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Abstract

Activity monitoring is a very important task in lifestyle and health domains where physical activity of a person plays an important
role in further reasoning or for providing personalized recommendations. To make such services available to a broader population
one should use devices which most users already have, such as smartphone. Since trends show an increasing popularity of wrist-
worn wearables we also consider sensor-rich wristband as an optional device in this research. We present a real-time activity
monitoring algorithm which utilizes data from smartphone sensors, wristband sensors or their fusion for activity recognition and
estimation of energy expenditure of the user. The algorithm detects which devices are present and uses an interval of walking for
gravity detection and normalization of the orientation of the devices. The normalized data is afterwards used to for detection of the
location of the smartphone which serves as a context for selection of location-specific classification model for activity recognition.
The recognized activity is finally used for the selection of one or multiple regression models for the estimation of human energy
expenditure. To develop the machine-learning models, which can be deployed on the smartphone, we optimized the number and
type of extracted features via automatic feature selection. We evaluated each step of the algorithm and each device configuration,
and compared the human energy expenditure estimation results against the Bodymedia armband and Microsoft Band 2. We also
evaluated the benefit of decision fusion where appropriate. The results show that we achieve a 87% ± 5% average accuracy for
activity recognition and that we outperformed both competing devices in the estimation of human energy expenditure by achieving
the mean absolute error of 0.6 ± 0.1 MET on average.
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1. Introduction

Activity monitoring using body sensor network is a mature
and important area of research due to vast range of domains
that can benefit from it. Accurate activity monitoring is re-
quired in domains where further reasoning or person-specific
recommendations rely on the user’s physical activity. These
range from lighter topics such as sports and lifestyle to more
sensitive topics such as health [1, 2]. In sports and lifestyle, the
activity monitoring gives the user an insight into the amount
of their physical activity either to support better sports train-
ing, improve self-awareness and help maintaining a healthier
lifestyle, whereas in health this information is used to provide
better recommendations on how to manage pathologies of a par-
ticular disease and thus improve the quality of life of the patient.

It is a known fact that engagement in physical activity has
a positive influence on body and mind [3]. The ones that are
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the most aware of this fact are already using the service of ac-
tivity monitoring to track their sports activities such as running
and cycling either with a smartphone application [4] or dedi-
cated devices [5]. The physical activity self-awareness is higher
among young active population due the knowledge about the
risk imposed by the sedentary lifestyle (e.g., office work), and
are keen to use activity monitoring to improve their lifestyle
habits. Elderly population is more difficult to reach with tech-
nology even though they needed it more due to chronic diseases
such as diabetes and coronary heart diseases [6] and generally
less robust health. Moreover, the services which include activ-
ity monitoring mostly target the younger population and do not
include specific features and knowledge that applies for the el-
derly, especially not the ones who have been already diagnosed
with some disease. Aim of this research is to develop activ-
ity monitoring models specialized for the elderly, which can be
used either for lifestyle or health applications, so we develop
our methods on data of elderly active population [7] consisting
of most common every day and sports activities.

To support the lifestyle self-awareness or disease self-
management in terms of activity monitoring, two individual
tasks have to be solved: activity recognition to recognize the
current activity which is being performed, and the estimation
of human energy expenditure to quantify the performed activ-
ity. Previous research has shown that both of these tasks can be
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solved fairly accurate when dedicated devices have static place-
ments (are attached to predefined location on the body, with
predefined orientation) [8, 9]. The activity recognition is usu-
ally set as a classification machine-learning problem, where the
recognized activities include sedentary activities (e.g., sitting,
standing, lying), ambulatory activities (e.g., walking, jogging,
running) and sports activities (e.g., cycling). The energy expen-
diture is usually set as a regression machine-learning task where
the regression model estimates the expended energy in a unit
called MET (Metabolic equivalent of task). METs range from
0.9 MET, which is equal to the energy expended while sleep-
ing, to over 20 MET, which is expended during extreme exer-
tion [10]. The advantage over the more common kilo-calories
is that MET does not depend on users weight, and can be easily
translated into kilo-calories.

To make the activity monitoring more widely applicable, and
to make it available to more people, we need to design a body
sensor network from the devices most people already have. The
most natural choice is a smartphone, which can serve as a pro-
cessing unit and as a graphical interface for interaction with the
user. There are already many smartphone applications avail-
able on the market, whose scope is limited to step counters or
to activity-specific monitoring. Application which provide step
counters and step-related estimation of energy expenditure [11]
are suitable for tracking general ambulatory physical activities
which do not require very accurate activity quantification. The
activity-specific applications are intended for sports-active peo-
ple. Such applications are the run trackers with run-related es-
timation of energy expenditure [4], which monitor the specific
activity on users request and are therefore very accurate for the
quantification of that exact activity. In general, the step counters
are the most popular since we carry our smartphone only when
we are headed somewhere (walking, running) and not at home
so it captures the expended energy only during ambulatory ac-
tivities and count the time when smartphone is not carried as
rest. To catch every day activities and non-ambulatory exer-
cise in addition to ambulatory activities, we need to improve
the recognition and estimation of the models used by the smart-
phone or to use a commodity device that is worn by the user
most of the day. In the past several years, the development of
sensor-rich wrist-worn devices (smartwatches, sensor-equipped
wristbands) has increased, and so did their popularity. Similarly
to smartphones, the wrist-worn devices have activity monitor-
ing methods already integrated into the device and can monitor
physical activity even while sedentary. The accuracy of such
activity monitoring is usually low but satisfactory for getting an
insight into the movement pattern of the day. To get more accu-
rate activity quantification, the user still has to explicitly input
the type of workout performed (walking, running, cycling, etc.).
Additionally, none of the devices fuse data/information from
multiple devices and merely override the activity data with the
analysis of preferred device.

The objective of our research was to develop a real-time con-
tinuous activity monitoring algorithm that utilizes sensor data
from a smartphone or wrist-worn wearable alone and can fuse
the data and decisions of both devices if both are present on
the body (active in the body sensor network). The algorithm

should be optimized to run on the smartphone to perform con-
tinuous data analysis in real-time. To develop such a method
the following requirements should be fulfilled:

1. The method has to have the ability to detect which devices
are present on the body, thus active in the body sensor net-
work

2. The smartphone and wrist-worn device can be worn freely
on the body at most common locations (trousers pocket,
jacket pocket, bag) and in any orientation

3. The method has to have the ability to normalize the orien-
tation of the present devices and recognize their location

4. To achieve maximum classification and regression accu-
racy with any combination of devices, they should be fused
on multiple levels: the data level, feature level and deci-
sion level [12]

5. Procedures for decreasing the computational complexity
should be used to optimise the machine-learning models
to be deployable on the smartphone

In this paper we present a method that automatically de-
tects whether single or multiple devices are present on the body
(smartphone or wristband alone, both devices), normalizes the
orientation of the devices and detects the location of the smart-
phone relative to the user’s body (trousers pocket, jacket pocket,
bag) if present. The activity recognition model is selected ac-
cording to the currently present devices and the recognized lo-
cation (if smartphone is present). The output of the activity
recognition is used for selecting an appropriate energy expen-
diture estimation regression model. Since our algorithm needs
to run on the smartphone, we used feature selection procedure
to find a trade-off between accuracy and number of features to
decrease computational complexity of the feature vector con-
struction.

The rest of the paper is structured as follows: related work
on activity recognition and estimation of energy expenditure is
presented in Section 2. Section 3 introduces the datasets and the
methods we use to develop the activity monitoring algorithm.
The evaluation of the methods is presented in Section 4. We
discuss the research in Section 5 and Section 6 concludes the
paper.

2. Related Work

Activity monitoring as seen in this research is composed of
human activity recognition and estimation of human energy
expenditure, both very popular in applications of body sensor
networks. We focus on accelerometer-based wearables such
as smartphones and wristbands and their combinations, where
we also account for varying orientations and locations of ac-
celerometer sensors, which is the key distinction of our ap-
proach compared to the related work.

2.1. Body Sensor Networks

Body sensor networks are composed of sensor nodes at-
tached to the persons body which are able to sense one or more
physiological or motion signals. These are usually dedicated

2



sensor enclosures or wearables with single or multiple sensors
and often perform preprocessing and storing before transmit-
ting the data forward to the base station [13] where the data
analysis is performed. There are many challenges and oppor-
tunities in the research area that can be roughly divided into
sensor design, network communication and data fusion [14].
Sensor design tackles the problems of sensor hardware design
(power consumption, fault detection, etc.) and enclosure er-
gonomics [15], network research focuses on the network chal-
lenges (topology, security, routing algorithms etc.) [16], and
data fusion research is focused on data manipulation (filter-
ing, feature extraction, classification, computational complex-
ity, etc.) [12]. Since in this research we use consumer devices
(average smartphone and wristband) which have final design
and their own communication protocol we will focus on the re-
search tasks of the data fusion.

One of the main concerns is the development of efficient al-
gorithms in terms of computational complexity and power con-
sumption when preprocessing and classification is performed
on the sensor node. Ghasemzadeh et al. [17] evaluated the
trade-off between number of sensors (using only 1-D signal
from the accelerometer to preserve power) and accuracy for de-
tection of transition events (sit to stand, sit to lie, jump, etc.).
The goal was to set the minimum number of sensors (attached
to predefined locations in predefined orientation) which can still
accurately recognize these events. They conclude that for dif-
ferent events different sensors should be active (from one to 17)
and show that decreasing the number of active sensor nodes can
decrease the power consumption for up to 98 %. To perform
continuous activity monitoring it is crucial to extract complex
features rather then raw signals and to sample the data with
sufficient frequency. Fortino et al. [18] gathered the require-
ments for developing an power-efficient body sensor network
and proposed a SPINE framework for sensor node configura-
tion is terms of sampling frequency, feature extraction and used
window size which can speed-up the prototyping of the applica-
tions and evaluate the trade-off between power-consuming tasks
(feature extraction) and accuracy.

