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Editor’s preface 

 

The complexity of diabetes prognosis and management has lead Artificial Intelligence 
(AI) to become a key technology to provide solutions that empower both patients and 
caregivers in their everyday life. Several publicly-funded projects have been carried out, 
such as: EMPOWER, MOBIGUIDE, COMMODITY12 EU, DIADVISOR, DIABEO, and the 
recently launched PEPPER project. However, there is still a lot of work left to be done. 
The aim of this workshop is to assimilate lessons learned, and discuss future work, as a 
first step towards finding definitive, compatible and complementary AI tools for people 
dealing with diabetes. 
 
The AID workshop will therefore facilitate discussion among different researchers 
actively engaged in finding AI-based solutions to problems associated with diabetes. Ten 
papers have been accepted, which represent a sample of the latest research in the area 
by several research groups. The final session of the workshop schedule is designated for 
discussion of the next steps to keep the community engaged and growing, including the 
proposal of new collaborative projects. We hope that you will enjoy the workshop and 
join the community in the forthcoming events that stem from it. 
 
 

The Organizing Committee 
Beatriz López (University of Girona, Spain) 

Pau Herrero (Imperial College of London, UK) 
Clare Martin (Oxford Brookes University, UK) 

 
The Hague, Netherlands 

August 30th, 2016  
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Keynote 
 
Speaker: Prof. Riccardo Bellazzi, Dipartimento di Ingegneria Industriale e dell'Informazione, 

Università degli Studi di Pavia, Italy 
 
 
Title: “Artificial Intelligence in Diabetes Mellitus management: advanced strategies for 
a complex disease” 
 
 
Abstract: Diabetes Mellitus, due to its multi-faceted, dynamics and data-intensive 
nature, is a paradigmatic disease for the application of AI-based approaches, including 
rule-based, case-based and model-based reasoning, machine learning and visual 
analytics. Starting from the lessons learned from past and current research projects, the 
talk will discuss some future research directions for the integration of AI into the clinical 
management of Diabetes. 
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PEPPER: Patient Empowerment Through Predictive
Personalised Decision Support

Pau Herrero1, Beatriz López2 and Clare Martin3

Abstract. PEPPER is a newly-launched three-year research project,
funded by the EU Horizon 2020 Framework. It will create a portable
personalised decision support system to empower individuals on in-
sulin therapy to self-manage their condition. PEPPER employs Case-
Based Reasoning to advise about insulin bolus doses, drawing on
various sources of physiological, lifestyle, environmental and social
data. It also uses a Model-Based Reasoning approach to maximise
users’ safety. The system will be integrated with an unobtrusive in-
sulin patch pump and has a patient-centric development approach in
order to improve patient self-efficacy and adherence to treatment.

1 INTRODUCTION
Type 1 diabetes (T1D) is a chronic disease caused by an autoim-
mune destruction of the pancreatic beta cells. This leaves the body
unable to produce the insulin needed to regulate blood glucose levels.
The condition is usually controlled through multiple daily injections
(MDI) of insulin to mimic the natural insulin secretion of a healthy
pancreas. Alternatively, some people are treated with continuous sub-
cutaneous insulin infusion (CSII) via a wearable pump. In both cases
the size of each insulin doses are chosen by the individual.

Decision support tools exist to support this process, such as in-
sulin bolus calculators that use simple mathematical formulae based
on metabolic parameters (i.e. insulin-to-carbohydrate ratio and in-
sulin sensitivity factor) and an estimation of the active insulin from
previous doses. Such tools are integrated into most insulin pumps
[9], and some glucose meters. There is also an increasing adoption
of decision support tools implemented on mobile devices [10], often
in conjunction with remote data storage in the cloud, though few are
approved by regulatory bodies such as the FDA. Some gather inputs
via wearable sensors (i.e. continuous glucose monitors), but most of
them rely on manual input. In practice, the latter are rarely used be-
cause most people with T1D find the process tedious and refuse to
interact with such systems [10, 2]. Hence a guiding design principle
for PEPPER is that wherever possible data is collected automatically,
via wearable technology. The information collected by the sensors
is managed by a Case-Based Reasoning (CBR) module to provide
personalised insulin recommendations, while a second Model-Based
Reasoning (MBR) module is used to maximise users’ safety.

2 SYSTEM OVERVIEW
The PEPPER system shown in Figure 1 offers insulin dosing advice
that is highly adaptive to the insulin needs of individuals by using

1 Imperial College London, email: pherrero@imperial.ac.uk
2 University of Girona, email: beatriz.lopez@udg.edu
3 Oxford Brookes University, email: cemartin@brookes.ac.uk

a CBR approach. It also guarantees individuals’ safety by means of
a MBR approach that includes predictive glucose alarms, automatic
insulin suspension, carbohydrate recommendations and fault diag-
nosis. PEPPER offers a dual architecture to cater for both MDI or
CSII treatment, the latter via the unobtrusive Cellnovo patch-pump
(Cellnovo Ltd., UK). In both cases, the patient periodically wears
a continuous glucose monitor (CGM) used to automatically evalu-
ate glucose outcomes. An activity monitor, such the one integrated
in the Cellnovo pump or a commercially available one (e.g. Fitbit),
is included to determine physical activity automatically. Data from a
capillary blood glucose meter is periodically gathered to calibrate the
CGM or to be used in case CGM data is not available. Additional data
such as food intake, alcohol consumption, hormonal cycles are input
through the user interface of the handheld unit (smartphone or Cell-
novo handset). All inputs are then fed to the CBR engine on the hand-
held unit, and used to calculate the corresponding insulin dose. The
dose is then displayed for the user to accept or decline. If the recom-
mendation is accepted, the unit wirelessly sends the corresponding
command to the insulin pump, or the user manually injects the bolus
using an insulin pen. In addition, the safety module triggers alarms
to alert the user about predicted hypo- and hyperglycaemic events. In
the case of impending hypoglycaemia, the system also recommends
a personalised amount of carbohydrates to consume to eliminate hy-
poglycaemia and avoid rebound hyperglycaemia. It also suspends in-
sulin delivery for pump users when glucose levels are forecast to be
too low. If potentially dangerous events are not properly addressed by
the subject, automatic alarms can be sent via an SMS service to the
expert team and selected carers. When network connectivity is avail-
able, the handheld unit sends the recorded data to a remote secure
server. Data is presented in meaningful visualisations and analysed
periodically to find non-optimal glucose patterns.

2.1 Case-Based Reasoning for Insulin Dosing

Case-Based Reasoning (CBR) is a consolidated artificial intelligence
technique, extensively applied in medicine, that tries to solve newly
encountered problems by applying solutions learned from similar
problems encountered in the past. In CBR, past situations are stored
in cases, which represent knowledge related to the various aspects of
the situation. The CBR cycle consists of four steps: Retrieve the most
similar case or cases; Reuse the information in that case to solve the
problem; Revise the proposed solution; Retain the parts of this expe-
rience likely to be useful for future problem solving [1].

The first project to use CBR to recommend changes in insulin ther-
apy for T1D management was the T-IDDM project [3], where it was
integrated with rule-based reasoning and a probabilistic model of the
effects of insulin on blood glucose levels. More recently, the IDSDM

8



Figure 1. PEPPER architecture.
project [11] used CBR as the primary reasoning modality in a deci-
sion support tool for patients on insulin pump therapy, and introduced
other factors into the calculations, such as life events that can influ-
ence blood glucose levels. However, both projects were intended for
use by clinicians as opposed to the individuals with diabetes.

In PEPPER, the CBR cycle is divided into two parts: the local and
remote. The local part runs on the handheld unit and the remote part
on a server. Both parts contain a case-base and periodically the local
case-base is synchronised with the remote case-base. The evaluation
step of the CBR cycle occurs on the server and requires aproval by
an expert clinician before a new case is incorporated to the case-
base. The CBR parameters include CGM and capillary glucose data,
physical activity, time, location, basal insulin, hormone cycle, stress,
alcohol, meal composition, and sleep. Most of these parameters are
automatically collected (or calculated) by the handset unit. Excep-
tions include alcohol consumption, meal composition and hormone
cycles, which need to be manually inputed. A prototype version of
the algorithm has already been implemented and successfully tested
in silico [8] and in subsequent pilot studies [12]. PEPPER builds on
this prototype and furthers improves it by including more parameters
and automatising their recording.

2.2 Model-Based Reasoning for Safety
Model-Based Reasoning (MBR) is defined as the interaction of ob-
servation and prediction [5]. On the one hand, there is the actual sys-
tem (e.g T1D subject) whose behaviour can be observed; on the other
hand, there is the model of the system from which predictions (e.g.
glucose levels) can be made. Assuming that the models are correct,
any discrepancy found between observations and predictions are de-
faults on the device (e.g. CGM or pump fault). MBR techniques have
been previously proposed in the context of diabetes technology to
constrain insulin delivery by an artificial pancreas [4], predict hy-
poglycaemic events [6] and detect CGM and insulin pump faults [7].
PEPPER leverages these techniques to build a system that guarantees
safety of the user at any time. In addition, it incorporates an adaptive
carbohydrate recommender system to prevent hypoglycaemic events.

