Almost all patients get emotionally disturbed once they get to know they

have renal failure.

Analyzing RRT probabilities obtained with Logistic Regression

The previous analysis focused on classification of patients into those that will need RRT and

those that will not need it. However, ML models, including Logistic Regression are also able to

return the probabilities of needing RRT. We analyzed the probability of needing RRT of the

same patient at various prediction intervals, where, at each interval, a different Logistic Regres-

sion model was applied. The predicted probabilities were further averaged for each prediction

interval and the obtained results are shown in Fig 6. This figure shows that the ideal thresholds

for prediction periods can be selected at (average) probabilities:

• between 0.470 and 0.505 for prediction period of three months,

• between 0.509 and 0.513 for prediction period of six months, and

• between 0.310 and 0.555 for prediction period of twelve months.

The black line in this figure shows the following thresholds: 0.50 for three months, 0.51 for

six months and 0.53 for twelve months. At these average probabilities, all models produce the

best results, since all patients are on average classified correctly by all three models. More pre-

cisely, the line of patients with RRT before three months is always above the threshold, which

is correct; the line of patients with RRT between three and six months is above the threshold at

six and twelve months, but below threshold at three months, which is correct; the line of

patients with RRT between six and twelve months is above threshold at twelve months, but

Fig 6. Left: Predicted probabilities of needing RRT, averaged at each prediction period. Blue, red, orange and green lines show the average predicted

probabilities of needing RRT for 4 distinct sets of patients as described in the legend. Three prediction periods are shown (12, 6 and 3 months), where,

for each period, one Logistic Regression model is used. The black line shows the ideal threshold for all three models. More precisely, using this

threshold, all the models (on average) correctly predict RRT for all subsets of patients. Right: AUCs obtained with Logistic Regression for various tests.

The AUC values are shown in brackets.

https://doi.org/10.1371/journal.pone.0233976.g006
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below threshold at three and six months, which is correct; and the line of patients without

RRT is always below the threshold, which is also correct.

Comparing models on all the patients with models on diabetes patients

Diabetic nephropathy is a common complication of diabetes. Since diabetes patients are a

more homogeneous group than all CKD patients, it might be easier to predict RRT on CKD

patients with diabetes only. To test this hypothesis, we preprocessed the data with filtering in

order to select only patients with diabetes type 2 or type undefined. Afterward, we performed

three tests:

• We built and tested the models on all the patients.

• We built and tested the models on only patients who had diabetes prior to the CKD

diagnosis.

• We built the models on all the patients, but tested them only on the patients who had diabe-

tes prior to the CKD diagnosis.

Note that in all three tests, stratified 10-fold cross-validation was applied. In addition, the

selected model was Logistic Regression, the prediction interval was twelve months, data bal-

ancing was used, but there was no feature selection or dimensionality reduction. In the third

test, data of all the patients was used, but during model evaluation only patients with diabetes

were selected from the test set. The results are shown in Table 5 and Fig 6. In addition, the con-

fusion matrices for all three tests are shown in S10 Table–S12 Table in S1 File.

The results show that the highest AUC is obtained when no filtering is applied, i.e., when

we learn and test on all the patients. The second highest AUC is obtained when learning on all

the patients, but testing on only patients with diabetes. The lowest AUC is obtained when

learning and testing on patients with diabetes. This suggests that prediction for patients with

diabetes is a bit harder than average, and that having more training data (8,492 in total vs.

3,104 with diabetes) is more important than having more homogeneous data.

The confusion matrices show that when we learn on all the patients, better classification is

obtained for those patients that have RRT. On the other hand, when we used diabetes patients

for learning, better classification is obtained for those patients that do not have RRT.

Discussion

In this retrospective study, we provided a novel approach of screening CKD patients to predict

the chances of future RRT based on the clinical data using ML algorithms. A disease-specific

subset, i.e., data based on the patients’ diagnosis and RRT occurrences between 1998 and 2011,

was analyzed from the NHIRD dataset [25]. Although the results are not yet as such suitable

for adoption into clinical practice for individual patients, the study provides a strong basis and

a variety of approaches for future studies of forecasting models in healthcare.

There exists other work aimed at predicting RRT, but it used laboratory data, which is not

as readily available as the information on comorbidities used in this paper. For example, Lee

Table 5. Performance metrics for various tests.

Test No patients AUC Sensitivity Specificity

Learn all Test all 8492 0.773 0.623 0.781

Learn diabetes Test diabetes 3104 0.731 0.555 0.780

Learn all Test diabetes 7952 0.747 0.696 0.689

https://doi.org/10.1371/journal.pone.0233976.t005
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et al. analyzed electronic medical records of 4,500 patients from South Korea from 1997 to

2012 in order to predict the time of RRT [16]. For this purpose, they used six months of 12

clinical data variables such as serum albumin, serum hemoglobin, serum phosphorus, serum

potassium, and eGFR, in addition to demographic variables, and five comorbidities. The

applied ML model was Multivariate Cox proportional hazards regression. The AUC on the test

set was between 0.80 and 0.86, depending on the CKD stage. Evans et al. analysed the relation-

ship between death and RRT on one hand, and age, sex, primary renal disease, body mass

index, and glomerular filtration rate (GFR) on the other hand [17]. The results showed that