In our research, we decreased the size of body sensor net-
work to one (smartphone or wristband) or two (smartphone and
wristband) active sensor nodes (wearables) which can be worn
freely in any orientation and in case of the smartphone on three
locations on the body. These brings additional challenges which
we review in the next subsections. To further reduce the power
consumption of the designed algorithm we performed feature
selection to reduce the number of features to be calculated, thus
reduced computational complexity and related power consump-
tion.

2.2. Sensor Placement
Sensor placement is composed of location relative to the

users body and orientation of the sensor. Most often the re-
search in body sensor network uses single or multiple ac-
celerometers attached to predefined locations and in predefined
orientation. Attal et al. [8] thoroughly reviewed the research
done until 2015 in the activity recognition domain and showed
that the number of recognized activities increases with number

of sensors attached to the users body. Since all reviewed work
used static placements, the authors doubt about the acceptance
of such approach since it is required to carefully follow the in-
structions about the placement and orientation of the sensors.

Research about sensors orientation and location varying dur-
ing use was probably pioneered by Kunze et al. [19] in 2005
who used supervised machine-learning on accelerometer data
to first recognize walking in a manner independent of the sen-
sors location and afterwards use the walking segment to recog-
nize the sensor placement on the body. In later work [20] they
explored the detection of the orientation of an accelerometer-
equipped smartphone around the vertical axis by relying on the
walking segment. Other researchers explored a possibility to
use rotation to normalize the orientation. Mizell [21] proposed
a vector calculation to rotate acceleration axes to a canonical
orientation and Tundo et al. [22] used quaternion rotations for
the task. The results on the impact of the orientation normal-
ization on activity recognition vary, Tundo et al. [22] reports
improvement only for the recognition of sitting activity. In the
same year Ustev et al. [23] published results where orientation
normalization increased overall accuracy of the activity recog-
nition.

Since smartphone (one of the sensor nodes in our research)
can be worn in any orientation and in various locations on the
body we combined and extended the work of Kunze et al. [20]
and Tundo et al. [22] to develop a procedure for real-time ori-
entation normalization and location detection.

2.3. Activity Recognition
Most of the research done on activity recognition with smart-

phone in different locations was done using machine-learning
techniques with predefined knowledge about the placement of
the smartphone[24] [25]. In 2016 Shaoib et al. [26] reviewed
the research done on activity recognition with the smartphone
in terms of used smartphone-embedded sensors, recognized
activities, extracted features, sampling frequency and orienta-
tion and location dependency. Lu et al. [27] and Thiemjarus
et al. [28] used the Mizell [21] approach to orientation normal-
ization. First did not take into consideration varying location of
the smartphone and required the user to leave the smartphone
on the table for calibration of the orientation. The latter one
used location independent features and required the person to
perform a set of predefined activities for the calibration. An-
jum et. al [29] and Guo et. al [30] used the Tundo et al. [22]
approach to orientation normalization. Former used location
independent features, and the latter used predefined locations
of the smartphone. Martin et al. [31] is listed as the only re-
search that takes into consideration varying orientation and lo-
cation of the smartphone. In addition to smartphone-embedded
accelerometer, they also use the proximity, gyroscope, magne-
tometer, gravity and linear acceleration data from the smart-
phone to estimate the orientation as a relative angle and loca-
tion of the smartphone with rule based approach. For each es-
timated location they trained a location specific activity recog-
nition model which increased the accuracy of the recognition.
In our previous research [32], we proposed a real-time method
that first normalizes the orientation, recognizes the location and
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afterwards uses a location specific machine-learning model to
recognize five activities with 91% average accuracy over all lo-
cations. We build upon this approach in this paper.

Research in activity recognition with wrist-worn devices has
started with the accelerometer sensor placed on the persons
wrist as one of the sensor nodes in the body sensor network
[8]. The activity recognition using only the wrist-worn sensor is
more popular for recognition of activities which involve sensor-
equipped-hand movement [33]. In 2009 Siirtola et al. [34] ex-
plored the recognition of sports activities with a single wrist-
worn accelerometer. The activity recognition was performed
in two steps. In first step, the sample is clustered into one of
six clusters (one activity can be included in more clusters). In
the second step, a decision tree model is used to recognise the
sports activity. This approach achieved 85 % accuracy. In 2011
Chernbumroong et al. [35] achieved accuracy of 94 % for five
activities (sitting, standing, lying, walking, running) using a de-
cision tree machine-learning algorithm.

Weiss et al. [36] explored the activity recognition accuracy
when recognising the same activity with smartwatch or smart-
phone alone (placed in the trousers pocket with predefined ori-
entation). The scenario of activities they used was divided into
non-hand oriented activities and hand-oriented activities. Over-
all accuracy was better with the smartwatch alone, well over
70%, since majority of the activities included hand movement
(eating, folding clothes, handwriting, etc.) which can’t be rec-
ognized with the smartphone placed in the trousers pocket. The
smartphone activity recognition achieved rather poor accuracy
of 30% since it was able to recognise only the non-hand ori-
ented movements (walking, jogging, etc.). Ramos et al. [37]
combined the smartphone (trousers pocket) and the wristband
to achieve 80% accurate activity recognition of four activities
(walking, sitting, standing, driving), but do not report if the ori-
entation of the phone was predefined.

In summary, several researchers investigated the problems of
varying orientation and location of the smartphone (or a dedi-
cated sensor) on the users body. For the most part, they found
that taking this into account increases the activity recognition
accuracy, although the gains varied widely. Only a few of these
researchers developed activity recognition systems that auto-
matically take the orientation or the location of the smartphone
into account. To the best of our knowledge, the system de-
scribed in this paper is the first that normalizes the orientation
of the smartphone and the wristband, detects the location of the
smartphone (trousers, jacket and bag) and fuses the data of both
devices if present for activity recognition.

2.4. Estimation of Energy Expenditure

Methods for accurate measurement of the human energy ex-
penditure are expensive and cumbersome (direct and indirect
calorimetry or doubly labeled water approach) and not appli-
cable in everyday life [38]. The alternative is to estimate the
expended energy using the smartphone and/or other sensor-rich
wearables.

The pioneers of pervasive technology in estimation the en-
ergy expenditure used a single accelerometer attached to the

user’s body, usually waist, and tried to correlate motion inten-
sity (activity counts) with the energy expenditure using a sin-
gle count-based regression equation. This proved insufficient
for the energy expenditure estimation of light and vigorous ac-
tivities [39], so Crouter et al. [40] refined the count-based ap-
proach by using different regression equations according to the
performed activity (sedentary, ambulatory, lifestyle) recognized
from the number of activity counts. For the sedentary activity
they assign static value of 1 MET and use regression equations
for others. The shortcoming of this approach, apart from the
simplicity of the equations, is that the sensor placement (waist)
was unsuitable for energy expenditure estimation of activities
involving only upper or lower limbs (cycling was omitted from
the evaluation). Later works introduce machine-learning based
activity recognition as an essential part of the estimation of en-
ergy expenditure [41] [42] [43], also known as activity-specific
estimation of energy expenditure.

Research utilizing smartphone or wristband accelerometers
mostly rely on the research done with dedicated sensors. Pande
et al. [44] developed a machine-learning approach which fuses
the orientation-independent features from accelerometer sensor
attached to the persons waist with demographic data. Altini
et al. [45] fused the smartphones’ accelerometer data with heart
rate data which most of the wristbands have to achieve more
accurate estimations.

Research in which multi-sensor fusion is used together with
the activity information for the energy expenditure estimation
showed a decrease of estimation error. Tapia [43] fused the
heart rate information to decrease the estimation error. Al-
tini et al. [46] proposed a combined approach where they use
two groups of activities, the sedentary (three activities) and
active group (four activities). For sedentary group they used
the MET lookup table [10], the values of which were adjusted
using the users heart rate. For other activities they used one
regression model per activity. Vyas et al. [47] fused the data
from accelerometer and temperature-related physiological sen-
sors, where each sensor represented one or more contexts upon
which context-specific regression model was used. In 2016 we
proposed an approach which fuses the data from accelerometer,
heart rate and near-body temperature sensor [48] for estimation
of EE. We proposed to use three regression models, each to be
used for a set of recognized activities. This approach is revis-
ited in this paper and upgraded to be used with the smartphone
and wristband.

Duclos et al. [49] developed an approach that utilities smart-
phone and smartwatch accelerometers for activity-specific es-
timation of energy expenditure. They differentiate between
four activity categories according to intensity (sedentary, low-,
medium-, vigorous-intensity) and use acceleration vector vari-
ance based method, essentially a predefined equation, to esti-
mate the energy expenditure. They do not account for varying
location of the smartphone nor the orientation of the both de-
vices. They compare the results against static MET values [10]
and not the real expenditure which is usually measured with
indirect calorimeter.