3 CONCLUSION
The PEPPER system provides a portable personalised decision sup-
port system for insulin dosing that combines data from multiple
sources such as body-worn sensors and manual inputs. The Case-
Based Reasoning module is designed to provide a personalised in-
sulin dose which adapts over time. A Model-Based Reasoning mod-
ule is designed to maximise safety through prediction of adverse
events and the detection of faults. PEPPER is being developed using
a patient-centric approach in order to improve patient self-efficacy
and adherence to treatment. The software development will adhere
to international standards including those that apply to security and
interoperability. The final system will be tested in silico before be-
ing clinically validated over a 6-month non-randomised open-label
ambulatory trial.
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Enhancing an Artificial Pancreas with an Adaptive Bolus
Calculator based on Case-Based Reasoning

Pau Herrero 1, Jorge Bondia 2, Peter Pesl 3, Nick Oliver 4 and Pantelis Georgiou 5

Abstract. Current prototypes of closed-loop systems for glucose
control in type 1 diabetes mellitus, also referred to as artificial pan-
creas systems, require a pre-meal insulin bolus to compensate for de-
lays in subcutaneous insulin absorption in order to avoid initial post-
prandial hyperglycemia. Most closed-loop systems compute this pre-
meal insulin dose by a standard bolus calculation, as is commonly
found in insulin pumps. However, the performance of these calcu-
lators is limited due to a lack of adaptiveness in front of dynamic
changes in insulin requirements. In this paper we present a new tech-
nique to automatically adapt the meal-priming bolus within an ar-
tificial pancreas based on Case-Based Reasoning and Run-To-Run
control. Simulation results showed that using an adaptive meal bo-
lus calculator within a closed-loop control system has the potential
to improve glycemic control in type 1 diabetes when compared to its
non-adaptive counterpart.

1 Introduction

1.1 Type 1 diabetes mellitus (T1DM)

T1DM is an autoimmune condition characterized by elevated blood
glucose levels due to the lack of endogenous insulin production. Peo-
ple with T1DM require exogenous insulin delivery to regulate glu-
cose. Current therapies for T1DM management include the admin-
istration of multiple daily injections or continuous insulin infusion
with pumps. However, such therapies are still suboptimal and require
constant adjustment by the person with T1DM and carers.

1.2 Artificial Pancreas

A closed-loop control system consisting of a continuous glucose sen-
sor, an insulin pump and an algorithm that computes the required in-
sulin dose at any instant, has the potential to improve glucose control
in people with T1DM [6]. Ideally, a completely automated closed-
loop control system would not require any user intervention, for ex-
ample to announce meals, and would react in real-time to changes
in blood glucose. However, delays in subcutaneous insulin absorp-
tion have led many investigators to include the use of a pre-meal in-
sulin bolus within the artificial pancreas (Figure 1). The calculation
of such pre-meal insulin bolus is usually done by means of a simple
bolus calculator, found in most insulin pumps. However, accurately
computing a meal bolus remains a challenging task due to the high

1 Imperial College London, email: pherrero@imperial.ac.uk
2 Polytechnic University of Valencia, email: jbondia@isa.upv.es
3 Imperial College London, email: peter.pesl@imperial.ac.uk
4 Imperial College NHS Trust, email: nick.oliver@imperial.ac.uk
5 Imperial College London, email: pantelis@imperial.ac.uk

variability of insulin requirements in T1DM and the uncertainty in
carbohydrate estimations.

1.3 Adaptive meal-priming bolus
The utilisation of anadaptive meal-priming boluswithin an artificial
pancreas has previously been proposed by El-Khatib et. al [3] show-
ing some encouraging clinical results relative to an entirely reactive
system with no meal-priming boluses. However, this method has the
limitation that assumes that carbohydrate intakes are fairly similar
every day, which is not always the case. It also does not take into con-
sideration other factors such as exercise, alcohol, stress, weather, hor-
mones, and variation in macronutrient composition. In this paper, we
present a novel technique to automatically adjust the meal-priming
boluswithin an artificial pancreas that overcomes these limitations
by allowing the system to consider an estimation of the carbohydrate
intake and other parameters affecting glucose outcomes.

2 Methods
The proposed adaptive meal bolus calculator for closed-loop con-
trol is based on an existing technique referred to as Advanced Bolus
Calculator for Diabetes Management (ABC4D) [2], which has previ-
ously been validated tested in clinical trials [10]. ABC4D enhances
currently existing bolus calculators by means of a combination of
Case-Based Reasoning [1] and Run-To-Run control [8]. Periodic use
of continuous glucose monitoring (CGM) data is required in order
to perform a retrospective optimization of the bolus calculator pa-
rameters. For evaluation purposes, the clinically validated Imperial
College Bio-inspired Artificial Pancreas (BiAP) controller was em-
ployed [5].

2.1 Insulin Bolus Calculator
A standard insulin bolus calculator is defined by the equation

B =
CHO

ICR
+

(G−Gsp)

ISF
− IOB, (1)

where B (U) is the total calculated bolus, CHO (g) is the esti-
mated amount of ingested carbohydrates, ICR (g/U) is the insulin-
to-carbohydrate-ratio, G (mg/dl) is the measured glucose at meal
time, Gsp (mg/dl) is the glucose set-point, ISF (mg/dl/U) is the in-
sulin sensitivity factor, and IOB (U) is the insulin-on-board, which
represents an estimation of the remaining active insulin in the body.
The parameters of a bolus calculator (ICR, ISF ) can be manually
adjusted based, among other parameters, on the time of the day (i.e.
breakfast, lunch, dinner), exercise, stress or variation in hormonal
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Figure 1. Block diagram of a closed-loop system for glucose control incorporating a meal bolus calculator..

cycles. However, these adjustments are often crude approximations
and are rarely revised by the users (subject with T1DM or carer) on
a regular basis. In order to provide the required flexibility and adapt-
ability within a bolus calculator to be able to cope with the significant
intra-subject variability in T1DM management, a similar approach to
the one proposed by Herrero and colleagues [2] was employed. Such
approach consist of using Case-Based Reasoning (CBR) to deal with
the significant number of case scenarios requiring very different in-
sulin requirements (i.e. solutions) that a person with diabetes has to
face. Then, Run-To-Run control is used to automatically revise the
parameters of the bolus calculator within the CBR algorithm.

2.2 Case-Based Reasoning (CBR)

CBR is an artificial intelligence problem solving framework that
solves a newly encountered problem (i.e. meal insulin dosing),
based on the information obtained from previously solved problems
(cases). CBR is usually described in four steps: Retrieve the most
similar cases from a case-base (e.g. late dinner preceded by moderate
exercise); Reuse solutions of retrieved cases (e.g. bolus calculator pa-
rameters ICR and ISF ); Revise the outcome of the applied solution
(e.g. post-prandial glucose excursion); and Retain the new cases if
considered useful for solving future problems [1]. In ABC4D, cases
are stored in a case-base representing meal scenarios with signifi-
cantly different insulin requirements (e.g. breakfast after exercise vs.
dinner after watching a movie) and therefore, requiring a different in-
sulin dosing. Retrieving of the cases was performed by means of an
Euclidian distance with equal weights on all parameters. It is impor-
tant to note that, unlike the traditional CBR approach where solutions
of cases in the case-base are static, in ABC4D such a solutions (i.e.
ICR and ISF ) are adapted if considered to be sub-optimal. In or-
der to perform such adaptation of sub-optimal solutions, a modified
version of Run-to-Run algorithm proposed by Herrero et al. [4] is
employed.

2.3 Run-to-Run Control (R2R)

R2R is a control methodology designed to exploit repetitiveness in
the process that is being controlled [8]. Its purpose is to enhance per-
formance, using a mechanism of trial and error. Owens et al. [9] used
this idea to exploit the repetitive nature of the insulin therapy reg-
imen of the diabetic patient. However, the requirement of one pre-
prandial capillary blood glucose measurement and two post-prandial
ones made the approach impractical. The simplest formulation of
R2R may be,

uk+1 = uk +K · error, (2)

where u is the control action, K is a tuning gain and error is the track-
ing error defined as the difference between a measurement from the
process and a set-point. The R2R algorithm used in ABC4D is based
on the hypothesis that the meal insulin bolus can can be adjusted
based on the residual between the minimal post-prandial glucose
concentration (Gmin) obtained with a continuous glucose monitor
(CGM) and a predefined glucose set-point (Gsp) over a predefined
time window [t1, t2]. Therefore, the updated bolus is calculated as

Bk+1 = Bk +K · (Gmin −Gsp), (3)

where K ·(Gmin−Gsp) is the extra insulin that needs to be added (or
subtracted) to the original bolus (Bk) in order to bring blood glucose
levels back to the set-point (Gsp), and K is defined as K = 1/ISF .
In order to provide robustness to the metric against the inherent vari-
ability and uncertainty of the system (e.g. sensor noise and carbo-
hydrate estimation), a glucose range [Gl, Gh] is defined where no
adaptation is done if Gmin falls within this range.

