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ABSTRACT

In this paper, we present a brief review of some of the main
algorithms adopted in the field of computer vision for the
aim of object detection. We highlight the working principles
of two main families of models, Region-based Convolutional
Neural Network detectors (“R-CNN”) and Single-Shot object
detectors (SSD, YOLO), and present a comparison between
them, with a focus on the trade-off between speed and ac-
curacy and its dependence on various models parameters.
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1. INTRODUCTION

Most computer vision tasks can be roughly divided into
three main categories :

e image classification: determining whether a certain
class of objects is present in the image or not (Fig. [Tal);

e object detection: determining that an object be-
longing to a certain class is present, and localizing it
within the image (Fig. [1b);

e semantic scene labeling: classification of each pixel
of the image as belonging to a certain class. Individual
instances of the same object are usually not segmented
(Fig. , but modern datasets |10} [9] provide labels
to distinguish between them (Fig. [Ld).

In less than a decade, techniques to solve these tasks have
undergone a period of extremely rapid development, most
notably fueled by the successful employment of Convolu-
tional Neural Networks (CNN) in the field.

The adoption of CNN-based algorithms was kick-started by
the paper by Alex Krizhevsky, Ilya Sutskever and Geoffrey
Hinton . This paper showed the effectiveness of CNNs
in computer vision problems, and introduced a number of
techniques that are still used today, such as the adoption of
ReLU as activation functions and the use of data augmenta-
tion techniques. The standard structure of CNN-based mod-
els, basically consisting of simple stacking of convolutional
and pooling layers followed by one or more fully-connected
layers, has been successfully used for some time in order
to solve localization, object detection and human pose esti-

mation problems [19]. Improvements were

generally achieved by increasing the depth and width of the
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models, and by using larger amount of training data, at the
cost of increasing the needed computational power and the
risk of over-fitting . This basic paradigm has been chal-
lenged by Google with the introduction of the “Inception”
architecture , where parts of the network are not located
sequentially, so that different operations such as pooling or
convolution can be performed in parallel.

Among the many proposed architectures (see also ),
arguably one of the most impactful contributions to object
detection has been given by the introduction of the Region-
based Convolutional Neural Network detectors (“R-CNN”)
14] and its modification (Fast R-CNN and Faster R-CNN [3]
15]). The accuracy of these detectors, however, comes at a
computational cost, which can be reduced by the adoption
of the so-called Single Shot detectors.

In this paper, we present an overview of the region-based
and single-shot families of models. In Section [2} we de-
scribe a few methods to identify Regions of Interest (Rols),
i.e. areas of the picture where objects are located, which
is a fundamental ingredient for region-based detection algo-
rithms. Sections [3] and [4] are dedicated to region-based and
single-shot detectors, respectively. In section [f] we summa-
rize a comparison of the performances of these algorithms,
and how their trade-off between speed and accuracy is in-
fluenced by different factors.

(c)

Figure 1: From , different types of computer vision tasks.
Image classification (a), object detection (b), and semantic
scene labeling (c,d).



2. REGIONS OF INTEREST (ROI) SELEC-
TION ALGORITHMS

Region-based methods generally tackle object detection tasks
by dividing it into two steps. First, it is necessary to locate
the so-called Regions of Interest (Rol), i.e. areas of the im-
age where possible objects are located. After this, the classi-
fication step takes place, where the previously located areas
are classified. Rols whose content is classified as belonging
to one of the considered classes within a certain confidence
are detected.

In the following, we make a short description of two of the
main methods adopted to identify Rols.

2.1 Selective search

Region proposal algorithms identify Rols by adopting image
segmentation techniques, which consist of grouping pixels
based on their similarity according to some criteria. A com-
monly adopted method is Selective Search (SS); as shown in
Fig. 2} groups of similar regions are created hierarchically,
starting from single pixels, based on color, texture, size and
shape compatibility [22]. A general important requirement
for region proposal methods is that they should have a very
high recall; false positives can then be rejected in the follow-
ing classification phase.

Figure 2: From . All possible ROIs during the merging.

2.2 Region Proposal Network (RPN)

Region proposal networks (RPN) are the distinctive feature
of Faster R-CNNs detectors (see Section , and they elim-
inate the need to use an external algorithm for selecting
Rols. In this method, the feature map produced by the
first convolutional layer of the detector is passed to a CNN
that produces region proposals by predicting their bounding
boxes and “objectness” scores, measuring whether each box
contains an object or not [15].

3. REGION-BASED OBJECT DETECTORS
(R-CNN, FAST R-CNN, FASTER R-CNN)

As mentioned earlier, region-based object detectors work in
two steps, consisting of the determination of Rols and their
following classification.

The first suggested implementation of this algorithm, R-
CNN , employs a region proposal method to create =~
2000 ROIs. As shown in Fig. [3| (top left panel), each of the
identified Rols is then resized and fed as input to a CNN;,

followed by fully connected layers to classify the object and
refine the boundary box.

Even though the R-CNN algorithm is very accurate, it has
also the downside of being quite slow. The high number of
proposals makes the algorithm slow, since each Rol is pro-
cessed by the CNN separately, which means that the whole
feature extraction process is repeated 2000 times.

This limitation has been overcome in Fast R-CNNs , as
depicted in Fig (bottom left panel). In this architecture,
features are extracted only once for the whole image by using
a CNN, while an external region proposal method (such as
selective search) is used to create Rols. After this step, the
feature map and the Rols are combined, producing patches
that, as in the previous case, are resized (Rol pooling layer)
and passed as input to a fully connected layer for the object
detection.