There are dedicated devices for estimation of human energy
expenditure in the market in form of a wristband [5] [50] and
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armband [51] but they mostly monitor the sports activities and
lack on the information about other everyday lifestyle activi-
ties. According to Lee et al. [52] who compared several con-
sumer devices in free-living conditions, BodyMedia’s armband
clearly outperformed other devices, which we use for compari-
son against our results.

In summary, research in this topic mostly covers the esti-
mation of energy expenditure with accelerometers attached to
different parts of the body. The researches evaluated how the
number of accelerometers and additional modalities influence
the accuracy of energy expenditure. Similar to activity recog-
nition, we did not find any research which would continuously
fuse the data of smartphone worn freely on the body and wrist-
worn device and use indirect calorimeter measurements for the
task.

3. Materials and Methods

To develop and evaluate the activity monitoring algorithm
we used the datasets presented in Section 3.1 and methods pre-
sented from Section 3.2 on.

3.1. Datasets

We acquired one dataset to develop and evaluate activity
monitoring methods and one dataset to evaluate the presence
of the smartphone on the body.

3.1.1. Activity monitoring dataset
The difference between elder and younger population (which

was the topic of our previous research) is reflected in the range
of popular activities, the manner of performing the activities
and most importantly in the metabolic rate (the energy cost of
physical activities). The metabolic rate of a person depends on
the person’s body mass index (BMI) and age. To model the
activities and metabolic equivalent of task for the target popu-
lation we had to collect an appropriate dataset which contains
their representative activities.

Prior to designing the scenario for the data collection, we sur-
veyed the population characteristics regarding the health and
fitness status through a questionnaire. We acquired the re-
sponse from 277 persons, aged between 50 and 75 (five Euro-
pean countries), which gave as an insight into the most popular
activities we should include into the data collection scenario.
The final scenario is composed of ten tasks as presented in Ta-
ble 1. The scenario contains normal everyday activities (lying,
eating, cleaning, etc.) as well as ambulatory and exercise activ-
ities (walking slowly, walking normally, Nordic walk, running,
etc.). The sequence of tasks was ordered by increasing energy
expenditure, from light lying at the beginning building up to
more intensive activities such as running and cycling at the end.
This ensured that the body processes stimulated by the more
intense activities did not distort the data collected during the
less intense activities. For the same reason mandatory 3 minute
rest was imposed between the tasks containing moderate and
vigorous activities.

Figure 1: Volunteers equipped with the wearable devices and the indirect
calorimeter performing everyday activities.

Data collection was done in the laboratory environment at
the Faculty of Physical Education, Sport and Rehabilitation in
Poznan University of Physical Education, Poland, under the su-
pervision of physiology and sports experts. We have recruited
ten healthy volunteers: six male and four female, aged from 51
to 66 (59 ± 4.6) with different fitness levels, BMI from 22 to 29
(25.8 ± 2.3). All volunteers refrained from eating and drinking
(except for water) in the 12 h prior the experiment.

The volunteers were explained the process of data collection
and instructed to perform the tasks as they would do them in real
life, so we could capture the variability of the tasks. They were
also instructed to indicate if performed task is too vigorous (fast
walking was omitted from the scenario for safety reasons). The
volunteers were equipped with four smartphones (2 Samsung
Galaxy S4, 2 Samsung Galaxy S2), two wristbands (Microsoft
Band 2 [50] and Empatica E4 [53]), BodyMedia Fit Advan-
tage armband [51] and Oxycon mobile [54] indirect calorime-
ter. The smartphones were put into the volunteers’ trousers
pocket, jacket pocket and bag (each with a random orientation),
while the fourth smartphone was put in torso pocket and was
used for collecting the data from Microsoft Band 2, which was
worn on the left hand. The second wristband Empatica E4 was
worn on the right hand. The Bodymedia FIT Advantage [51]
data was recorded for comparison of our results and the Oxycon
mobile for the ground truth measurements of the human energy
expended. The Oxycon Mobile indirect calorimeter has good
indicators of measurement reliability [55, 56] and is commonly
used in validation studies of other devices [57, 58]. Since it is
mobile it can be used both in laboratory environment as well
as in free-living conditions during every-day activities which
made it suitable for our research.

The users were instructed to wear the Microsoft Band 2 on
the left hand as they thought correct. Two users wore it in the
opposite direction as we considered correct orientation and two
people changed the orientation in the middle of the scenario.
This data was used to test the normalization of the orientation
of the wristband. Figure 1 shows two volunteers equipped with
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Figure 2: Data transformation procedure

all devices performing activities from the scenario.
We acquired approximately 110 minutes of data from each

sensor for each volunteer.

3.1.2. Presence detection dataset
Since the volunteers did not remove the smartphones from

their location during the data collection procedure, we had to
acquire separate dataset for evaluation of the smartphone’s pres-
ence. We prepared a fifty-minute scenario designed to test cor-
ner cases of the smartphone use. It was carried out by five vol-
unteers with Samsung Galaxy S6 smartphone.

The scenario included wearing the smartphone in all rele-
vant locations for this research: trousers pocket, jacket pocket,
breast pocket and bag while the volunteer was moving and
while the volunteer was sedentary. We also collected the data
when the smartphone was in the hand, with screen either on
or off, where it was in a bag but the bag was not worn, and
where it was placed on some surface. Both horizontal and non-
horizontal surfaces were tried, with smartphones screen facing
either up or down, and for both still and shaking table (someone
was typing and moving mouse nearby).

3.2. Data fusion
The goal of data fusion is to combine and preprocess the data

into a form suitable for further reasoning. The data fusion is the
first step of data transformation procedure presented in Figure
2 in which the raw data is fused into time-aligned raw snap-
shots, which is not trivial due to different sensor frequencies.
Table 2 presents the modality and frequency details per device
sensor. To fuse the data into structure which contains raw data
(raw snapshots) we first divided the sensors in two groups with
different modes: the high frequency sensor data (accelerome-
ters) are assigned the “necessary” mode, and the low frequency
sensor data (other sensors) are assigned the “duplication” mode.

The construction procedure of the raw snapshots expects at
least one sensor reading from the sensors in the necessary mode
to release a snapshot as complete for further processing. The
sensors in the duplication mode attach the last received sensor
reading to the raw snapshot under the condition that it is time-
aligned with the data in the necessary mode currently contained
by the raw snapshot. The time between the duplication and
necessary data should not exceed one second to be included
into the same raw snapshot. The exceptions are the Oxycon
mobile data which is used in the energy expenditure estimation
method, the proximity data, which is used for smartphone pres-
ence detection, Bodymedia data and Microsoft Band 2 calories
data, which are used for comparison of the results. The Oxy-
con mobile data is duplicated if the time between the dupli-
cation and necessary data does not exceed ten seconds, which

matches the needs of the energy expenditure estimation method
(Section 3.5.6). Proximity sensor reports only when the change
in proximity is detected, this data is duplicated without any
specific conditions. The Bodymedia data is duplicated if the
time between duplication and necessary data does not exceed
one minute, and is not used for final real-time monitoring but
merely for the comparison of the energy expenditure estima-
tion method performance. The Microsoft Band 2 calories were
duplicated without any specific conditions.

Table 2: Frequencies per device [50, 51, 54] sensor.
Device Sensor Frequency
Smartphone Accelerometer 45 – 50 Hz

Proximity sensor Reports a change

Microsoft Band 2

Accelerometer 40 – 45 Hz
Heart rate 1 Hz
RR interval 2 Hz
Skin temperature 12 Hz
GSR 5 Hz
Calories 0.1 Hz

BodyMedia Estimated MET 1 per minute

Oxycon mobile Measured MET 1 per 10 seconds

This data fusion procedure decreases the amount of missing
data compared to an approach without duplication and gives us
approximately 45 raw snapshots per second if only smartphone
data is used, and 40 raw snapshots per second if only wristband
is used or both devices are used. The raw snapshots are sent
to the feature extraction module for further processing, where
additional fusion in done as explained in the next subsection.

3.3. Feature Extraction

The feature extraction procedure is the second step of data
transformation procedure presented in Figure 2. It trans-
forms the raw snapshots into feature vectors which are used
by machine-learning and rule-based algorithms. The raw snap-
shots are collected into windows, the length of which depends
on the task to be solved. In this research we address four
machine-learning tasks for which we use two window lengths.
We use 2-second windows for activity recognition and walk-
ing detection and 10-second window for smartphone location
detection and estimation of energy expenditure (explained in
detail in Section 3.5). For each window a number of features
are extracted which form a feature vector ready to be used with
the machine-learning algorithm.

Raw acceleration data is low-pass (removing noise) and
band-pass (removing noise and gravity) filtered, giving us three
values for each axis. Low-pass filtered values are used in fea-
tures describing orientation, while band-pass filtered values are
used in features describing movement. The magnitude of the
three-axis vector is also computed. Intuitively, magnitude gives
us the intensity of motion, useful for distinguishing running
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Table 1: Data collection scenario per task, its duration and average measured MET with the indirect calorimeter. In task Walking carrying a burden, female were
carrying 2 kg burden and male 4 kg burden and in Walking uphill the inclination was 5% inclination.