However, the ABC4D R2R algorithm is not fully suited to be used
within a closed-loop (CL) controller. Note that the CL controller can
compensate for the lack of meal bolus and still bring glucose lev-
els within the target range [Gl, Gh], but the post-prandial glucose
peak can still be significantly sub-optimal. Assuming that the CL
controller is correctly tuned, the ABC4D R2R metric is still valid
when Gmin falls below the target range. Otherwise, a new metric
for adjusting ICR is required. The new proposed metric is based on
the hypothesis that, assuming that the CL controller is appropriately
tuned, the insulin delivered by the CL controller during the postpran-
dial period over the basal insulin, is insulin that should have been
delivered by the meal-priming bolus. Thus, the bolus calculator pa-
rameters can be updated based on this additional insulin. Therefore,
Equation 3 is replaced by

if G ≤ Gl Bk+1 = Bk +K · (Gmin −Gsp), (4)

else Bk+1 = Bk +
∑t4

t3
D(t), (5)

where D(t) is the insulin delivered by the controller over the basal
insulin level during the time window [t3, t4] and glucose levels are
over Gh.

Assuming the correlation ISF = (1960 · ICR)/2.6 ·W reported
by Walsh et al. [7], where W is the subjects weight (lbs), the updated
ICR can be calculated from Equation 1 as

ICRk+1 =
CHO +

(Gmin−Gsp)

1960/(2.6·W )

Bk+1 + IOB
. (6)
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2.4 In Silico Evaluation

The latest version of the UVa-Padova T1DM simulator (v3.2) (Ep-
silon Group, MA, US) was used to evaluate the proposed adaptive
bolus calculator for closed-loop controllers. The 11 adult subjects
available in the simulator were used for this purpose. A three-month
scenario was selected in order to leave enough time to the meal bolus
adaptation mechanism to converge. Inter-and intra-subject variability
of insulin requirements and uncertainty on carbohydrate intake were
considered as proposed by Herrero et al [4]. It is important to remark-
that due to the inherent limitations of the simulator, only three cases
(i.e. breakfast, lunch and dinner) were considered by the CBR al-
gorithm. Nevertheless, initial clinical trials of the ABC4D algorithm
show promising results [10]. The following standard glycemic con-
trol metrics were selected for comparison purposes: mean blood glu-
cose (BG); percentage time in target range [70,180] mg/dl (%inT );
percentage time below target (% < T ); percentage time above target
(% > T ); and daily average of insulin delivered in units of insulin
(TDI).

3 Results

Table 1 shows the results corresponding to the 11 adults for each one
of the evaluated control strategies (AP vs. ABC-AP).

4 Conclusion

Integrating an adaptive meal bolus calculator within the Imperial
College Artificial Pancreas controller significantly improves all the
evaluated glycemic outcomes in a virtual type 1 diabetes population
(11 adults) when compared against the Imperial College Artificial
Pancreas without bolus adaptation over a three-month scenario with
realistic inter-subject and intra-day variability. It is worth noting that
the significant reduction in hyperglycemia was achieved without an
any increase in hypoglycemia. Trials have been planned to clinically
validate the proposed technique.

REFERENCES
[1] A Aamodt and E Plaza, ‘Case-based reasoning: Foundational issues,

methodological variations, and system approaches’, AI communica-
tions, 7(1), 39–59, (1994).

[2] Herrero et a., ‘Advanced insulin bolus advisor based on run-to-run con-
trol and case-based reasoning’, Biomedical and Health Informatics,
IEEE Journal of, 19(3), 1087–1096, (2015).

[3] El-Khatib et al., ‘Autonomous and continuous adaptation of a bihor-
monal bionic pancreas in adults and adolescents with type 1 diabetes.’,
A J Clin Endocrinol Metab., 99(5), 1701–11, (2014).

[4] Herrero et al., ‘Method for automatic adjustment of an insulin bolus
calculator: in silico robustness evalu- ation under intra-day variability.’,
Comput Methods Programs Biomed., 119(1), 1–8, (2015).

[5] Reddy et al., ‘Metabolic control with the bio-inspired artificial pan-
creas in adults with type 1 diabetes: A 24-hour randomized controlled
crossover study.’, J. Diabetes Sci. Technol., 10(2), 1405–13, (2015).

[6] Thabit H et al., ‘Home use of an artificial beta cell in type 1 diabetes.’,
N Engl J Med, 373, 2129–2140, (2015).

[7] Walsh et al., ‘Guidelines for optimal bolus calculator settings in adults’,
J. Diabetes Sci. Technol., 5(1), 129?135, (2011).

[8] Wang et al., ‘Survey on iterative learning control, repetitive control, and
run-to-run control.’, Journal of Process Control., 19(10), 1589?1600,
(2009).

[9] C. Owens, H. Zisser, L. Jovanovic, B. Srinivasan, D. Bonvin, and
Doyle FJ 3rd., ‘Run-to-run control of blood glucose concentrations for
people with type 1 diabetes mellitus’, IEEE Trans. Biomed. Eng., 53,
996–1005, (2006).

[10] M. et al. Reddy, ‘Clinical safety and feasibility of the advanced bo-
lus calculator for type 1 diabetes based on case-based reasoning: a
6-month randomised single-arm pilot study.’, Diabetes Technol Ther,
Epub ahead of print, (2016).

12



Table 1. Glycemic results corresponding to the 11 adult subjects.

BG %inT % < T % > T TDI
AP 142.2± 9.4 82.0± 7.0 0.21± 0.36 17.7± 7.0 45.8± 10.1

ABC-AP 131.8± 4.2 89.5± 4.2 0.21± 0.18 10.2± 4.1 48.5± 10.4

p < 0.001 < 0.001 0.99 < 0.001 0.002
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Temporal case-based reasoning for bolus decision support
Daniel Brown, Rachel Harrison, Clare Martin and Ian Bayley1

Abstract. Individuals with type 1 diabetes frequently have to deter-
mine what quantity of bolus insulin is required at meal time in order
to maintain their blood glucose levels. To help this process bolus cal-
culators have been developed to suggest appropriate doses. However,
these calculators do not automatically adapt to improve bolus sugges-
tions and instead require fine tuning of certain parameters, a process
that often requires clinical input.

To overcome these limitations, we suggest using the artificial intel-
ligence technique case-based reasoning to personalise bolus decision
support. A novel aspect of our approach is the use of temporal se-
quences to factor in preceding events to the decision making process
as opposed to looking at events in isolation.

The in silico results of the approach show that the temporal re-
trieval algorithm successfully identifies appropriate cases for reuse.
Additionally through insulin-on-board adaptation and postprandial
revision, the approach is able to learn and improve bolus predictions,
reducing the blood glucose risk index by up to 27% after three revi-
sions of a bolus solution.

1 INTRODUCTION

Type 1 diabetes mellitus (T1DM) is a condition is caused by a de-
fective autoimmune system, leading to the destruction of pancreatic
beta cells. This results in an individual’s inability to automatically
control their blood glucose levels. To overcome this the individuals
must carefully manage their condition to avoid hypoglycaemia (low
blood glucose levels) and hyperglycaemia (high blood glucose lev-
els), both of which can have serious health implications.

Bolus insulin calculators are available to assist management of the
condition, which are shown to be effective [2]. However, these bolus
calculators will always produce the same result from the user’s in-
puts unless certain settings such as the carbohydrate-to-insulin ratio
(CIR) and insulin sensitivity factor (ISF) are altered, a process often
guided by clinicians; where the CIR is the number of carbohydrates
covered by a unit of insulin, whilst the ISF is the drop in blood glu-
cose per unit of insulin. It is this problem our research aims to address
through replacing the static formula with the ability to learn and im-
prove bolus recommendations automatically through case-based rea-
soning (CBR).

We begin by briefly explaining the fundamentals of CBR in Sec-
tion 2, highlighting the limitation of using cases in isolation in tem-
poral domains such as T1DM. In Section 3 we describe our approach
to solving this problem using CBR. Section 4 outlines the results of
this approach, showing the system’s ability to improve results over
time. We then discuss related work in section 5. Finally, conclusions
reached are described in Section 6.

1 Oxford Brookes University, email: [dbrown, rachel.harrison, cemartin,
ibayley]@brookes.ac.uk

2 CASE-BASED REASONING
Case-based reasoning is a well-established form of artificial intelli-
gence which attempts to mimic the human ability to recall appro-
priate solutions to problems. The foundations of CBR can be found
in the pioneering work conducted by Kolodner based on the idea of
dynamic memory modelling proposed by Schank [13, 19].

A widely adopted CBR model is the R4 model proposed by
Aamodt and Plaza [1]. The R4 model is four stage cycle: retrieve,
reuse, revise, and retain. Firstly, a new problem is presented to the
system. Based on the features and feature-values of the problem, a
similar case is retrieved. The retrieved case is then reused to solve the
new problem; this may involve some form of adaptation to resolve
any discrepancies between the proposed problem and the retrieved
case. A solution is then presented, which subject to real-world or
simulated use can be further revised. Once the solution is accepted it
is retained in the case-base. This cycle then continues, with each new
problem having a larger and/or refined case-base to aid predicting
solutions of future problems.

The majority of research and development using CBR considers
each case to an isolated event. In the context of T1DM we believe
that temporal effects should be factored into the retrieval step. Re-
search into temporal CBR has been relativity limited, with the major-
ity of methods requiring specialist case representation, e.g. [11, 12].
To overcome this, sequences of continuous temporal cases can be
merged into a singular case [18]. This method allows the temporal
sequences to be compared using standard distance metrics without
the need for additional rules. Plausible episodes are generated from a
new problem, which are then compared to similar retrieved episodes
in order to solve the new problem. We use this formation of episodes
as the foundation for our temporal approach.