In the case of Fast R-CNNs, the main bottleneck is caused
by the use of the external region proposal method, which
usually runs on a CPU and is slower than the rest of the
process; out of the 2.3 seconds needed by Fast R-CNN to
make a prediction in testing, ~2 seconds are used for gen-
erating the 2000 ROIs . So, a further improvement in
the algorithm speed has been provided with the introduc-
tion of Faster R-CNN , by substituting the external
region proposal method with the convolutional Region Pro-
posal Network (RPN) we presented in Sec. (see Fig. [3]
right panel).

4. SINGLE-SHOT OBJECT DETECTORS

Differently from region proposal detectors, which perform
region proposals and region classifications in two steps, single-
shot detectors simultaneously predict bounding boxes and
the class as they processes the image in one shot.

4.1 SSD
SSD is one of the fastest object detectors available. Its
working principles can be summarized as follows:

e the image is passed through a series of convolutional
layers, thus producing several sets of feature maps at
different scales (4x4, 8x8, etc.);

e a pre-defined, default set of bounding boxes (similar to
the “anchors” in RPN [15]) of different aspect ratios is
provided for each location in all the produced feature
maps;

e for each of these default boxes, both the offsets to the
ground truth boxes and the confidence for all classes
are predicted;

e default boxes are matched to ground truth boxes based
on IoU (Intersection Over Union, [23]). The best pre-
dicted box is labeled a positive, along with all other
boxes that have an IoU with the truth > 0.5 (see Fig.

[@.

The downside of skipping region proposal is that SSD draws
and classifies bounding boxes of many shapes and scales in
every single position in the image, so that most of them
are negative examples. For this reason, highly-overlapping
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Figure 3: From http://www.robots.ox.ac.uk/ tvg/publications/talks/fast-rcnn-slides.pdf: model scheme for R-
CNN (top left), Fast R-CNN (bottom left), Faster R-CNN (right).
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Figure 4: From [11], SSD framework. Out of the many
default boxes, two are matched with the cat and one with the
dog, which are treated as positives and the rest as negatives

boxes are grouped into a single one (“non-maximum sup-
pression®, [16]). Moreover, the high number of negatives
leads to a significant imbalance between negative and pos-
itive samples for training, which is overcome by only using
the ones with highest confidence loss (a part of the overall
loss function, measuring how confident the network is of the
“objectness” of the box), so that the ratio between the neg-
atives and positives is at most 3:1 (“hard negative mining”).

4.2 YOLO (You Only Look Once)

As in SSD, YOLO |12} 13| [14] uses a single neural network
for detection (Fig. [5).

The input image is divided into a grid of SxS cells, and B
bounding boxes are produced for each cell. For each box,
a score is calculated, indicating the confidence for that box
to contain an object (of any class) and the accuracy of the
box in terms of its IoU with the ground truth (Pr(Object) x
IOULT# ). For each cell, C (C = number of possible classes)
probabilities calculated, conditioned on the grid cell itself
containing an object. At test time, these conditional class
probabilities and individual box confidence predictions are
multiplied, in order to obtain class-specific confidence scores
for each box.

Final detections

S xS grid oninput

Class probability map

Figure 5: From [11], SSD framework. Out of the many
default boxes, two are matched with the cat and one with the
dog, which are treated as positives and the rest as negatives

S. COMPARISON

A performance comparison between the various presented
algorithms, although being of great interest, can be tricky.
Standard metrics like mAP [2| do not take into account fac-
tors like time and memory usage [7], which are of vital im-
portance when real-time performance is required. On the
other hand, greater speeds are obtained by sacrificing some
accuracy, and it is important to be aware of the mecha-
nisms influencing this trade-off. Finally, results reported by
the various papers are generally obtained by using different
settings, which makes their comparison less (if at all) sig-
nificant. A work by Google research [7] offers a survey to
study the trade-off between speed and accuracy for a series
of models, including Faster R-CNN and SSD. The various
presented models have been re-implemented in TensorFlow
and trained on the MS COCO dataset. The effect of adopt-
ing different feature extraction architectures (MobileNet [6],
VGG-16 |18, Inception, etc.) for each of the models has
also been tested. In the following, we briefly summarize
their main results.


http://www.robots.ox.ac.uk/~tvg/publications/talks/fast-rcnn-slides.pdf

Figure 6: From [7], accuracy vs time.

Overall mAP

SSD models are faster on average, but cannot beat the
Faster R-CNN in accuracy. Faster R-CNN requires at
least 100 ms per image (Fig. @, while SSD with Mo-
bileNet as feature extractor provides the best accuracy
tradeoff within the fastest detectors. The highest ac-
curacy is achieved by Faster R-CNN using Inception
ResNet as feature extractor with 300 proposals, run-
ning at 1 second per image;

Choice of feature extractors impacts detection accu-
racy for Faster R-CNN, but it is less important for
SSD;

For large objects, SSD can outperform Faster R-CNN
in accuracy with faster extractors, but its accuracy
drops significantly for smaller objects;

Input image resolution strongly impacts performance:
on average, reducing image size by half lowers accuracy
by 15.88% and inference time by 27.4%;
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shapes indicate meta-architecture, while colors indicate fea-
ture extractor.

6. CONCLUSIONS

In this paper, we presented an overview of the region-based
(R-CNN, Fast and Faster R-CNN) and of the single shot
(SSD, YOLO) families of algorithms for object detection.
An analysis of the speed and accuracy of the model param-
eters, and of how they are influenced by the choice of the
models parameters, is briefly summarized.
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