Task Activities Time Avg MET

Lying

Lying left side 1′ 1.2
Lying front 1′ 1.5
Lying right side 1′ 1.4
Lying back 7′ 1.2

Basic activities

Walking slowly 10′′ 3.5
Sitting down at the desk
Sitting still 4′ 1.2
Sitting doing light activities (reading, writing, leaf-
ing through a book, using computer, knitting, Ru-
bik’s cube, playing cards)

4′ 1.2

Standing up
Walking slowly 10′′ 3.5
Standing still 4′ 1.3
Standing talking & gesticulating 2′ 1.7
Walking slowly 10′′ 3.5
Standing washing hands 2′ 2.3
Walking slowly 10′′ 3.5
Home chores (cooking, serving food, washing
dishes, sweeping floor, washing windows)

6′ 2.5

Eating Eating with cutlery 2′ 1.9
Eating with hands 2′ 1.5

Gardening Planting seedlings, digging, raking, weeding 6′ 2.2
Rest 3′

Walking
Walking slowly (4 kmh) 4′ 3.5
Walking normally (6 kmh) 4′ 4.2
Rest 3′

Nordic walking Walking normally (6 kmh) 6′ 4.5
Rest 3′

Walking carrying a burden Walking slowly (4 kmh) 6′ 4.2
Rest 3′

Walking uphill Walking slowly (3 kmh) 6′ 4.4
Rest 3′

Running Running normally (8 km/h) 6′ 7.1
Rest 3′

Stationary cycling
Cycling lightly (60W ) 6′ 4.2
Cycling normally (100W) 6′ 5.0
Rest 3′

from walking and sedentary activities. On the other hand, fea-
tures that use one of the axis components give us more informa-
tion about orientation and direction, which is especially useful
at distinguishing between sedentary activities, such as sitting,
standing and lying. We extract 90 features from acceleration

data when single device is present, 13 of which are orientation-
independent. Some features come from statistics and describe
the intensity and ”shape” of the signal: the mean, variance,
Pearson’s correlation between axes, their covariance, skewness,
kurtosis, quartile values and range between them. Other have a
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more physics-based interpretation, such as velocity and kinetic
energy. The rest came from expert knowledge of the domain:
the number of peaks in the signal, their height, their mean and
their sum of the acceleration size, the number of times the signal
crosses its mean value, sum of all data from an axis and squared
sum of this data. Note that since most of the listed methods can
work with low-pass or band-pass filtered data, with any axis
or with magnitude, they each generally generate more than one
feature (mean of the x-axis, mean of the y-axis, etc.).

Some features are calculated from the filtered raw signals and
some are constructed with feature fusion, for example the mean
kinetic energy is calculated from the velocity feature and the
person’s BMI; skewness, kurtosis, crossing rates and correla-
tions are calculated using the feature representing sum for each
axes, etc.

When both devices are present we calculate 192 accelera-
tion features: 90 from each device and 12 features that use data
fused from both accelerometer sensors. They are the mean of
all data, its sum, area below the magnitudes signal (marked
with keyword ”total” on Figure 3 and Figure 4) and correla-
tions between axes of the devices. Additionally, we add deci-
sion features where possible. Decision features are the outputs
of machine-leaning models and are used for decision fusion.
When both devices are present, we use the outputs of activity
recognition model per individual device as two decision fea-
tures (phone activity and band activity) in the activity recogni-
tion feature vector for the device combination and in the energy
estimation task we add the recognized activity as a feature into
the energy expenditure estimation feature vector. These are also
used for decision fusion in the activity monitoring procedure.

Physiological sensor data retrieved from the wristband are
transformed into the average, maximum, minimum and stan-
dard deviation value for the current window, which gives us
altogether 16 features from the four sensors in the wristband.

One energy expenditure feature is extracted from Bodymedia
and one from the Oxycon mobile device. Former is used for
comparison and the latter is used as the ground truth.

All features for a given device combination represent a fea-
ture vector which is used to build models with machine learn-
ing. Since the goal of this research is to design models to be
used on a smartphone, the number of features should be de-
creased and the ones with high computational complexity omit-
ted. The set of features for a given task is selected with the
feature selection procedure.

Note that we use raw values of proximity sensor and calories
as estimated by the Microsoft Band 2, but these are not included
into the feature vector.

3.4. Feature Selection
The feature selection procedure is composed of two steps:

a single-feature evaluation, and a wrapper-based feature selec-
tion, which evaluates combinations of features and chooses the
final feature set. Feature selection is performed only once for
each device combination to design the final feature vector used
for machine learning.

The single-feature evaluation procedure starts with entire
feature set. It uses Gain Ratio measure to evaluate the infor-
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Figure 3: Gain ratio and correlation heatmaps of all extracted features when
single device is used.

mation about the class carried by each feature in the classifica-
tion tasks. In regression tasks, it evaluates the importance of
features as Pearson’s correlation with the class.

Figure 3 and Figure 4 show heatmaps of the results of the
evaluation procedure for the activity recognition (classification)
and energy expenditure estimation tasks (regression) for indi-
vidual devices and for the combination of devices. For a more
compact representation we merged the features which are cal-
culated for individual axis or are similar into single features
with averaged mutual information value. Left side of Figures 3
and 4 presents the gain ratio value for the features used in ac-
tivity recognition. The higher the value, the more information
is carried by a feature. The right side of Figures 3 and 4 present
the Pearson’s correlation coefficient for features used in estima-
tion of energy expenditure task. The correlation values around
0 indicate low correlation and values towards 1 and -1 high pos-
itive and negative correlation respectively. Both, gain ratio and
correlation were calculated with procedures implemented in the
Weka machine-learning suite [59].

The features in the figures are listed as follows. In Figure
3 the physiological sensor features are at the top, next are the
decision features (in the case of the energy expedniture estima-
tion estimation), followed by the magnitude features combining
all axes, and per-axis features are at the bottom. It is similar
in Figure 4: the physiological sensor features are at the top,
next are the decision features followed by the features extracted
from the wristband’s accelerometer (first magnitude features,
then per-axis features) and features extracted from the smart-
phone’s accelerometer (first magnitude features, then per-axis
features).

The single-feature evaluation procedure in activity recogni-
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Figure 4: Gain ratio and correlation heatmaps of all extracted features when
both devices are used and the smartphone is worn in the trousers pocket.

tion (left sides of Figure 3 and Figure 4 ) prefers the magni-
tude features and decision features, some significance is shown
for the interquartile range and quartiles features which are
orientation-dependent. Common sense tells us that per-axis fea-
tures can provide more information about the sedentary activ-
ities, where not much motion is performed and the orientation
of the smartphone is important (sitting, lying, standing, etc.).
This justifies our decision to use the wrapper approach, which
can remove redundant magnitude features and add important
per-axis features to be used in the feature vector.

The single-feature evaluation procedure in energy expendi-
ture estimation (right sides of Figure 3 and Figure 4) shows
low correlation for some per axis features and high (positive
or negative) correlation for magnitude and decision features as
well as for the features extracted from the physiological sen-
sors. Using only the single-feature evaluation procedure would
result in to many features, which may be redundant and would
increase computational complexity so we perform the wrapper-
based feature selection to reduce the number of features.

The feature selection wrapper is rather simple but efficient.
The input to the procedure are the list of features ranked by the
value retrieved from the single-feature evaluation procedure,
the machine-learning algorithm for which the feature selection
is performed and manually created folds for testing. In our
case, we evaluate the models with the leave–one–person–out
approach (LOPO) so we have n folds, where the data of n − 1
people are used as the training set and one person as the testing
set (fold). The loop iterates over the list of features and adds
them one by one, by decreasing rank, and performs the LOPO
evaluation in terms of accuracy for classification and in terms of
mean absolute error (MAE) for regression (any other measure

Figure 5: Activity monitoring algorithm work flow. The modules on the left
side manage the device configuration and the right side performs the activity
analysis (activity recognition and energy expenditure estimation).

can be evaluated). For each new feature set the accuracy/error
is compared to the prior one and in case it is higher/lower the
last added feature is kept.

3.5. Activity Monitoring
Activity monitoring is designed to track the users activity in

real-time with the devices currently present on the body. To
achieve that, we developed the activity monitoring algorithm
presented in Figure 5 with six consecutive modules: four mod-
ules to manage the device configuration (left side in Figure 5)
and two modules to analyst the activity (right side in Figure 5).

In brief, the sensor data received is first evaluated for the
presence of the devices with simple heuristics, then the data
is fused and features extracted in the data transformation mod-
ule (Sections 3.2 and 3.3). The algorithm waits for ten seconds
of walking for gravity detection, the data of which is used for
normalizing the orientation of each device. While the algorithm
waits for the normalization data, the modules for activity analy-
sis use machine-learning models trained to be used without ori-
entation and location information for AR. Once the sensor data
is normalized, it is used in all further machine-learning tasks.
The first is to detect the location of the smartphone, which is
then used for the selection of the machine-learning models for
activity recognition and estimation of energy expenditure.

Note that the tasks with gray boxes in Figure 5 use machine
learning. All machine-learning tasks use the feature set which
was defined with feature selection. The evaluation is in Section
4.

3.5.1. Presence of the devices
Presence of the devices is needed for identifying which data

is available to be used for activity monitoring. The presence of
the Microsoft Band 2 is straightforward since it has an ability
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Figure 6: Heuristics for detection of the smartphone’s presence.

to self-report its presence, however the detection of the smart-
phone presence is a bit more difficult.