3 TEMPORAL CASE-BASED REASONING
FOR BOLUS INSULIN DECISION SUPPORT

This section discusses our approach to using the R4 model in the
context of bolus advice [6, 5]. We begin by defining the structure of
cases, then describe each step of the R4 model.

3.1 Case structure
Unlike other CBR systems where case features may vary, in this
context the features representing a case are well-defined. The initial
step taken by this research was to determine which parameters are
required by bolus calculators. Through assessment of existing bo-
lus calculators it was found that the parameters described in Table
1 are used by the Accu-Chek Aviva Expert (AE), RapidCalc (RC),
Diabetes Personal Calculator (DPC), Diabetic Dosage (DD), and In-
sulinCalc (IC). The apps were selected using a method described by
Martin et. al. [16].
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Table 1. Parameters used by exisiting bolus calculators

Parameter AE RC DPC DD IC
Carbohydrate intake 3 3 3 3 3

Preprandial blood glucose 3 3 3 3 3
Target blood glucose 3 3 3 3 3

Insulin sensitivity factor 3 3 3 3 3
Carbohydrate-to-insulin ratio 3 3 3 3

Insulin-on-board 3 3 3
Exercise 3 3

The parameters identified from the existing bolus calculators in
Table 1 allow us to describe the features of a case. It is clear that
the carbohydrate intake, preprandial blood glucose level, and target
blood glucose level are essential case parameters.

The ISF and CIR are the primary parameters used to tune the bo-
lus calculator. These will be omitted from the cases since the CBR
approach seeks to replace their role in the decision making process.
Instead they will be replaced by the date and time of the event, since
they are usually defined as personal settings on the device and largely
remain static, making them redundant to the CBR retrieval step.

Insulin-on-board (IOB) is a crucial parameter which helps to avoid
the negative effects of insulin stacking, caused by administering in-
sulin when some already remains active in the body. To cater for IOB,
the retrieve step (Section 3.2) uses a temporal approach that factors
in preceding bolus doses. This is coupled with an an adaptation rule
in the reuse step (Section 3.3), which resolves differences between
the IOB in the problem and the retrieved case(s) .

Exercise is a parameter that we believe should be included. How-
ever, the UVa/Padova T1DM simulator [14] used in this research did
not allow this to be modelled, so it must be omitted.

Finally, the solution needs to be retained by the case for reuse
in solving new problems. The solution is this approach is the bolus
dose. This will also serve as a feature in temporal aspect described in
the retrieve step.

Following the assessment of parameters used by bolus calculators,
we decide that cases will be represented by the date and time, carbo-
hydrate intake, preprandial blood glucose level, and the solution of
bolus.

3.2 Retrieve
The retrieval step is where the temporal aspect is introduced to the
system. As opposed to looking at the new problem and previous cases
in isolation, we believe the bigger picture should be considered, most
notably preceding events. Whilst the temporal side of CBR has been
considered previously, none of the previous methods appear suitable
for the task of bolus decision support. To address this, we propose
the use of a temporal sequence to describe both new problems and
previous cases based upon a method described by [18].

Definitions 3.1 through to 3.4 describe the method more formally.
In Def. 3.1 and Def. 3.2 a case and the case-base for an individual
patient are defined.

Definition 3.1 (Case) A case c is a tuple comprised of a number of
n features fi, together with a solution s.

c = (f1, f2, . . . , fn, s)

Definition 3.2 (Case-base) A case-base CB is a sequence of cases
ci, where i ranges from 1 to the size of the case-base.

CB = 〈c1, c2, . . . , c|CB|〉

The temporal sequence describing the new problem TP is defined
in Def. 3.3. A TP with t = 1 will be a sequence containing the new
problem c′, resulting in traditional CBR retrieval where no previous
events are included. For a TP with t > 1, the sequence must start
from t − 2 less than the size of the case-base, because at the very
least the sequence must contain the new problem c′ and the last case
in the case-base c|CB|.

Definition 3.3 (Temporal problem sequence) A temporal problem
sequence TP is comprised of the individual new problem proposed
to the system c′ together the preceding cases c in the case-base or-
dered by date and time. The size of TP is determined by the defined
temporal sequence length t, where 1 ≤ t ≤ |CB|.

TP = 〈c|CB|−(t−2), c|CB|−(t−3), ..., c|CB|, c
′〉

The problem sequence is then compared to sequences in the case-
base (Def. 3.4) of the same temporal sequence length t. The se-
quences must be the same length in order to conduct similarity, a
process that will identify the most relevant sequence in the case-base.

Definition 3.4 (Temporal case sequence) A temporal case se-
quence TCn is comprised of the case cn together with t − 1
preceding cases ordered by date and time, where t is the sequence
length.

TCn = 〈cn−(t−1), cn−(t−2), . . . , cn〉

To deal with with broken sequences - those with assumed missing
events (gaps) - the outer fence defined by Tukey is used [20]. Where
such gaps exist, the features are replaced by the maximum distance
of 1 on the scale [0, 1].

A weighted distance function is used to compare the similarity of
TP and TCn, this helps to ensure that the importance of each fea-
ture on the overall similarity is representative of the problem. Fea-
ture weightings were determined using the Weka data mining tool,
which includes the feature selection algorithms: Chi-Squared, Infor-
mation Gain, Gain Ratio, One Rule, RELIEF-F and Symmetrical Un-
certainty [21]. All the aforementioned feature selection algorithms
are single-attribute evaluators and return a score determining each
attribute’s likelihood to predict the class (bolus dose). To derive the
feature weightings sample data sets were produced using closed-loop
simulation [14]. Cases were then extracted from the simulation out-
put, merged into single cases representing temporal sequences, and
finally processed using Weka.

The weighted Euclidean distance function for determining simi-
larity is described in Eq. 1. Let TP and TC be the problem and case
sequences respectively, I be the total number of features, and w be
the weight of the respective feature. Prior to computing the distance,
all features are normalised to avoid unwanted bias.

d(TP, TC) =

√√√√ I∑
i=1

wi (TPi − TCi)
2 (1)

3.3 Reuse
For the reuse step we adopted a simple k-NN regression strategy to
average the bolus prediction of k retrieved cases. Equation 2 defines
the reuse strategy, let k define the number of retrieved case, and in
define bolus solution provided by a retrieved case.

suggested bolus dose =
1

k

k∑
n=1

in (2)
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The result is then adapted to resolve differences in the IOB from
the new problem to the retrieved cases to further tune in the bolus
recommendation. Whilst the use of temporal sequences somewhat
resolves this issue alone, it is important to prevent the negative effects
of insulin stacking. In this research a linear IOB algorithm (Eq. 3) is
adopted [7].

The adapted bolus suggestion is calculated by deducting the aver-
age of the sum of the IOBs for all the retrieved cases from the original
bolus suggestion to determine the difference d′, as described in Eq.
6. For Eq. 3 - 6 the variables are defined as follows: the case-base
CB is a sequence of cases c, with each case c a tuple of case time ct
in minutes and the bolus dose ci. t denotes time in minutes, pt is the
time of a new problem in minutes. RC denotes a sequence of case
times in minutes. The active insulin time a is a constant to reflect the
duration of a bolus dose in minutes. The suggested bolus dose i is
the original bolus dose to be adapted.

iob(c, t, a) =

ci×
(
1− t− ct

a

)
, if a > t− ct > 0

0.0, otherwise.
(3)

iobs(CB, t, a) =

|CB|∑
n=1

iob(cn, t, a) (4)

d(pt,RC,CB, a) = iobs(CB, pt, a)−
∑k

n=1 iobs(CB,RCn, a)

k
(5)

d′ =

{
i− d(pt,RC,CB, a), if i− d(pt,RC,CB, a) ≥ 0

0.0, otherwise.
(6)

3.4 Revise
The revise step is crucial to allow the system to improve sub-optimal
recommendations. The degree of success can be inferred from the
difference between postprandial blood glucose of the subject and
their target blood glucose level. If the postprandial reading is equal
or close to the target blood glucose level then the recommendation
can be considered optimal and no revision is required. However, if
the postprandial reading is higher or lower than the target level, the
recommended bolus should be increased or decreased respectively.

To determine this, a method for correcting bolus doses described
by Eq. 8 is used based on the subject’s total daily dose to estimate
the ISF (Eq. 7) [3, 9]. Let I represent the sequence of bolus and basal
doses over a period of d days, Ii be an individual bolus or basal dose
from the sequence of insulin doses I , pbg be a postprandial blood
glucose reading (mmol/L), and tbg be the target blood glucose level
(mmol/L).

ISF = (1700÷
∑|I|

i=1 Ii

d
)× 0.0555 mmol/L (7)

revised bolus =
pbg − tbg

ISF
(8)

One difficulty to overcome is when to perform the postprandial
blood glucose reading. If it occurs too soon after the dose was ad-
ministered or too late then the revision is likely to be sub-optimal.
To determine this, in silico results for 2, 3 and 4-hour offsets were
evaluated, with 3-hour found to be the most optimal.

3.5 Retain

The retain step of the cycle stores the evaluated recommendation
into the case-base for future reuse. The complexity of retaining cases
largely depends on how the cases are stored. In this work we did
not place much emphasis on this step since the case structure re-
mains consistent. However, we are aware of the importance of case-
base maintenance to ensure the search space does not cause time-
complexity issues, and to prevent bad solutions being retained.