GFR at entry was clearly linked to the incidence of RRT, and age was related inversely to inci-

dence of RRT. Lea et al. analyzed the data of 1,094 patients and the results showed that the

change in urinary protein level represents a predictor for progression to RRT [18]. More pre-

cisely, the early change in urinary protein level from baseline to the 6-month point resulted in

the subsequent rate of decline in GFR and the incidence of end-stage CKD. Iseki et al. applied

logistic regression on data from 107,192 patients from Okinawa to predict end-stage CKD

[19]. The analysed variables included sex, age at screening, proteinuria, hematuria, systolic and

diastolic blood pressure. The results showed that proteinuria was the most potent predictor,

and the next most potent predictor was hematuria. Norouzi et al. used clinical and laboratory

data on 465 CKD patients for predicting renal failure progression in CKD was conducted by

covering the clinical data from 2002 to 2011 [20]. The model was built using Adaptive Neuro-

Fuzzy Inference System (ANFIS) and its results showed reliable accuracy for Glomerular Fil-

tration Rate (GFR) prediction in the time periods of 6, 12 and 18 months.

Similarly, there are various studies in the literature that have harnessed the potentials of ML

algorithms for the development of Acute Kidney Injury prediction models using EMRs. For

example, Tomašev et al. analyzed data of 703,782 patients and built a neural network model

for predicting acute kidney injuries that required subsequent administration of dialysis within

48 hours [21]. The input data consisted of procedures, diagnoses, prescriptions, laboratory

tests, vital signs, and admissions. Park et al. predicted the occurrence of acute kidney injury

(AKI) in cancer patients using the laboratory measurements [22]. A similar experiment with

similar (laboratory) input data was also conducted by Mohamadlou et al., which aimed at pre-

dicting AKI within 12, 24, 48 and 72 hours [23], and Zhang et al., which applied ML for differ-

entiating between patients who would and would not respond to fluid intake in urine output

in AKI [24].

Looking at the most common comorbidities in the dataset, those found in more than 10%

of the patients were Diabetes Mellitus Type II (in 32% of the patients), Essential Hypertension

(45%), and Hypertensive Heart Disease (20%). A more detailed statistics on the comorbidities

is available in S13 Table. We next analysed the comorbidities found to be most relevant in our

experiment (shown in Fig 5) and found them to be mostly in line with the knowledge about

CKD. The presence of pleural effusion and lung edema could be due to CKD or an interplay of

CKD and coronary artery disease (CAD). Most of these patients have hypoproteinemia, a

strong predictor of progressive kidney disease. Hypoproteinemia is especially common in

patients with chronic glomerulonephritis and diabetic nephropathy. Most patients with CKD

resulting from progression of chronic glomerulonephritis or diabetes mellitus have third space

collections as a consequence of hypoproteinemia and low GFR, one such collection being pleu-

ral effusion. Normocytic normochromic anemia is seen in CKD patients with eGFR less than

60 mL/min/1.73 m2 [43]. Therefore, it is reasonable that these features play a prominent role

in the model. However, it is surprising to find chronic liver disease and cirrhosis as predicting

coefficients. The only way this can be justified could be due to the presence of an unusually

high prevalence of these diseases in our study group.
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There were several limitations and barriers associated with our current study. Since our

dataset was extracted from NHIRD (and is thus representative of the data that would be avail-

able to an insurance company or a hospital manager), the source does not contain patients’

personal characteristic, such as height, weight, and lifestyle. The dataset also lacks crucial labo-

ratory data like eGFR and albuminuria needed to categorize the stage of CKD [44], as well as it

is missing detailed laboratory test results and medical notes. Such data would be beneficial for

a model that can be used in clinical decision-making, and could also allow the patients to pre-

pare for the treatment in advance. However, if we used such additional information, the model

would no longer be so suitable for low- and medium-income countries where this information

may not be available. Due to the retrospective nature of our study, there could be chances of

selection and misclassification bias. In addition, the scope of extracted dataset from NHIRD

was limited, as the majority of the population was Taiwanese. In order to apply our proposed

approach in generalized context, a large scale validation with heterogeneous population is rec-

ommended. We suggest that this kind of broader level investigations should be performed first

for re-evaluating the performance and consistency of our proposed approach before inclusion

in clinical practices. If adopted in practice, our approach can support clinicians in treatment

plan development and decision making process for initiating the hemodialysis at the right

time for CKD patients. In addition, it can also allow the patients to pool up the financial

resources if they need to fund the treatment themselves.

Conclusion

The main advantage of the existing work is in the use of comorbidities for prediction of RRT.

A large heterogeneous population should be used to create and evaluate the model’s perfor-

mance before it can be applied to clinical practice. It must be understood that by using ML

algorithms, our study provides a screening approach for predicting the chances of upcoming

RRT based on the clinical data, therefore this should neither be considered as clinical guideline

nor a diagnostic / therapeutic tool for CKD patients. On the other hand, the results at this

point are more interesting from the point of view of policy-makers, such as hospital managers

or health officials, or insurance companies. Using predictive models on a general population

with the data available can allow for better planning and allocation of resources. Future scope

lies in coming up with a prediction model that would factor in the more clinical data (use of

specific drugs / associated comorbidities / dietary interventions / degree of blood pressure con-

trol / degree of blood sugar control) in predicting the outcomes and providing a possible

chance for us to tailor the therapeutic interventions accordingly.

We need to realise that the ML algorithms our study provides need to be considered as a

possible screening tool to predict the time frame of progression of CKD patient before he/she

would need RRT.
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Investigation: Erik Dovgan, Anton Gradišek, Mitja Luštrek.
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