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Abstract
The recognition of high-level activities (such as work, trans-
port and exercise) with a smartphone is a poorly explored
topic. This paper presents an approach to such activity
recognition that relies on the user’s location, physical activ-
ity, ambient sound and other features extracted from smart-
phone sensors. It works in a user-independent fashion, but
can also take advantage of activities labeled by the user. It
was evaluated on a real-life dataset consisting of ten weeks
of recordings. While most activities were recognized quite
accurately, the recognition of some revealed two challenges
of recognizing diverse lifestyle activities: the ambiguity of
some activities, and the inadequacy of smartphone sensors
for others.
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Introduction
Knowing the users’ activity is useful in a wide range of ap-
plications – to understand their context and offer context-
sensitive services, to understand their lifestyle and health,



etc. Activity recognition is thus a very active field, which
started with dedicated sensors and has lately moved to
smartphones and other wearable devices not specifically
intended for activity recognition. Our work is motivated
by monitoring patients with diabetes, which is a disease
strongly linked to the patients’ lifestyle. Since many diabetic
patients already use a mobile application to manage their
disease, using the phone to also recognize their lifestyle ac-
tivities is a logical extension. It can help the patients them-
selves to better manage their physical activity and food in-
take, as well as their physicians to understand the patients’
lifestyle.

The activity-recognition approach presented in this paper
uses the sensors in the smartphone and an optional ECG
monitor (introduced for the management of cardiovascular
co-morbidities of diabetes). The key features extracted from
the sensors are the user’s location, physical activity and
ambient sound. These are fed into a general and a user-
specific classifier, whose outputs are combined by heuristic
rules into the user’s final activity. The approach recognizes
exercise and eating, which are activities particularly im-
portant for diabetic patients, and work, home, out, trans-
port and sleep, which paint a broad picture of the patient’s
lifestyle and provide context for the ECG and blood-glucose
readings.

The following sections of the paper discuss related work,
describe our activity-recognition approach, present its ex-
perimental evaluation, and conclude the paper.

Related Work
While activity recognition with a smartphone or similar
wearable sensors is a mature field, most of the work deals
with low-level activities such as sitting, walking and running
[5]. The recognition of high-level activities, as in our work,

remains largely unexplored, although it provides comple-
mentary information to low-level activities. It is of course
debatable which activities should be considered low- and
which high-level, but our interpretation is that low-level ac-
tivities are either static (postures) or repeat the same mo-
tion pattern on a scale of seconds (e.g., walking).

Low-level activities are typically recognized by passing a
sliding window over a stream of acceleration data, extract-
ing a number of features from each window, and feeding the
features into a classifier that outputs the activity. Dernbach
et al. [6] used the same approach for high-level activities,
but they reached the accuracy of barely 50 %, even though
they attempted to recognize only a small set of simulated
activities. Lee & Cho [9] applied hierarchical hidden Markov
models to accelerometer data to first determine low-level
activities and from those high-level activities (shopping, tak-
ing bus, moving by walk). They reached the precision of
around 80 %, but their set of activities was very limited and
the users carried the phone in their hand, so the dataset
was not a good representation of real life. Garcia-Ceja &
Brena [7] recognized commuting, working, at home, shop-
ping and exercising by representing high-level activities with
histograms of low-level activities. They reached the accu-
racy of 80–90 %, but their experiments were user-specific
with only one user involved.

With location sensing (GPS, mobile networks) one can
determine the users’ location, which serves as an impor-
tant clue to their activity. This way, Lin [10] classified work,
sleep, leisure, visit, using a car and other with conditional
random fields. He achieved the accuracy of 86 %. Choujaa
& Dulay [4] scanned nearby Bluetooth devices to help local-
ize users indoors and recognize additional activities, such
as using a computer. They represented the users’ daily rou-
tine with temporal graphs, requiring manual labeling of each



user’s activities. The temporal graphs allowed improving the
F-measure of activity recognition by 20 percentage points
compared to assuming the same routine as in the training
data every day.