4 RESULTS

In this section we describe the in silico results of the approach out-
lined in Section 3. The results are broken down into the first three
steps of the CBR cycle to highlight how these different steps (re-
trieve, reuse, and revise) of our approach help to progressively im-
prove the decisions made by the system.

4.1 Retrieve

Five sets of new problems were created to test against the case-bases.
The problem sets contained one month of new problems (approxi-
mately 130-140 problems), allowing us to observe the improvements
in blood glucose prediction from the solutions obtained during re-
trieval. Each of the problem sets was applied to each of the case-
bases for 1 to 5 nearest neighbours with six different single-attribute
feature evaluators (Chi-Squared, Information Gain, Gain Ratio, One
Rule, RELIEF-F, and Symmetrical Uncertainty) [21].

The blood glucose risk index (BGRI) was the primary statistical
measure we used to measure our predictions. This measure can be
applied to continuous blood glucose data to determine overall vari-
ance of a low blood glucose risk index (LBGI) and high blood glu-
cose risk index (HBGI) [8].

Table 2 presents the percentage change in BGRI of the different
temporal sequence lengths (TS2 - TS5) in comparison to no temporal
sequence (TS1) for all feature selection algorithms, where the highest
percentage reduction in BGRI result is best. This result illustrate that
temporal sequences provide some improvement in case retrieval.

Table 2. Percentage change in BGRI for different temporal sequence
lengths (TS2 - TS5) to no temporal sequence (TS1)

Feature selection TS1 TS2 TS3 TS4 TS5
algorithm BGRI % % % %

Chi-Squared 4.44 −1.07 −1.02 −0.58 −0.29
Information Gain 4.43 −1.21 −0.95 −0.74 −0.23

Gain Ratio 4.44 −1.26 −1.11 −0.83 −0.49
One Rule 4.42 −0.52 −0.60 −0.81 −1.23

RELIEF−F 4.43 −0.72 −0.12 −0.26 −0.26
Symmetrical Uncert. 4.43 −1.20 −1.03 −0.84 −0.39

4.2 Reuse

Insulin-on-board adaptation was tested against a combination of five
case-base sets using the optimal retrieval configuration. The purpose
of the IOB adaptation is to resolve the differences in active insulin
between the new problem and retrieved case(s). Table 3 illustrates
the improvement the IOB adaptation provides across all statistical
measures.
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Table 3. Comparison without and with insulin-on-board adaptation

Measure Without IOB With IOB
BGRI 4.22 ±0.31 3.94 ±0.27

< target range (TR) % 0.03 ±0.19 0.01 ±0.12
> target range (TR) % 0.00 ±0.00 0.00 ±0.00

σ 0.87 ±0.05 0.81 ±0.04
µ mmol/L 6.34 ±0.13 6.30 ±0.21

4.3 Revise
As stated previously, successful revision is crucial for CBR to learn
from mistakes. Table 4 presents the in silico results of one to three cy-
cles of 3-hour offset postprandial revision, where the original bolus is
after reuse adaptation, but prior to revision. The results demonstrate
how the postprandial revision rule improves suggestions based using
the difference between a target blood glucose level and a postpran-
dial blood glucose reading. After three revisions the resulting BGRI
is reduced by as much as 27% from the original bolus suggestion.

Table 4. Bolus reuse following 3-hour offset postprandial evaluation

Measure Original Cycle 1 Cycle 2 Cycle 3
BGRI 3.94 ±0.27 3.32 ±0.31 3.02 ±0.41 2.87 ±0.43

< TR % 0.01 ±0.12 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
> TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

σ 0.81 ±0.04 0.72 ±0.03 0.67 ±0.04 0.65 ±0.04
µ mmol/L 6.30 ±0.21 6.44 ±0.15 6.52 ±0.13 6.56 ±0.12

5 RELATED WORK
Case-based reasoning has been adopted by several research projec-
tors in the domain of T1DM. The majority of this research has fo-
cused on aiding clinicians with therapy adjustments as opposed to the
patient directly. Such projects include the T-IDDM project [4], and
more recently the IDSDM project [15]. A notable exception is the
Advanced Bolus Calculator for Diabetes (ABC4D) [10, 17], which
through clinical trials demonstrated the positive affects of CBR for
bolus advice. Whilst ABC4D tackles the same problem, we adopt a
different approach to CBR, and incorporate the temporal aspect.

6 CONCLUSION
This research demonstrated positive in silico results for the use of
temporal CBR for bolus decision support. The introduction of a tem-
poral retrieval algorithm demonstrated an improved BGRI prior to
any adaptation of revision. With the introduction on IOB adaptation
and a postprandial revision algorithm, a notable improvement in all
statistical measures is demonstrated. These results highlight the po-
tential benefit of temporal CBR for bolus decision support over bolus
calculators currently available to the public.

We are aware of limiting factors in this research, most notably the
inability to include additional factors such as physical exercise due to
limitations of the simulator. Further research of this approach should
include additional parameters, a safety layer to protect patients, and
validation through clinical trials.
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Monitoring patients with diabetes using wearable sensors: 
Predicting glycaemias using ECG and respiration rate 

Božidara Cvetković1 and Urška Pangerc1 and Anton Gradišek1 and Mitja Luštrek1 

 

Abstract.1  Wearable sensors show great promise in monitoring 
medical conditions of patients with diabetes and can therefore be 
used to significantly improve their quality of life. In our pilot 
study, patients with type I and II diabetes were equipped with a 
series of such sensors. Here, we focus on the data provided by a 
chest harness sensor that records both the ECG signal and the 
respiration rate. We developed machine-learning based models to 
recognise and predict abnormal glucose blood levels (hypo- and 
hyperglycaemia) in type I and II diabetes patients. We obtained 84 
% accuracy in predicting glycaemia for patients with type I 
diabetes and 88 % for patients with type II. For recognition of 
glycaemia, we achieved 78 % accuracy for type I and 76 % for 
type II. Analysis of other sensor data is in progress.  

1 INTRODUCTION 

Diabetes is a group of chronic metabolic diseases that are 

related to high blood sugar (glucose) levels, either due to the 

pancreas not producing enough insulin or the body not properly 

responding to it. The two main types are type I, which is an 

autoimmune condition where the immune system destroys insulin-

producing cells in the pancreas, whereas type II is related to insulin 

resistance and is primarily caused by unhealthy living style. 

According to the International Diabetes Federation, diabetes 

currently affects over 400 million people worldwide (out of which, 

90% is type II), reaching epidemic proportions, with numbers 

expected to rise up to 600 million in 20 years [1].  

People with diabetes have to adjust their lifestyle in order to 

keep the blood sugar in the appropriate range, in order to prevent 

medical complications that may otherwise arise – especially the 

cardiovascular diseases, stroke, chronic kidney failure, damage to 

the eyes or food ulcers. Diabetes-related complications also 

represent the 8th leading cause of death worldwide. 

In the last decade, wearable sensors for a variety of purposes 

have become widely available. They can be used to track basic 

body functions, such as the respiration rate, ECG, body 

temperature, or even more complex features such as types of 

activities and energy expenditure [2] through an efficient 

interpretation of accelerometer, gyroscope, or other available 

biosensor data [3]. A combination of different types of information 

can assist individual patients in monitoring their medical condition, 

such as predicting the blood glucose levels and early warning of 

(preventable) potential complications, thus greatly improving their 

quality of life. In a pilot study, carried out in the framework of the 
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COMMODITY12 EU project [4], a group of patients was equipped 

with a series of sensors, wearable and non-wearable, in order to 

assess feasibility and extent to which these sensors can assist 

patients in everyday life.  

In this paper, we focus on the interpretation of the ECG and the 

respiration rate data (obtained using a commercial chest harness 

sensor [5]) in combination with continuous blood glucose level 

measurements obtained with GlucoTel [6], a telemedical blood 

glucose measuring sensor. These data were used for development 

of two machine-learning based models, one for detection of 

potential hypo- and hyperglycaemias and one for predicting their 

occurrences. We discuss potential improvements in combination 

with data from other sensors as well as in combination with more 

complex features which already utilise machine-learning (e.g., 

recognised activities, estimated energy expenditure, etc.).  

2 RELATED WORK 

Medical literature states that hypoglycaemia (low glucose levels) is 

related to decrease in heart rate and that hyperglycaemia (high 

levels) is strongly linked to the polarisation and depolarisation of 

heart chambers, the so-called QT interval in the electrocardiogram 

readings (discussed in Section 3.1). These changes in the QT 

interval are also highly linked to arrhythmias which can lead to 

cardiac arrest or heart failure. 

Hanfeld et al. [7] present a systematic overview of the state-of-

the-art in the field. For patients with type I and II diabetes, it was 

found that the changes of the QT interval occur in cases of severe 

hypoglycaemia. Other studies [8,9] also reached the same 

conclusion. On the other hand, Singh et al. [10] demonstrated that 

the heart rate variability decreases in case of severe 

hyperglycaemia.  

Nguyen et al. [11] attempted to detect hypo- and 

hyperglycaemias from the ECG signal from patients with type I 

diabetes. They found that an increasing heart rate relates 

exclusively to hypoglycaemia while changes of the PR interval 

from ECG exclusively relate to hyperglycaemia.  