We assume that the smartphone is present if it is placed in a
pocket or a bag (while the bag is worn). To detect that, we use
the smartphone-embedded proximity sensor, the accelerometer
data and the information about the phone state as shown in Fig-
ure 6. First, we check if the smartphone’s screen is on, if there
is an on-going call or if the phone is charging, all of which in-
dicate that the smartphone is not worn. Second, we detect the
amount of movement in last two minutes (looking at the ac-
celerometer data), no movement indicates that the smartphone
is not present on the body. Even if the user is sedentary, we
expect some movement in two-minute time interval. Third, we
check the value of the smartphone proximity sensor, which tells
us if there is something close to the smartphone which could
mean that it is in a pocket. In case three is something in proxim-
ity, we check if the smartphone is completely horizontal (easily
determinable from accelerometer data), to eliminate the com-
mon false positive of the smartphone being on the table face
down. Nothing in proximity implies that the smartphone is not
in a bag or a pocket, but we again check for one exception - the
smartphone being in a breast pocket with its top end looking
out of the pocket. We do so by checking if the smartphone’s
orientation is roughly vertical.

Data from the present devices is sent into the data transfor-
mation module (Section 3.2). If the presence was not changed,
the data from the data transformation module is transformed
into feature vectors for activity analysis and are feed directly
into activity analysis modules, otherwise the orientation is re-
set and data is transformed into feature vector needed for the
walking detection.

3.5.2. Walking detection
Walking detection is essential for normalization of the orien-

tation of the devices. It gives us information about the direction

of gravity and under assumption that the average acceleration
during walking corresponds to the Earths gravity we can use it
to normalize the orientation.

The walking detection is a machine-learning tasks done es-
sentially in the same way for both devices. The data transfor-
mation procedure segments the raw data of each present device
into separate 2-second window and extracts the orientation-
independent features creating a feature vector. The walking
detection model is a binary classifier trained to distinguish be-
tween walking activity and all other activities. While the model
classifies 2-second intervals, the final decision – based on which
orientation normalization is performed – is made for ten sec-
ond interval. We assume that walking is detected if the four
out of five consequent classifications are walking. This satis-
fies the smartphone’ prerequisites for orientation normalization
and prerequisite to detect the wristband gravity along the x-axis
(buttons up/down).

3.5.3. Orientation normalization
The normalization of the orientation is based on the gravity

detection. Prerequisite for the normalization is thus the detec-
tion of walking, which is described in the previous subsection.
Let ~awalk = (xwalk, ywalk, zwalk) be the acceleration vector con-
sisting of the average accelerations along the three accelerome-
ter axes during ten seconds of walking.

Orientation normalization is needed for both devices. We
have seen from practical experience that even if the wristband is
always worn on the left wrist, it sometimes occurs that the users
wear it upside down (buttons down), which switches accelera-
tion x-axis in opposite direction and therefore inflicts errors in
extracted orientation-depended features and consequently clas-
sification and regression errors.

Wristband orientation normalization uses simple heuristics
to detect vertical direction. We assume that the vector ~aband =

(g, 0, 0) is the preferred acceleration vector when the wristband
is correctly worn in the vertical direction, while walking. To
normalize the orientation it is sufficient to check if the x-axis
is negative and if absolute value exceeds 0.8g and if it is, all
further x-axis data from the wristband are multiplied by –1,
otherwise the orientation in vertical direction is considered as
correct.

In Figure 7 we present the wrist postures with perfect grav-
ity detected. On left is the posture while standing/walking (A),
middle is the posture while the hand is flat on the table (B) and
on the right is the posture while hand is on the side on the table
(C). Table 3 presents the values per-axis in different orienta-
tion (buttons up/buttons down and inside/outside) and different
wrist postures presented in Figure 7. We can observe, that it is
also possible to normalize z- and y-axis. Since our dataset did
not include such data we only evaluated the x-axis orientation
normalization.

The normalization of the smartphone is more difficult since
the smartphone can be worn in any orientation. Let ~asmartphone =

(0, 9.81, 0) be the preferred acceleration vector, which would be
obtained if the smartphones longest side was perfectly aligned
with the gravity. To normalize the smartphone’s orientation it
has to be rotated so that the y-axis of ~awalk corresponds the
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Table 3: Wristband axis at different orientations.
Buttons up Buttons down

Position Inside Outside Inside Outside
A (g, 0, 0) (g, 0, 0) (−g, 0, 0) (−g, 0, 0)
B (0, 0,−g) (0, 0, g) (0, 0,−g) (0, 0, g)
C (Left) (0,−g, 0) (0,−g, 0) (0, g, 0) (0, g, 0)
C (Right) (0, g, 0) (0, g, 0) (0,−g, 0) (0,−g, 0)

Figure 7: Wrist postures. Left is standing posture (A), in the middle is the hand
down flat on the table posture (B) and on the right is hand down on the side
posture (C).

~asmartphone. The rotation between these two vectors is repre-
sented with the quaternion matrix R, such that ~asmartphone =

R ∗ ~awalk. To compute R, we adopted the approach by Tundo
et al. [22]. The procedure is as follows. First, we compute the
axis-angle pair ~apair as the cross product between the preferred
vector and the walking vector, i.e. ~apair = ~asmartphone × ~awalk.
Second, we normalize ~apair by dividing it by its magnitude giv-
ing us ~anorm, which is needed for the quaternion construction.
Third, we use the dot product to compute the angle α between
the vectors ~asmartphone and ~awalk as presented in Equation 1.

α = arccos
~asmartphone · ~awalk∥∥∥~asmartphone

∥∥∥ ∥∥∥~awalk
∥∥∥ (1)

Finally, the quaternions are calculated according to Equation
2 and the matrix R is calculated according to Equation 3.

q0 = cos(
α

2
)

q1 = sin(
α

2
)~anorm · x

q2 = sin(
α

2
)~anorm · y

q3 = sin(
α

2
)~anorm · z

(2)

R =

1 − 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) 1 − 2(q2

1 + q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) 1 − 2(q2
1 + q2

2)

 (3)

Once the matrix R is computed, each sensed acceleration vector
~aoriginal can be normalized to the preferred orientation in real
time, thus creating the normalised acceleration vector ~anormalised

using the Equation 4.

~anormalised = R ∗ ~aoriginal (4)

3.5.4. Location Detection
Once the data is normalized we use machine learning to de-

tect the location of the smartphone.
The data transformation procedure segments the normal-

ized data from walking detection into 10-second window and
extracts the orientation-dependent and orientation-independent
features creating a feature vector ready to be used in the
machine-learning task. The location model is trained to dis-
tinguish between three classes representing the location of the
smartphone relative to the user’s body. These are the trousers
pocket, jacket pocket and bag. Location is assumed immedi-
ately.

The wristband location detection is not a subject of this pa-
per, but we can conclude that it is feasible to do so according to
the y-axis when worn on left or right wrist (Table 3).

3.5.5. Activity Recognition
Activity recognition is a classification machine-learning

task. The normalized data is processed with data transforma-
tion procedure and segmented into 2-second windows from
which the orientation-independent and orientation-dependent
features are extracted forming a feature vector which is fed
into the machine-learning classification model. We trained
nine location- and combination-specific classification machine-
learning models, one for each device configuration (7 models)
and one for each device (2 models) to be used before orienta-
tion is normalized. The model selection therefore depends on
the currently present devices and on the recognized location of
the smartphone if present (device configuration). The main rea-
son for differentiating between the locations is that the type of
motion detected by the accelerometer embedded into the smart-
phone depends on the location where it is attached, e.g., the
smartphone in trousers pocket does not detect the motion of the
upper body as much as if the smartphone is in the jacket pocket.
It is similar when combinations of devices are used. It is impor-
tant to adapt the set of activities to be recognized to the location
and combination accordingly and to exploit as much informa-
tion as possible.

All recognized activities are listed in Table 4. Each row cor-
responds to one activity we can recognize, and each column to
one device configuration. First are the no orientation models
followed by the seven models according to the device, location
and combination. We can observe that walking and running
are recognized with all device configurations, whereas Nordic
walking is recognized only with the wristband or in combina-
tion with the wristband when the orientation is known. Upright
activity is one of the activities recognized with a single device,
the smartphone located in the jacket pocket. It is composed of
sitting and standing which cannot be distinguished only with
an accelerometer attached to the persons torso due to the same
orientation and amount of movement. When we add the wrist-
band to the jacket-located smartphone, we can distinguish sit-
ting from standing, and the number of recognized activities in-
creases from five to eight. Since bag is usually not worn indoors
(while lying, sitting), we can observe that the combination of
the wristband and the smartphone located in a bag can recog-
nize fewer activities as than the wristband alone. However with
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this combination we can recognize cycling which cannot be rec-
ognized with the wristband only. The data in the dataset pre-
sented in Section 3.1 contains 33 activity labels which were first
merged into 10 activities (row labels in Figure 8) and afterwards
we merged these activities (colors in Figure 8) to optimize the
recognition according to the device configuration (columns in
Figure 8). For example, for the device configuration T ( smart-
phone placed in trousers pocket) sitting and lying were merged
into rest because the position of the smartphone is the same in
both activities, thus impossible to distinguish accurately.

lying

sitting

sitting (moving hands)

standing

standing (moving hands)

chores

walking

nordic

running

cycling

Ow Os W T J B W_T W_J W_B
Device configuration
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Figure 8: Merged activities per device configuration.

Table 4: Recognized activities (most left) per wristband and smartphone when
orientation information and location is missing (second group of columns) and
wristband and smartphone location (third group of columns) and combination
of devices (most right) when orientation normalized and location detected. Ow
= wristband without orientation, Os = smartphone without orientation and no
location, W = wristband, T = trousers location, J = jacket location, B = bag
location. In combinations it is assumed that the wristband is also present.