Motion and location sensing can be combined with the mi-
crophone, visible Wi-Fi networks and light. Wang et al. [13]
used such a combination to determine the users’ state
(working, home_talking, place_speech etc.) with a rule-
based system. They achieved the accuracy of around 90 %,
but it should be noted that the users’ home and office Wi-
Fi network names were known apriori to the system, and
several of the states were specifically adapted to the sys-
tem’s capability to analyze ambient sounds. Another similar
approach was by Miluzzo et al. [12], who tried to infer the
users’ activity to post about it on a social network.

Our approach does not reach the accuracy of some of the
work mentioned above, but it tackles a more difficult prob-
lem: (1) it attempts to recognize all the users’ activities in
real life, including ambiguous ones (e.g., cycling can be ex-
ercise, transport or a part of shopping); (2) the activities are
not selected to fit the available sensing modalities (unlike
some related work, which adapted the activities/states to
location or sound sensing); and (3) our approach does not
need labeling from each user.

Activity-Recognition Approach
Our activity-recognition approach has two main steps de-
scribed in the following two subsections: feature computa-
tion and machine-learning procedure.

Features for Activity
Recognition

• Wi-Fi – location

• GPS – velocity and
place category

• Sound

• Acceleration – low-
level activity and
energy expenditure

• Heart rate

• Respiration

Feature Computation
The features are extracted from typical smartphone sensors
and optionally from an accelerometer-equipped chest-worn
ECG monitor. They are computed over one-minute win-

dows. An overview of the features is provided in the side-
bar, and a detailed description in the rest of this subsection.

Wi-Fi feature has three possible semantic location values
computed from the visible Wi-Fi access points: home, work
and elsewhere. It is computed in two steps, which require
that a part of each user’s recordings are used for training
(we used one week). In the first step, each phone’s Wi-
Fi scan in the training dataset is represented by a vector
whose values are the signal strengths of the visible Wi-Fi
access points. These vectors are clustered, so that each
cluster corresponds to a location characterized by visible
access points (see our previous work [11] for details). Since
the clusters are very user-specific, they cannot be used to
build a general activity-recognition classifier. Therefore, the
second step transforms them into the three semantic loca-
tions which can be used for every user:

• For each Wi-Fi location cluster, the fraction of time
the user spends in it during each day is computed.

• Daily important clusters are defined as the five clus-
ters in which the user spends the most time in the
day.

• The entire week is divided into working and free days.
Working-day importance of each cluster is defined as
the number of times the cluster was daily important
during working days. Free-day importance is defined
analogously.

• Clusters with working-day importance above 0, which
are never visited on free days, belong to the location
work.

• Clusters with the highest or tied for the highest free-
day importance (it can be at most 2, since there are



two free days in a week), which also have working-
day importance above 0, belong to the location home.

• All other clusters belong to the location elsewhere.

The Wi-Fi feature corresponds to the correct semantic loca-
tion with the accuracy of 85 %.

GPS features are again not user-specific: (i) velocity, (ii)
category of the nearest place using the Foursquare service
API [3] and (iii) whether the user is outdoors or indoors ac-
cording to the presence or absence of the GPS signal.

Sound features are extracted from the ambient sound
recorded with the smartphone’s microphone using the jAu-
dio library [1]. We record only 100 ms of sound out of each
second to preserve the user’s privacy. The recordings are
further split into 20 ms sub-windows. The features are the
average spectral-centroid, zero-crossing, mel-frequency-
cepstral-coefficient (MFCC), linear-predictive-coding (LPC)
and method-of-moments values for each sub-window within
each one-minute window.

Acceleration features are extracted from the accelerome-
ter (smartphone’s and/or ECG monitor’s). They are user’s
most common low-level activity within each one-minute
window (low-level activities are computed in two-second
windows), and the user’s average expended energy (the
energy is computed in ten-second windows). They two fea-
tures are computed with our recent method [5] that can use
the smartphone, ECG monitor or both, and can automat-
ically adapt to any orientation and location of the phone
on the body. The expended energy is expressed in MET
(Metabolic Equivalent of Task, 1 MET corresponds to the
energy expended at rest).

Heart-rate features are extracted from the ECG monitor
if present. The features are the (i) minimum, (ii) maximum
and (iii) average heart-rate within each one-minute window.

Respiration-rate features are also extracted from the ECG
monitor. The features are the (i) minimum, (ii) maximum
and (iii) average respiration-rate within each one-minute
window.