Machine-learning algorithms have previously been used to 

predict the blood glucose levels [12]. However, these algorithms 

use complex dynamic models based on historic data for individual 

patient as the input parameters, and not the ECG measurements. 

In the related research, the ECG signal was typically measured 

with professional equipment under clinical supervision in the 

laboratory environment. The researchers could immediately discard 

the noisy data and therefore investigated the correlation between 

the values of the ECG parameters and the measured glucose levels 

only on clean data. Our research motivation is to detect and predict 
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hyper- and hypoglycaemias in everyday lives of patients and not 

only under medical supervision. That is why the pilot study utilised 

a commercial ECG sensor [5] that the patients have worn at home. 

3 DATASET  

The dataset was collected during the project pilots in two countries. 

The study encompassed 30 patients with type II diabetes from 

Poland and 22 patients with type I diabetes from Italy. Each patient 

was equipped with Zephyr BioHarness [5] that records ECG, 

respiration rate, and acceleration, with a GlucoTel [6] glucose 

monitor, with a standard telemetric blood pressure monitor, a 

telemetric scale, and a smartphone that was used as a smart-hub 

which serves as a main control system which enables input of 

symptoms (e.g., tremor, vertigo, etc.), collects the data from all 

devices and sends the data to the central server.  

The patients were instructed to wear the ECG sensor and 

perform measurements while performing normal daily activities 

(eating, exercising) and around the time they measured glucose 

level, over a course of six weeks. In total, we have collected 787 

hours of raw ECG and respiration data during the pilot study.  

In the study at hand, we analysed the ECG signal, the 

respiration rate, and the glucose level measurements. To obtain 

clean data we first processed the ECG and the respiration rate 

measurements using filters which removed the noisy and 

unreadable parts, but nevertheless retained the signal morphology. 

After filtering, we were left with approximately 566 hours of clean 

ECG and respiration data. 

With respect to the glucose level measurements, two types of 

30-minutes segments were used for analysis: 

 30 minute segment from 45 to 15 minutes before the 

glucose measurement, for the purpose of glucose level 

prediction (hypo- and hyperglycaemia and normal levels) 

 30 minute segment from 15 minutes before to 15 minutes 

after the glucose measurement, for the purpose of glucose 

level detection 

The ECG signal was processed with an ECG feature extraction 

algorithm [13] that extracts 13 parameters which describe the shape 

of the signal (Figure 1).  

The parameters are the following: 

 PR segment – time between the end of the P wave and 

beginning of the QRS complex 

 PR interval – time between the beginning of the P wave 

and the beginning of the QRS complex 

 QS interval – time between the beginning and the end of 

the QRS complex 

 ST segment – time between the end of the QRS complex 

and beginning of the T wave  

 QT interval – time between the beginning of the QRS 

complex and end of the T wave 

 P wave length – time between the beginning and the end 

of the P wave 

 T wave length – time between the beginning and the end 

of the T wave 

 Q, R, S, P, and T values – the amplitudes of the Q, R, S, 

P, and T waves, respectively (as individual parameters) 

 RR interval – time between two consecutive R waves 

For each of the parameters, the average value, the standard 

deviation, and the trend (the slope of a linear approximation) were 

calculated over the whole 30-minute interval. 

The signal of the respiration rate measurements is shown in 

Figure 2. As with the ECG signal, the average respiration rate was 

calculated, together with the standard deviation and the trend.  

The glucose level measurements contain, apart from the 

glucose level value itself, also the information whether the 

measurement was done before or after a meal, before sleep, at 

night, or other. Patients were left to decide when to take the 

measurements. Based on the glucose levels, the measurements 

were sorted into three groups as presented in Table 1. 

 

Table 1. Type of glycaemia according to the measured glucose level. 

Glycaemia Glucose level 

Hypoglycaemia < 4 mmol/l 

Hyperglycaemia >7 mmol/l 

Normal glycaemia 4 mmol/l < > 7 mmol/l 

  

 

 

4 THE APPROACH FOR GLYCEAMIAS 
RECOGNITION AND PREDICTION  

For recognising and predicting glycaemias, we utilised the standard 

machine-learning approach. We constructed the instances which 

contain a group of extracted features of one or more signals. These 

 
Figure 1. ECG parameters retrieved with the signal processing algorithm. 

 

 
Figure 2. Respiration signal. The stars are labels which indicate the 

recognised breaths. 

 

19



instances are processed using a machine-learning algorithm for 

classification and the result is evaluated using a 10-fold-cross 

validation approach.  

We evaluated two approaches: 

1) Single model approach: We first use only the ECG sensor 

features. In the next steps, we gradually add additional 

features into the instances and evaluate the recognition 

and prediction.  

2) Two-model approach: We first divide the dataset 

according to the time point the measurement was 

performed (before or after the meal) and use this 

information as a context to divide the decision space. We 

use one model for recognition or prediction of glycaemias 

before the meal and other for recognition or prediction of 

glycaemias after the meal. 

Both approaches were evaluated in four setups, each setup using 

different set of attributes for the used signals respectively and 

being labelled with the current glucose level (hypo-, hyper-, or 

normal glycaemia). The attribute sets are: 

A1: All attributes (absolute and relative values) 

A2:  Absolute attribute values 

A3:  Relative attribute values 

A4:  Top 20 attributes as recommended by the ReliefF 

algorithm [14] 

Figure 3 shows the number and the distribution of glycaemia 

occurrences in the dataset, where we can see that the most common 

cases are hyperglycaemias, and that there are only a few cases in 

total of hypoglycaemias for patients with type I diabetes. No cases 

of hypoglycaemia were recorded in patients with type II.  

Figure 4 shows the number and the distribution of glycaemias 

when we separate the dataset with respect to the “time of glucose 

measurement” attribute values “before” or “after meal” for the 

second approach. We observe that for predicting glycaemia, the 

only data available for analysis is for diabetes type I before meal. 

5 EXPERIMENTS AND RESULTS 

We carried out 16 experiments for glycemia prediction and 16 

experiments for glycemia recognition. For each set of attributes 

(A1 to A4 from Section 3.2), we built models with the following 

approaches: 

M1: Model built using attributes from the ECG signal 

M2: Model built using attributes from the ECG signal and the 

respiration rate measurements 

M3: Model using both the ECG signal, respiration rate 

measurements, and the “time of glucose measurement” 

attribute 

M4: Two models are built, each to be used according to the 

“time of glucose measurement” attribute. One model is 

built for “before meal” and the second for the “after 

meal” classification. Both models are built with the same 

signal data as M2.  

Each set of attributes was tested using ten machine-learning 

algorithms, as implemented in the Weka machine-learning suite [9] 

using the default algorithm parameters: Naïve Bayes, Logistic 

Regression, SVM, IB3, AdaBoostM1 with RepTree, Bagging with 

RepTree, JRip, J48, Random Forest, and ZeroR as the basic 

algorithm that always returns the dominant class. Each experiment 

was evaluated and tested using the 10-fold cross validation.  

The results of the algorithm testing are presented in Table 2 for 

the diabetes type I and in Table 3 for diabetes type II.  

When predicting glycaemias, the set of attributes A4 always 

returned best results for diabetes type I patients while the A2 set 

was best for diabetes type II patients. The highest accuracy for type 

I diabetes patients, 84 %, was obtained using logistic regression 

and by separating the dataset based on the glucose measurement 

time with approach M4. We were unable to evaluate the same 

approach on type II patients due to the lack of data. We suspect 

that diabetes type II patients mostly measured their glucose levels 

when feeling bad, since the measurements were not done before or 

after meals but at various times throughout the day. The best result 

for type II was obtained with the IB3 algorithm, with 88 % 

accuracy. 

For glycaemia recognition, the best results were obtained with 

the M4 approach for both types of diabetes. For type I, the best 

results were obtained using the A4 set of attributes and the SVM 

algorithm for the model before meal and logistic regression for 

after meal. This approach resulted in 78 % accuracy. For type II, 

the best results were for the A4 set and SVM before meal and A2 

and Bagging algorithm after meal.  This approach resulted in 76 % 

accuracy.    

 

 
Figure 3. Distribution and number of glycaemias according to diabetes 

type and classification task. 

 

 
 

Figure 4. Distribution and number of glycaemias according to 

classification task, diabetes type and time point of glucose measurement. 
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Table 2. Recognition and prediction accuracies for the best combination of 

attributes (A) and approaches (M) for diabetes type I. 

 ZeroR (%) Acc (%) A M 

Glycaemia recognition 49 78 A4 M4 

Glycaemia prediction 53 84 A4 M4 

 

 
Table 3. Recognition and prediction accuracies for the best combination of 

attributes (A) and approaches (M) for diabetes type II. 

 ZeroR (%) Acc (%) A M 

Glycaemia recognition 66 76 * M4 

Glycaemia prediction 85 88 A2 M3 

* A4 before meal, A1 after meal 

 

We achieve reasonable accuracies both for recognition and 

prediction in this preliminary analysis which shows that our 

approach is promising. However, we should note that the data for 

predicting the glycaemia in diabetes type II patients was extremely 

unbalanced, containing 85% of cases of hyperglycaemia and not a 

single hypoglycaemia, with other measurements being normal 

state. The results of glycaemia prediction in type II are therefore 

not representative.  