Single device Combination
Activity Ow Os W T J B T J B
Rest X X X X × X × × X
Standing X X X X × × X X ×

Lying × × × × X × X X ×

Sitting × × × × × × X X ×

Upright × × × × X × × × ×

Movement X × X × × × × × ×

Chores × X × X × × X X ×

Walking X X X X X X X X X
Nordic × × X × × × X X X
Running X X X X X X X X X
Cycling × × × X X X X X X
# 5 5 6 6 5 4 8 8 5

3.5.6. Estimation of Energy Expenditure
Estimation of energy expenditure is a regression machine-

learning task. The data is segmented into 10-second windows,
which was adopted as the minimal sensible interval based on
our previous research. The data transformation module extracts
the orientation-independent and orientation-dependent features
from the data stream and includes the recognized activity to
form a feature vector which is fed into a regression machine-
learning algorithm.The output is the estimated energy expendi-
ture expressed in MET.

We have developed and evaluated two approaches:

1. Single model approach
2. Multiple-model approach which utilities recognized activ-

ity for decision fusion about model selection

In single model approach we developed seven regression
models, one for each device configuration with features ex-
tracted from all available data.

In the multiple-model approach we developed multiple re-
gression models for the device configurations where differ-
ent sensor modalities are available. Our previous research [9]
showed that energy expenditure estimation performance is im-
proved if similar activities with a large range of possible MET
values (ambulatory activities) and activities with similar range
of possible MET values have their own regression models, so
we trained three models per device configuration where differ-
ent modalities are present. The device configurations where
only smartphone is present use single model approach

All together we trained 15 models which are as follows:

• Ambulatory regression models: four models are trained to
be used when the recognized activity is either walking or
running

• Low regression models: four models were trained to be
used when low-intensity activities such as lying, sitting,
rest are recognized

• Other regression models: seven models were trained to be
used with all other recognized activities and in case only
smartphone is present

Feature vectors of the ambulatory regression models and the
other regression models are composed of features extracted
from all available modalities. The feature vector of the low
regression models are composed of features extracted from the
accelerometers only and not physiological sensors, even if the
wristband is present.

The evaluation of both approaches is presented in the Section
4.7.

4. Evaluation Results

For the comprehensive understanding of the performance of
our algorithm, we evaluated each task separately in the same
sequence as implemented. The errors in orientation normali-
sation and AR are carried over to subsequent tasks, while we
evaluated each location separately. The tasks were evaluated on
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the dataset presented in Section 3.1 in the LOPO manner. We
experimented with six machine-learning algorithms for classi-
fication tasks (J48 - decision trees, Support Vector Regression,
JRip - decision rules, Random Forest, Naive Bayes and IBK
- clustering) and five for regression task (Support Vector Re-
gression, Multi-Layer Perceptron - neural network, Linear Re-
gression, Random Forest and RepTree - decision tree) all as
implemented in the Weka machine-learning suite [59]. We re-
port the results of the best performing algorithm only, which
was the Random Forest algorithm in all classification and re-
gression tasks.

The results for classification are presented in terms of the
classification accuracy (the percentage of correctly classified
feature vectors), the kappa statistic (the homogeneity of the
classifications) and the F-score measure. The results of regres-
sion are presented in terms of mean absolute error (MAE), mean
absolute percentage error (MAPE) and root mean squared error
(RMSE).

4.1. Presence detection
We evaluated the presence detection on the separate dataset

presented in Section 3.1. In 90% of cases, the smartphone was
correctly identified as being present/not present. The error oc-
curred only in two cases. The first case was when a person left
the smartphone on the table and the heuristics needed two min-
utes to decide that the smartphone is not present. These two
minutes contributed to the error which could be eliminated by
identifying the two-minute period as not present retroactively,
which we decided not to do since we wanted a real-time algo-
rithm. The second case was when the smartphone was screen-
down on a non-horizontal surface on a shaking table (while
someone is typing), as it is very similar to the position when
smartphone is in a trousers pocket while the person is sitting.

4.2. No orientation and no location
These models are used every time the presence of the de-

vices changes until orientation is normalized and location de-
tected. The results of the classifier trained with Random Forest
are presented in Table 5. The accuracy for activity recognition
is around 79 % for the recognition of the five activities as given
in Table 4 in columns Ow and Os. The results for kappa shows
that there is high intra-class variability and that the classifica-
tion is not very stable. This argues for the normalization of the
orientation and detection pf location of the devices. We can also
observe that after feature selection the number of features de-
creased from 13 orientation-independent features to 8 features
in the case of the wristband and 6 features in the case of the
smartphone.

At this stage we are most interested in recognition of walk-
ing and the results of the per-class f–score (around 0.8 for in-
dividual device) indicate that this is feasible with specialized
classifier.

4.3. Walking Detection
The walking detection is performed for both devices sepa-

rately with objective to detect the gravity needed for orienta-
tion normalization of both devices. The classifier was trained

Table 5: Results of the AR without orientation and location (W=wristband,
S=smartphone, # = number of features after feature selection).

Device Accuracy Kappa F–score #
Wristband 79.2 0.67 0.63 8
Smartphone 79.4 0.67 0.50 6

on the entire dataset on orientation-independent features. The
non-walking samples were re-labeled with “other”, to create a
binary classification problem. The results of walking detection
for individual device are presented in Table 6. We can observe
that we achieve accuracy over 90% with only 6 orientation inde-
pendent features in case of a wristband and 91% accuracy with
9 orientation independent features in case of a smartphone. One
average we achieve 0.8 kappa and 0.9 f-score.

Table 6: Results of the walking and location detection. Walking detection is
performed for both devices separately and location detection only when the
smartphone is present (W=wristband, S=smartphone, # = number of features
after feature selection).

Detection Device Accuracy Kappa F-score #

Walking W 90% 0.76 0.89 6
S 91% 0.83 0.91 9

Location S 91% 0.88 0.91 11

4.4. Orientation normalization
In this experiment we could evaluate only the accuracy of the

orientation detection for the wristband. The true smartphone
orientation could not be clearly defined so we cannot evaluate
it.

We evaluated the heuristics for wristband orientation normal-
ization on the entire dataset. First we waited for the ten seconds
of recognized walking, which was detected using the model ex-
plained in the previous subsection. When walking was detec-
tion we used the walking data to evaluate the up-down orienta-
tion of the wristband and normalize x-axis. We achieve 100%
accuracy on our dataset. The accuracy might decrease in such
cases where the hand is raised above a head and the movements
are miss-misclassified as walking. However, we did not have
such events in our dataset.

4.5. Location Detection
The location detection is performed for smartphone only.

The classification model is trained on the normalised data clas-
sified as walking from the walking detection (Section 4.3). The
feature vector is constructed from both orientation-independent
and orientation-dependent features. The data was labelled with
the three labels: trousers, jacket and bag which comply with
the location of the smartphone from which the data was ac-
quired. The results for location detection are presented in the
bottom row of Table 6. We can observe that feature selection
decreased the number of features from 90 to 11 which resulted
in 91% accuracy with high kappa and f-score. Interestingly,
only one orientation-independent feature remained in the final
feature set, other 10 are orientation-dependent.
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The confusion matrix is presented in Figure 9 showing that
the smartphone at trousers location is best recognised and that
some miss-classification occurs between jacket and bag loca-
tion, probably because both locations are on the torso.
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Figure 9: Confusion matrix for smartphone location detection.

4.6. Activity recognition
Activity recognition was evaluated for each device configu-

ration separately. The activity recognition classification mod-
els were trained on the normalized data from all scenarios in
the dataset with different set of merged activities as labels (pre-
sented in Table 4 and Figure 8). The feature selection procedure
returned a set of the best performing features to be used in the
feature vector. The details on the feature vector structure is pre-
sented in Table 8.The results for each device configuration is
presented in Table 7 and in form of the confusion matrices in
Figure 10 and Figure 11.

Each model was trained to recognize merged set of activities
to find a trade-off between the acceptable accuracy and number
of recognized activities. The number of activities per device
configuration is also presented in Table 7. The results show that
the accuracies are mostly over 85% and that kappa and f-score
also show stability for the evaluated configurations. The results
of the device configurations are not directly comparable since
they recognize different number of activities.

We can observe that for single device the highest accuracy (6
activities) is achieved with the classification model for smart-
phone in a trousers pocket. The confusion matrix for the same
model shows that there is a slight miss-classification of chores
into standing and walking which is reflected in lower overall f-
score. This miss-classification is understandable since most of
the home chores are composed of these two activities and the
smartphone placement makes the acceleration measurements
of upper limbs difficult. The wristband classification model
achieves 80% accuracy and does miss-classifications of stand-
ing (mostly standing still data) into rest due to no movement in
the wrist. The running and rest are sometimes miss-classified
into movement due to wrist movement while performing these
activities (gesticulating while running, gesticulating while at
rest). The jacket classification model achieves 80% accuracy
and does miss-classification of cycling into walking and upright
activity. These errors occur because of the placement on the
torso it is impossible to measure the movement of the lower
limbs accurately. The classification model for bag achieves
95% accuracy since it recognizes only those activities that peo-
ple do when they carry a bag (we excluded lying, eating and
gardening from the training and testing data).

The combinations achieve accuracies towards 90% and can
recognize from five to eight activities. We can see in the confu-
sion matrices, that all models perform well and that there is no
large miss-classification going on.