Even though the last three categories of features all use
the ECG monitor, the accuracy of the activity recognition
is not much degraded without it, so the ECG monitor is not
essential for our activity-recognition approach.

Machine-Learning Procedure
The machine-learning activity-recognition procedure utilizes
two classifiers: a general classifier trained on data of people
other than the user, and an optional user-specific classifier

Figure 1: Workflow of the machine-learning procedure.



trained on data labeled by the user. The user does not have
to label all the activities: we selected eating and/or exercise,
since they are important for diabetic patients and difficult
to recognize. If the user chooses to label his/her own data,
heuristic rules are used to select the final activity. The gen-
eral workflow of the procedure is presented in Figure 1.

Algorithm 1 Heuristics rules

1: activities[] . Last three recognized activities
2: general . General classifier
3: userspecific . User-specific classifier
4: MET . User’s estimated energy expenditure
5: procedure RECOGNIZEACTIVITY (INSTANCE)
6: aP ← prevalent(activities[])
7: aG← general(instance)
8: aS ← userspecific(instance)
9: if aG = aP or aS = aP then

10: return aP
11: else if aG = exercise or aS = exercise then
12: if (MET > 2.5) then
13: return exercise
14: else
15: return aG
16: end if
17: else if aS = eating then
18: return eating
19: else
20: return aG
21: end if
22: end procedure

Both the general and user-specific classifier are meta-
classifiers outputting the majority vote from seven base
classifiers trained with machine-learning algorithms im-
plemented in the Weka machine-learning suite [8]: Naive

Bayes, Simple Logistic, Support Vector Machine, J48, Ran-
dom Forest, JRip and AdaBoost. The classifiers were se-
lected empirically.

The heuristic rules used in the machine-learning proce-
dure are presented as Algorithm 1. The recognition is first
smoothed by comparing the most common activity among
the last three recognized activities against the current out-
puts of the classifiers. If any of the outputs matches the
most common activity, that activity is returned, since in most
cases the current activity is the same as the previous one.
Otherwise, the next rule checks whether any of the classi-
fiers recognized exercise and the MET value is above 2.5
(the energy expended during leisurely walking). If both
criteria are met, exercise is returned. If not, the next rule
checks whether the user-specific classifier recognized eat-
ing, since eating habits are fairly user-specific. If so, eating
is returned; otherwise the output of the general classifier is
returned.

Experimental Evaluation
Our activity-recognition approach was evaluated on a dataset
of recordings by five volunteers, two weeks by each. The
leave-one-person-out method was used for the general
classifier: it was trained on the data of four people and
tested on the fifth, repeated once for each person. For
the user-specific classifier, we used the first week of user-
specific data for training and the second week for testing.
Since the Wi-Fi feature also required one week for training,
all the results are presented for the second week.

Dataset
During the recording, each of the five volunteers (four male,
one female) led their life as usual. While some of them had
fairly regular daily routines, others had unusual eating pat-
terns, were staying at a different place during the week and



Approach
Activities (F-score)

Average
Sleep Exercise Work Transport Eating Home Out

Our previous user-specific approach 0.91 0.49 0.92 0.56 0.29 0.79 0.47 0.63
General 0.91 0.41 0.94 0.66 0.24 0.77 0.58 0.65
General + eating 0.91 0.41 0.94 0.66 0.32 0.77 0.59 0.66
General + exercise 0.92 0.50 0.94 0.72 0.29 0.79 0.62 0.68
General + eating + exercise 0.92 0.50 0.94 0.72 0.34 0.79 0.62 0.69

Table 1: Comparison of different activity-recognition approaches.

weekend, took trips etc., so the resulting dataset is quite
challenging from the activity-recognition perspective. The
volunteers were asked to carry the smartphone as much
as possible, in any pocket they wanted (or in a bag). They
were also asked to wear the ECG monitor each day until
the battery ran out. On average, we collected 7.5 hours of
recordings per day with the ECG monitor and 11 hours with
the phone.

We developed a mobile application that recorded all the
sensor data needed to compute the features used in our
activity-recognition approach. The volunteers also used this
application to label the following activities: home-chores,
home-leisure, food preparation, eating, exercise, work, out-
errands, out-leisure and transport. We later merged home-
chores, home-leisure and food preparation into home, and
out-errands and out-leisure into out, since these activities
proved impossible to distinguish. The volunteers were pro-
vided with guidelines regarding labeling, and the application
allowed correcting mistakes, but some inconsistencies and
mistakes in the dataset certainly remain, and are quite diffi-
cult to detect and correct.