6 CONCLUSION 

We present a machine-learning based approach to predict and 

recognize anomalous blood glucose levels (hypo- and 

hyperglycaemia) for patients with type I and II diabetes. A general 

machine-learning approach was used to build classification models, 

based on attributes obtained from the ECG signals and respiration 

rate measurements.  

Experiments were carried out on 30 patients with type I diabetes 

and 22 patients with type II. We figured out that the best approach 

in both recognising and predicting glycaemias is to construct two 

models, one for before and the other for after the meal.  

With our approach, we achieved 84 % accuracy for prediction 

of glycaemias for patients with type I diabetes. Due to the lack of 

data, we were not able to use the same approach with type II 

patients, as they were monitoring their glucose level more sparsely 

and mostly at time when they felt bad. The same two-model 

approach returned the best results for recognition of glycaemias, 

we achieved 78 % in case of diabetes type I and 75 % in case of 

diabetes type II patients.  

The results seem somewhat surprising since one would expect 

that recognizing glycaemias is easier than predicting them. We 

plan to investigate this further to better understand it.  

In future work, we plan to pre-process the raw data using other 

types of filtering approaches which will enable us to keep more 

clean data around glucose measurement time points. We will add 

additional features such as recognised activities and estimated 

energy expenditure during the day and other collected data during 

the pilot study, such as the blood pressure and weight for a more 

personalised approach. We believe that knowledge about the 

activities of the patients and the intensity of activity will 

significantly contribute to more accurate recognitions and 

predictions of the glycaemias.  

Nevertheless, we will also evaluate whether the presented 

method and future work method is appropriate for practical use, 

namely, to actively advise patients to check their glucose levels 

using their standard (invasive) equipment before symptoms occur.  
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Developing a Motivational System to Manage
Physical Activity for Type 2 Diabetes

Yousef Alfai�, Floriana Grasso and Valentina Tamma1

Abstract. Type 2 diabetes (T2D), a chronic disease, can be
e�ectively managed with the combination of diabetic medica-
tions and a healthy lifestyle. Regular physical activity is an
example of a healthy lifestyle that helps to manage T2D and
prevents complications. However, barriers to physical activ-
ity prevent and hinder diabetic patients from living a healthy
lifestyle. Patients' health condition and personal obstacle' are
common barriers to physical activity. This paper describes
preliminary work towards the development of a framework
to motivate patients with T2D to engage in regular physi-
cal activity. Basic information, current health conditions, and
the behaviour of diabetic patients will also be included in
the framework for the identi�cation of speci�c barriers. In-
sights from persuasive technology will be incorporated into
the framework to motivate the patient to healthy lifestyle
modi�cation. The framework is based on a model understand-
ing of behaviour and behaviour change of patients.

1 Introduction and Motivation

Diabetes is a complex and chronic disease requiring expen-
sive, psychological treatment, continuous medical care and
self-management by the patient [3]. The recent statistics in-
dicate a dramatic increase in the number of diabetic people
around the world, reaching 422 million in 2014 compared with
only 108 million in 1980 [17]. This number is expected to in-
crease to 552 million by 2030 [21] and 592 million by 2035 [8].
Annually, diabetes is estimated to cost around 10% of the
total health budget, and this percent is projected to reach
to 17% by 2035 [11]. Diabetes and its complications cause
more than two million deaths each year [17]. Type 2 Diabetes
(T2D) is the most common type of diabetes; approximately
90-95% of all diabetes cases worldwide are T2D [3]. Other
types of diabetes include type 1 diabetes, gestational dia-
betes mellitus and monogenic diabetes syndromes [3]. T2D,
also known as "non-insulin-dependent diabetes" occurs when
the body cannot use its' insulin e�ectively [3, 21]. Diabetic
medications, either multiple-dose insulin injections or low-
dose tablets, and a healthy lifestyle can help manage T2D [3].
Public health professionals have begun focusing increasingly
on lifestyle changes to improve the management of T2D and
diabetics' overall health [3, 17�19]. A healthy lifestyle can in-
clude regular physical activity, nutrition planning, smoking
cessation etc [3]. The World Health Organisation (WHO) de-
�nes physical activity as "any bodily movement produced by

1 Computer Science department, Liverpool University, UK,
email: Y.Alfai�, Floriana, V.Tamma@liverpool.ac.uk

skeletal muscles that requires energy expenditure" [17]. Con-
versely, unhealthy lifestyles lead to poor health management
and increase the risk of developing T2D [3,19].
Although regular physical activity supports a patient's self-

management of diabetes [19], there are barriers and obsta-
cles that prevent patient from achieving the maintain phys-
ical activity [20]. These barriers can be de�ned, in gen-
eral, as obstacles that prevent diabetic patients from living
a healthy lifestyle, either partially or totally. Physical activ-
ity barriers are usually environmental, personal or medical
constraints [14, 20]. Most of these barriers are shared with
the non-diabetic population, typically linked to lack of moti-
vation [3, 12]. In addition, there are speci�c psychological [6]
and health barriers for patients with T2D such as an absence
of stimulus and hypoglycaemia, respectively [14,19].
The most recent report from WHO and American Diabetes

Association (ADA) suggests that advanced computer tech-
nology can support and improve the self-management of dia-
betes [3, 17]. The technology can improve individual's lifestyl
es and lead to behaviour changes that support the better man-
agement of T2D and prevent or delay T2D development [3].
Moreover, technology can also motivate a patient with regard
to better lifestyle modi�cation [18]. This paper presents a pre-
liminary framework to assist patients with T2D to manage the
physical activity barriers and persuade to lifestyle modi�ca-
tion. Computer technologies that advise or persuade a patient
regarding lifestyle modi�cations are based on a model of pa-
tients' behaviour and behaviour change in achieving regular
physical activity.
The rest of paper is organised as follows: Section 2, we look

at the problem statement. In section 3 debates the literature
review. Section 4 discusses the methodology of the framework.
Section 5 presents the evaluation of the system. Section 6 gives
points of the expected challenges. Finally, a brief conclusion
and discussion about future work are given in Section 7.

2 Problem Statement

Healthy lifestyle choices, such as regular physical activity, of-
fer a healthy and economical way to monitor the T2D. Bar-
riers to physical activity are the main problem that obstruct
typical physical activity, and therefore a satisfactory lifestyle.
Today, computer technology plays a vital role in enabling a
patient to overcome complex problems, provide proper advice,
and in�uence a patient to realise positive behaviour modi�-
cations. In this proposed framework, we will mainly inves-
tigate the opportunity of computer technology intervention
(rule-based system and persuasive technologies) in manag-
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ing physical activity and motivation to lifestyle changes for
T2D patients. The model patient's behaviour and behaviour
changes will be taken into consideration to ensure a convinc-
ing investigation and ensure we overcome the main problem
(barriers to physical activity). Identifying the barriers to phys-
ical actively based on features or signs are presented as central
roles in addressing the issue. Therefore, judging and assessing
the ability of a rule-based system, particularly if-then rules,
to identify accurate barriers to physical activity will be re-
viewed initially. An evaluation and estimation of the strength
of persuasive technology to persuade and in�uence patient
modi�cation will be examined as well. As we will mention
in Section 4, depending on physical activity barriers, the pro-
posed system provides suitable advice at the end. Accordingly,
the ability of the If-then formula to suggest correct advice will
be measured and tested, too. Evaluating and studying these
combined cases can guide this research to explore the capabil-
ity of computer technology to manage the barriers to physical
activity for T2D patients.

3 Literature Review

Computer technology, including rule-based systems, has been
successfully utilised within the �eld of professional health-
care to develop the health services that are provided to pa-
tients [10]. Rule-based systems, or expert systems, which are
a branch of arti�cial intelligence, are employed in the �eld
of medicine to support self-management, advising, decision-
making and support. A rule-based system results in the trans-
fer of a human experience or human knowledge into an au-
tomated system in order to solve complex problems. A rule-
based system is based on a set of facts and rules that uses
if-then statements to make a decision-making [7].
In the diabetes �eld, various types of expert system have

been improved to support diabetes patients in managing the
disease. Some of the diabetes studies are discussed below.
The authors in [16] demonstrate a diabetes management

model to enable patients with T2D to alter their lifestyles. The
goal of this model is to monitor and interpret a patient's daily
lifestyle changes in the form of decision support to achieve pa-
tient's health goals. Seven inputs are necessary to insert into
the model: age, gender, weight, height, blood glucose (BG),
exercise, and diet. The system returns three outputs: glycat-
edhaemoglobin (A1c), exercise and diet level assessments.
The study in [1] designed and implemented a rule-based ex-

pert system to manage one type of lifestyle, which is a healthy
diet for patients with T2D. The system can provide the pa-
tient with a plan for a satisfactory amount of daily calories as
well as a list of proposed foods.
The study in [9] developed an approach to support patients

in the self-management of diabetes. The approach is based
on an expert system to represent the knowledge. The sys-
tem includes four sections: body weight and the assessment
of daily nutritional requirements, hypoglycaemia symptoms,
self-monitoring of blood glucose levels and diabetes-related
disease. The system produces appropriate recommendations
to manage diabetes by using the patient's input, including
blood glucose levels and other related signs.
The authors in [13] constructed incorporating diet in the

self-management of diabetes. They use a case-based approach
to advice patients about healthy nutrition. The case-based
approach acquires its knowledge from clients and patients.