Table 7: Results of AR per device configuration.
Single device Combination

W T J B T J B
Accuracy (%) 80 92 80 95 89 85 89
Kappa .75 .89 .70 .90 .87 .80 .83
F-score .75 .78 .65 .92 .89 .83 .71
# activities 6 6 5 4 8 8 5

Table 8: Number of orientation independent (O-independent), orientation de-
pendent (O-dependent), physiological (Physiological) and machine-learning
(Recognized activity) for each activity recognition model after feature selec-
tion.

Model W T J B T J B
O-independent 9 4 4 7 10 6 1
O-dependent 9 12 11 7 15 18 13
Physiological 3 0 0 0 1 0 1
Recognized activity 0 0 0 0 2 2 2
# features 21 16 15 14 28 26 17

Additionally, the number of remaining features after feature
selection do not surpass 28 (decreased from over 90 in sin-
gle device and over 200 in combination). Table 8 presents the
number of orientation-independent, orientation-dependent fea-
tures, physiological features and in case of combination of de-
vices also the number of features which already need machine-
learning (recognized activity by each device). We can observe,
that orientation-dependent features form the majority of the fea-
ture vector which is the information gained by normalizing the
orientation of the device which would otherwise be lost.

4.7. Estimation of energy expenditure

Energy expenditure estimation was evaluated for each device
configuration separately. The energy expenditure estimation re-
gression model was trained on the normalized data from all
scenarios in the dataset labeled with the expended energy as
measured by the indirect calorimeter Oxycon mobile [54]. The
feature selection procedure returned a set of the best perform-
ing features to be used in the feature vector. The details on the
feature vector structure is presented in Table 10.

We evaluated and compared both approaches, the single
model approach and the multiple-model approach. The results
for each device configuration is presented in Table 9. We first
compared the results against Bodymedia Fit armband, which
is one of the most accurate EE estimation devices on the mar-
ket [52]. Since smartphone only device configurations lack the
presence of different sensor modalities, they do not meet the re-
quirements of multiple-model design. In Figure 12 we present
the box-charts where multiple-model approach was applicable.

The results show that the errors decrease when device con-
figuration combines devices and fuses different modalities from
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Figure 10: Confusion matrices when activity recognition is done using single device.
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Figure 11: Confusion matrices when activity recognition is done using two devices.

the data stream. We can observe that all device configurations
outperform Bodymedia armband, probably because Bodymedia
armband is specifically designed for sport exercises and not ev-
ery day activities. The best estimation of energy expenditure is
achieved with wristband and smartphone in trousers pocket, for
which we also present a chart in Figure 13 for one person and all
estimations over the duration of the entire scenario (estimations
each 10 seconds). The Figure 13 presents the energy expended
in MET as measured by the indirect calorimeter (blue line) and
estimations as estimated by our multiple-model approach (pink
line). We can observe that the the errors occur when there is
significant amount of hand movement while light-intensive ac-
tivity is performed (e.g., washing hands) and at the beginning of
vigorous-intensive activity, since the physiological signal need
time to reach the exercise value.

The box-carts in Figure 12 present the distribution of error
for both single-model and multiple-model approach. We can
observe that when multiple-model approach is used error de-
creases for every device configuration and that the range of er-
ror distribution narrows, which brings more stable estimations
for the activities.

We compared our results against the the Bodymedia armband
and the Microsoft Band 2 in kilo-calories (kcal). For fair com-
parison we only compare against the results where only wrist-
band is present. We chose to compare them in kilo-calories be-
cause Microsoft Band 2 reports the energy expenditure estima-
tions only in this unit and the Oxycon mobile indirect calorime-
ter and Bodymedia armband also report kilo-calories. Since our
models estimate the energy expenditure in METs, we used the
Equation 5 for the conversion of estimated METs of our ap-
proach to kilo-calories. The results are reported in Table 11

Table 9: Results of energy expenditure estimation errors per device configura-
tion. MAE is expressed in MET and MAPE in %. In combination of devices
the wristband is always present.

MAE MAPE RMSE

Single device

No orientation no location
Ow .94 29 .98
Os 1.12 34 1.21

Single model
W .64 27 .86
T .67 26 .92
J .72 34 1.02
B .75 30 1.05

Multiple model
W .58 25 .79

Combination

Single model
T .59 25 .79
J .71 31 .93
B .57 22 .74

Multiple model
T .55 23 .76
J .59 27 .82
B .50 18 .70

Bodymedia 1.03 37 1.60

for each scenario (Section 3.1) and device. We took the Oxy-
con mobile measurements as the ground truth and calculated
the sum of errors and an average error for the entire scenario
for each device (right columns in Table 11). From the results
we can conclude that our approach outperforms the compared
devices and that Bodymedia approach is comparable to our ac-
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Table 10: Number of orientation independent (O-independent), orientation dependent (O-dependent), physiological (Physiological) and machine-learning (Recog-
nized activity) for each energy expenditure estimation model after feature selection. The configuration which utilizes wristband data use multiple-model approach
(a=ambulatory model, l=low level activity model, o-other model) and other use single model approach (s).

Model W T J B T J B
a l o s s s a l o a l o a l o

O-independent 4 4 4 3 5 6 9 6 7 10 6 8 3 4 1
O-dependent 14 12 16 10 15 8 15 18 23 16 13 23 10 10 9
Physiological 3 0 4 0 0 0 3 0 2 3 0 3 2 0 4
Recognized activity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
# features 22 17 25 14 21 15 28 25 33 30 20 35 16 15 15

Figure 12: MAE comparison between single model approach and multiple model approaches for device configurations where multiple modalities are present per
recognized activity.

cording to the average error in calories. We can observe that
Bodymedia perfectly estimates the burned kilo-calories while
running and Nordic walking and has significantly lower error
compared to Microsoft Band 2, which heavily underestimated
all activities. This also proves, that the commodity devices
available on the market are not very accurate and that there is a
place for improvement.

kcal = MET s × wight(kg) × time(hours) (5)

Additionally, the number of remaining features after feature
selection do not surpass 35 (decreased from over 90 in single
device and over 200 in combination). Table 10 presents the

number of orientation-independent, orientation-dependent fea-
tures, physiological features and in case of combination of de-
vices also the number of features which already need machine-
learning (recognized activity by each device). The configura-
tions in which we could not use the multiple-model approach
list the number of features per single model (s= single model)
and the configurations in which we use multiple-model ap-
proach list the features per model (a=ambulatory model, l= low
level activity model, o=other model).

We can observe, that the same as in activity recognition, the
orientation-dependent features form the majority of the feature
vector. This indicates that the decrease in error was affected by
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Table 11: Comparison of the energy expenditure estimation results in kilo-calories. We evaluate the wristband only device configuration to be comparable to other
devices. Oxycon measures expended energy and is taken as a ground truth, Bodymedia and Microsoft Band 2 are the estimates from the devices and our approach
presents the estimates of our approach. The error columns present comparison against the Oxycon mobile measurements.

Scenario Error
A B C D E F G H I J Sum AVG

Oxycon 13 41 7 28 34 23 27 26 35 45 / /

Bodymedia 10 44 7 35 36 23 29 27 35 26 40 4
Microsoft band 2 5 13 2 6 10 7 6 7 11 7 202 20
Our approach 14 44 7 26 34 24 28 24 40 41 19 2

the knowledge about the orientation and consequently knowl-
edge about the location.

5. Discussion

Activity monitoring in body sensor networks research ranges
from the ergonomics of the sensor nodes, number of nodes,
power consumption on hardware level and software level to data
fusion. The senor nodes are most often dedicated sensors with
embedded accelerometers and sometimes physiological sensors
with predefined static placements. The requirement to wear
single or multiple senor nodes in predefined location and ori-
entation makes the application cumbersome and in some cases
unattractive, since miss-placement contributes to errors in activ-
ity monitoring and therefore useless activity analysis. In recent
years, we observed increase in popularity of activity monitor-
ing research in which the senor nodes are replaced with com-
mercial devices such as a smartphone (which most people al-
ready have) or more recent wearable technology such as wrist-
bands which makes the service accessible to broader popula-
tion. However, the the developed activity monitoring with these
devices are either very simple and essentially count users steps
and estimates the energy expenditure accordingly or are limited
to monitoring specific sport activity (run trackers) on users re-
quest. The research with broader range of monitored activities
using a smartphone analyze the data with intelligent methods,
however they either require the smartphone to be worn at exact
location and mostly use orientation independent features which
limit the recognition and estimation accuracy.

In this research we explore how to use commercial de-
vices such as accelerometer-embedded smartphone, sensor-rich

wristband or both to achieve comparable results to using senor
nodes in predefined static manner. Additionally, we perform
the feature selection to decrease the computational complexity
of the algorithm and explore how to optimally define activities
to exploit the location and orientation of the smartphone, wrist-
band or both.

We start with no knowledge about the orientation and lo-
cation of the devices where we use orientation- and location-
independent features. With this approach we can recognize five
activities with accuracy of 79 %, kappa of 0.67 and f-score from
0.63 down to 0.5 in case of the wristband. Once the algorithm
is introduced with the normalized orientation and the detected
location we explored the gain of this knowledge to increase the
number of recognized activities, increase in activity recognition
accuracy and decrease in energy estimation error as presented
in Table 12.