Results
We first evaluated our approach using the general classifier
only, which does not require the user to label any data. We

then added the user-specific classifier recognizing only eat-
ing, only exercise and both. All the approaches were com-
pared against our previous work [11], which is completely
user-specific: trained on the dataset from the first week and
tested on the second week. The results of the comparison
are presented in Table 1. We can observe that the general
approach outperformed our user-specific approach, prob-
ably because it had considerably more training data (from
four people vs. from one). The addition of the user-specific
classifiers proved beneficial, improving the recognition of
the activities it was trained to recognize as well as rhe over-
all recognition.

The recognition of exercise and eating was still rather poor,
even with the user-specific classifier. The confusion matrix
in Table 2 shows that exercise is confused with home, out
and transport. This is mainly due to the ambiguity of exer-
cise: household chores – if sufficiently strenuous – are in
fact exercise, but were not labeled as such because their
intent was not exercise; a walk or cycling can be an errand
or transport or exercise – this is again a matter of intent.
Eating is most often confused with home and work. The
confusion with home is perfectly understandable, since sit-
ting at the kitchen table appears very similar when eating,
writing, reading or doing any number of other activities. The
confusion with work is due to eating at the workplace.



Recognized
True Sleep Exercise Work Transport Eating Home Out
Sleep 610 0 0 0 0 68 0
Exercise 0 277 3 65 0 142 106
Work 3 8 6734 110 74 30 339
Transport 0 15 10 1030 3 32 302
Eating 0 0 84 27 158 376 172
Home 34 13 11 5 31 3516 967
Out 0 108 123 228 7 119 2019

Table 2: Confusion matrix of the General + eating + exercise approach.

While recording our dataset, we noticed that the phone bat-
tery barely lasted the whole day even though the phone
was not used for calls, messaging etc. Since most of the
high-level activities we are recognizing typically last sev-
eral minutes or even hours, we decided to test whether they
need to be recognized every minute. We simply recognized
the activity in one minute, and then assumed the activity
will remain unchanged for the following 5, 10 or 15 min-
utes. The results for the general classifier only, and for the
general + specific classifier recognizing exercise and eat-
ing, are shown in Figure 2. The longest activities (sleep,
work, home and out) were hardly affected by the sparse
recognition. For exercise and transport, the recognition per-
formance decreased with increasing delay between recog-
nitions, which was to be expected, but recognizing the ac-
tivity every 5 minutes still performed very well. Eating was
in some cases even helped by the sparse recognition, be-
cause for many meals only a few minutes were recognized
correctly, which the sparse recognition smoothed.

Conclusion
In this paper we presented an approach to the recognition
of high-level activities with a smartphone, a problem rarely

tackled in the activity-recognition field. The approach was
tested on a real-life dataset and achieved the F-score of
0.69. It was fairly successful on the activities strongly char-
acterized by location, while it had difficulties with exercise
and eating. In the first case, the main reason is that the
definition of exercise is subjective. This problem could be
tackled by adapting the definition of exercise to the sensors,
i.e., by considering every sufficiently vigorous activity to be
exercise, although that would not necessarily provide the
insight into the user’s lifestyle we want. In the second case,
the smartphone simply does not have the right sensors to
recognize eating. This problem could be solved by a wrist-
worn device such as a smart watch, although they are not
nearly as ubiquitous as smartphones. In the future we will
attempt to improve the recognition of eating with more ad-
vanced sound processing, since sound appears to be the
only type of data that can be collected with a phone with
some chance of doing so.

We also plan to increase the size of our dataset by five
more people, and manually clean the data to correct some
of the labeling mistakes. Afterwards we will make the dataset
available to the community in our repository [2]. We also in-
tend to release the mobile application that was used to col-



Figure 2: Performance of sparse activity recognition.

lect the data, and that currently recognizes low-level activi-
ties and estimates the user’s energy expenditure. Whether
the recognition of high-level activities will be integrated in
this application or will be done on the server is yet to be
decided.
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