Accelerometer placed at different locations on the body can
sense the movement of the same activity differently. For exam-
ple, activities such as sitting and standing have the same ori-
entation if the smartphone is places on the torso and lying and
sitting activities have the same orientation when the smartphone
is placed in the trousers pocket. We explored the trade-off be-
tween merged or split activities and accuracy to find the best set
of activities to be recognized according to the recognized loca-
tion of the smartphone. The procedure of merging and split-
ting activities is presented in Section 3.5.5 and the achieved re-
sults in Section 4.6. The average gain in number of activities
over all locations in presented in row marked with # and gained
activity recognition in row AR both in Table 12. We can ob-
serve that even with increased number of recognized activities
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we achieve increase in accuracy for up to 10 percentage points
in case of smartphone alone. In case of the wristband we get
slight increase in recognition accuracy but significant increase
in f-score. If we fuse the data of both devices, we can recognize
three more activities (up to eight) with higher accuracy, kappa
and f-score.

The comparison of energy expenditure estimation model
against the no orientation and no location model, shows high
overall decrease in all errors (row EEE in Table 12). We start
with average MAE of 1.03 MET and decrease it by 0.32 MET
in case of the smartphone, by 0.45 MET in case of the wrist-
band and by 0.49 MET when both devices are present. The
decrease in MAPE is from 1 to 9 percentage points and RMSE
from 0.1 up to 0.34. Note that the decrese in error is in addition
to knowledge about the location and orientation also affected
by more fine grained activity recognition.

We experimented only with the accelerometer sensor data
from the smartphone, since the objective of the application was
to develop a power efficient application. We believe that the
use of additional sensor data such as GPS data, Wi-fi signal etc.
would enable us to recognize even wider range of activities with
comparable accuracy. However, using additional senors have
an impact on battery life and the algorithm would require ad-
ditional mechanism which would manage the senors frequency
and activity which is not a subject of this research.

Table 12: Gain in number of recognized activities (#), gain in activity recogni-
tion (AR) accuracy and decrease in energy expenditure estimation error (EEE)
when orientation is normalized and the location of the smartphone detected and
used as a context for selection of the appropriate machine-learning model.

# AR EEE

Smartphone +1
Accuracy +10% MAE -.32
Kappa +.26 MAPE -1
F-score +.18 RMSE .1

Wristband +1
Accuracy +1% MAE -.45
Kappa +.08 MAPE -6
F-score +.25 RMSE -.31

Combination +3
Accuracy +8% MAE -.49
Kappa +.16 MAPE -9
F-score +.18 RMSE -.34

6. Conclusion

We present a real-time activity monitoring algorithm for ac-
tivity recognition and estimation of energy expenditure with
smartphone and wristband. The design of the algorithm en-
ables the activity monitoring with individual device as well as
with the combination of both. It first detects which devices are
present on the body, then it expects ten seconds of walking to
detect the gravity and normalise the orientation of the devices
which enables the devices to be worn in any orientation. In case
the smartphone is present it detects the location of the smart-
phone, which can be worn freely on the body (trousers pocket,
jacket pocket and bag) and uses this information for selection of
activity recognition classification model. The last step utilises
the information about the location of the smartphone and the

recognised activity for selection of the energy expenditure esti-
mation regression model. The output of the activity monitoring
algorithm is the performed activity and energy expenditure ex-
presses in MET. We use indirect calorimeter Oxycon mobile to
label the ground truth for estimation of energy expenditure.

We have evaluated each step in the algorithm and compared
the results of the energy expenditure estimation model against
two commercial devices. We first compared the resulted es-
timates in MET against Bodymedia armband, which is one of
the most accurate EE estimation devices on the market and then
we compared the estimates in kilo-calories against Bodymedia
armband and Microsoft Band 2. The results have shown that
our approach outperforms both devices and that even though
there are many commercially available devices on the market
for estimation of energy expenditure, they might not perform as
accurately as expected and have room for improvement.

Accurate activity monitoring is important in domains where
further decisions about the lifestyle or person-specific recom-
mendations rely on the user’s physical activity and its inten-
sity. In the past, we have used simpler algorithms in health
domains, for example, we have used activity monitoring with
dedicated wearable sensors for monitoring physical activities of
schoolchildren (eGibalec project), patients with chronic heart
failure and for diabetes patients, for which the quantity of the
activity is highly relevant to self-manage the disease [60][61].
This paper presents the upgrade of these approaches and the
presented algorithm is implemented into the prototype of the
AAL project Fit4Work, pilots of which will start soon. The re-
sults of the activity monitoring will be used to provide person-
specific recommendations to older workers and help maintain
their physical condition in good state. Additionally, this algo-
rithm is going to be implemented as an initial algorithm for
activity monitoring in the H2020 Heartman project.

The future work first of all includes the development of the
orientation normalization method for the wristband to normal-
ize it along the remaining axis (y-axis and z-axis) and to de-
velop a method for detecting whether the person wears the
wristband on right or left wrist. We will also stay informed
about wearable devices that are coming to the market and adapt
the algorithm to use them. We currently own activity mon-
itoring datasets (labeled with calorimeter) of school-children,
younger adults and older workers. and we plan to enrich them
with disease-specific data and with more versatile population
regarding age, gender and ethnicity.
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Jöbges, S. Ortmann, Recognizing upper limb movements with wrist worn
inertial sensors using k-means clustering classification, Hum. Mov. Sci.
40 (2015) 5976. doi:10.1016/j.humov.2014.11.013.

[34] P. Siirtola, P. Laurinen, E. Haapalainen, J. Rning, H. Kinnunen,
Clustering-based activity classification with a wrist-worn accelerometer
using basic features, in: 2009 IEEE Symp. Comput. Intell. Data Mining,
CIDM 2009 - Proc., 2009: pp. 95100. doi:10.1109/CIDM.2009.4938635.

[35] S. Chernbumroong, A.S. Atkins, Activity classification using
a single wrist-worn accelerometer, 2011 5th Int. Conf. Soft-
ware, Knowl. Information, Ind. Manag. Appl. Proc. (2011) 16.
doi:10.1109/SKIMA.2011.6089975.

[36] G.M. Weiss, J.L. Timko, C.M. Gallagher, K. Yoneda, A.J. Schreiber,
Smartwatch-based activity recognition: A machine learning approach,
in: Proc. IEEE-EMBS Int. Conf. Biomed. Heal. Informatics, 2016: pp.
426429. doi:10.1109/BHI.2016.7455925.

[37] F. Ramos, U. Federal, C. Grande, R. Rolim, U. Federal, C. Grande, H.
Oliveira, A.U. Federal, C. Grande, A. Perkusich, U. Federal, C. Grande,
Combining Smartphone and Smartwatch Sensor Data in Activity Recog-
nition Approaches: an Experimental Evaluation, Int. J. Eng. Technol. 8
(2016). doi:10.18293/SEKE2016-040.

[38] J.A. Levine, Measurement of energy expenditure., Public Nealth Nutr. 8
(2005) 11231132. doi:10.1079/PHN2005800.

[39] D.R. Bassett Jr., B.E. Ainsworth, A.M. Swartz, S.J. Strath, W.L. OBrien,
G.A. King, Validity of Four Motion Sensors in Measuring Moderate In-
tensity Physical Activity, Med. Sci. Sport. Exerc. 32 (2000) S471-80.

[40] S.E. Crouter, E. Kuffel, J.D. Haas, E.A. Frongillo, D.R. Bassett, Refined
two-regression model for the actigraph accelerometer, Med. Sci. Sports
Exerc. 42 (2010) 10291037. doi:10.1249/MSS.0b013e3181c37458.

[41] A.G. Bonomi, G. Plasqui, A.H.C. Goris, K.R. Westerterp, Improving as-
sessment of daily energy expenditure by identifying types of physical ac-
tivity with a single accelerometer., J. Appl. Physiol. 107 (2009) 655661.
doi:10.1152/japplphysiol.00150.2009.

[42] F. Albinali, S.S. Intille, W. Haskell, M. Rosenberger, Using wearable ac-
tivity type detection to improve physical activity energy expenditure es-
timation, Proc. 12th ACM Int. Conf. Ubiquitous Comput. Ubicomp 10.
(2010) 311. doi:10.1145/1864349.1864396.

[43] E.M. Tapia, Using machine learning for real-time activity recognition and
estimation of energy expenditure, Mit. PhD Thesis (2008).

[44] A. Pande, J. Zhu, A.K. Das, Y. Zeng, P. Mohapatra, J.J. Han, Using Smart-

19



phone Sensors for Improving Energy Expenditure Estimation, IEEE J.
Transl. Eng. Heal. Med. 3 (2015). doi:10.1109/JTEHM.2015.2480082.

[45] M. Altini, J. Penders, R. Vullers, O. Amft, Personalizing energy expendi-
ture estimation using physiological signals normalization during activities
of daily living, Physiol. Meas. 35 (2014) 17971811. doi:10.1088/0967-
3334/35/9/1797.

[46] M. Altini, J. Penders, R. Vullers, O. Amft, Estimating energy expendi-
ture using body-worn accelerometers: A comparison of methods, sensors
number and positioning, IEEE J. Biomed. Heal. Informatics. 19 (2015)
219226. doi:10.1109/JBHI.2014.2313039.

[47] N. Vyas, J. Farringdon, D. Andre, J.I. Stivoric, Machine Learning and
Sensor Fusion for Estimating Continuous Energy Expenditure, AI Mag.
33 (2012) 55. doi:10.1609/aimag.v33i2.2408.
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