The rule-based system included in this approach uses a health
record management system. The system �lters the food prod-
ucts while considering the patient's or client's health record.
The system can ultimately produce a suggested diet plan.
The authors in [10] established a system to advise women

with gestational diabetes regarding the adjustment of daily
multiple-dose insulin and dietary habits. The system pro-
vides a consultation according to patient inputs, which in-
clude blood glucose level, time and nutrition modi�cation.
The system is evaluated in real scenarios and has proven to
reduce the frequency of doctor visits.
The above studies e�ort in diabetes management, but are

lacking when it comes to addressing patient behaviours that
can signi�cantly impact the management of their disease. In
order to take these behaviours into consideration, the be-
haviour of user need to be understood [5, 15]. Once user be-
haviour can be appreciated, system developers are able to cre-
ate a motivational system that has the ability to change user
behaviour [5], rather than just provide a simple consultation.
Conversely, a system that is designed without user behaviour
in mind will yield a highly limited solution [5]. A patient or
user may know, obviously, that eating healthier food leads to a
healthier lifestyle, and vice versa, but the results are apparent
in the future, not immediately. Imagine using a short video
to show the direct cause-and-e�ect relationship between nu-
tritional eating and a healthy or unhealthy lifestyle, and how
this would a�ect the behaviour of the patient. This simula-
tion lets the user explore and experiment with a real healthy
or unhealthy consequence [4]. The simulation, which is based
on motivation factors, simulates particular pleasure and pain
elements and pushes a user to change the behaviour [4, 5].
Fogg describes this technique as persuasive technology, which
is de�ned as "learning to automate behaviour change" [5].
Psychological research studies have shown that opportuni-

ties for learning behaviour changing techniques, such as mo-
tivation and goals, in�uence a person's behaviour modi�ca-
tion [15]. Motivating a diabetic patient to change the lifestyle,
like quitting smoking, is more e�cient than just treatment
alone [3]. According to the national standards for Diabetes
Self-Management Education, diabetic patients must under-
stand that a healthy lifestyle begins with high-quality self-
management to improve overall health and prevent complica-
tions of T2D [3]. But how do we encourage, promote, and con-
vince them to act on their beliefs? Consequently, a substantial
problem is �nding ways we can in�uence and persuade dia-
betic patients to follow a healthy lifestyle as directed through
the medical advice. Computer technology can play a motiva-
tional role in persuading patients to change their behaviour,
despite a low health status [4, 5, 18]. In order to e�ectively
apply technology to in�uence a patient's behaviour change,
the patient's behaviour must be taken into consideration [18].
Today, it has become possible to insert persuasive tech-

nology into the system design to persuade users to change
the behaviour [4,5]. The Fogg Behaviour Model (FBM) com-
bines the psychological and technological sides in order to
push a user towards behaviour modi�cation. FBM is a suit-
able model to apply, in part, to this framework. FBM paves
the way for the movement and application of the psychologi-
cal theory to computer technology to in�uence user behaviour
modi�cation. FBM is a general model which can be used in
the healthcare �eld to modify patient's behaviour. FBM as-
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Figure 1. Preliminary Framework to Mange the Physical Activity for T2D

serts that there are three combined factors (su�cient moti-
vation, ability and trigger), which have to come together at
the same time for a target behaviour to happen; otherwise,
the behaviour will not occur. These factors have provided a
platform for designers and researchers to understand users'
behaviour and performance [5].

4 Methodology

4.1 Preliminary Framework for Managing
Physical Activity

This research presents a preliminary framework for manag-
ing physical activity in individuals with T2D Fig. 1). The
framework is based primarily on a model of a patients' be-
haviour and behaviour change, to capture the actual barriers,
to provide a �nal exhortation, and to design the persuasive
strategy. The personal information phase has enabled the sys-
tem to obtain the necessary information from a patient such
as age, gender, city, job (part-time or full-time) and other
information. This phase assists in identifying basic features
of barriers, such as lack of time, in the early stages. e.g, ac-
cording to a patient's daily diary, the time constraint barriers
can appear, in part, in this phase. The phases of patient's
behaviour and behaviour change are based on the psycholog-
ical theory and Fogg's model to complete this phase success-
fully. Emotions, social in�uences, motivations and goals (and
other aspects) should be determined in this phase, as well as
a patient's beliefs about their capabilities and consequences.
These key determinants identify not only the features of psy-
chological barriers, but also help to understand a patient's be-
haviour and behaviour change [15]. The phase of a patient's
current health status must be examined to identify any bar-
riers related to their current health condition. Based on the
patient's input, e.g, blood glucose level, and blood pressure,
the system can identify whether hypoglycaemia or high blood
pressure, respectively, are barriers to physical activity or not.
Identi�cation of a patient's physical ability, in this stage, also
helps to produce a suitable intensity, type and duration of
physical activity by the end of the advising. The phase of
the persuasive strategy is based on the FBM, particularly on
persuasive technology for behaviour modi�cation, as well as
the behaviour and behaviour change of a model patient. The
phase of identifying the physical activity barriers is respon-
sible for recognising the actual barriers to physical activity
based on the features of the barriers, from either the other
phases or it own features (Subsection 4.2). Finally, a correct
motivational advice phase can produce a stimulating advice
depending on all of the above phases.

The preliminary model presents how these related phases
(the personal information, the patient's current health status,
the identi�cation of the barriers to physical activity, and the
persuasive strategy) can produce suitable advice for diabetic
patients depending on the behaviour and behaviour change of
a model patient (Fig. 1).

4.2 Proposed Method to Identify the
Actual Barriers to Physical Activity

In the preliminary framework on Fig. 1) particularly, in the
phase of identifying the barriers to physical activity, we sug-
gest dealing with each barrier as an independent problem.
Consequently, each barrier will be identi�ed according to its
own features or signs. A feature or a sign is an attribute or
aspect of a barrier to physical activity. One or more features
can identify the actual barriers. Ignoring these features, in
decision-making about barriers, may lead to incomplete ad-
vice, or worse, incorrect advice at the end. Identifying the bar-
riers with certainty guides advisors to successful and suitable
advising at the end. i.e, bad weather is presented as a barrier
for diabetic patients, as well as the general population [12].
Classifying either the weather condition as a barrier or not
is dependent upon certain related states (signs) of the atmo-
sphere and phenomena such as heat, cold, storms, and rain.
The evaluation or assessment of each factor acts as a guide
for accurate decision-making and as a recommendation with
more details, whether on the barriers side or on the advising
side. In contrast, ignoring one or more these signs or features,
even though they are forecasted in some cases, leads to in-
exact identi�cation of barriers, and, consequently, inaccurate
advice. The below if-then formula clari�es how to identify if
the weather is a barrier (or not), based on a few weather signs.

IF it is winter, OR the temperature is < 0 degrees
OR the weather is stormy
THEN the weather is a barrier because it is cold, we advise
you to do indoor physical activity

On the side of health barriers, hypoglycaemia, or low blood
glucose, is classi�ed as an obstacle to maintaining physical
activity for the patient with T2D [14, 19]. Symptoms such as
hunger and nausea, blurred (impaired) vision, and a headache
will be present with hypoglycaemia [2]. The blood glucose
level, an indicator of the patient's current health status, is
also examined in hypoglycaemia [19]. The following if-then
rules explain how to determine whether hypoglycaemia is a
barrier to physical activity or not, based on a few symptoms
(features) [2,19]. It also displays a caution when performance
of physical activity is inadvisable due to potential side e�ects.
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IF blood glucose levels < 100 mg/dL (5.6 mmol/L)
OR feeling hungry, OR blurred/impaired vision
THEN stop physical activity, recheck your blood, glucose
after 15 minutes, and eat a small snack

5 Evaluation

The evaluation of the proposed system includes two main
stages. The �rst stage involves evaluating and estimating the
ability of the proposed rules to identify speci�c problems
(i.e., barriers to physical activity) by using a forward-chaining
mechanism. Forward chaining can match a patient's input (
barrier's feature) to decide which rules are �red and then pro-
vide advice derived from the data. Forward chaining show
the capability of the rules to identify either the weather or
hypoglycaemia, respectively, as barriers based on certain fea-
tures and symptoms (Subsection 4.2). The second stage will
be the evaluation of the entire system. Patients with T2D,
health care providers, and specialists would contribute to sys-
tem evaluation. Feedback will be taken into consideration to
improve the proposed system.

6 Expected Challenges

Academic researchers can expect to face challenges in any area
of investigation. Anticipating challenges and seeking suitable
solutions in the early stages of research serves to help the re-
searcher manage di�culties more e�ciently. The anticipated
challenges of this study include:
� Identify the speci�ed barriers based on several features of
barriers (psychological, medical or personal), and then pro-
duce suitable advice.

� Modeling of patient's behaviour and behaviour change in
di�erent age groups, and designing the persuasive strategy,
e.g, persuasive technology, with these di�erences in mind.

7 Conclusion and Future Work

Helping patients with T2D perform regular physical activ-
ity to result in lifestyle modi�cations is a challenge faced by
health organisations and researchers. At the individual level, a
patient regularly partaking in physical activity contributes to
the maintenance of a healthy lifestyle and in assistance with
T2D management, however barriers often prevent meaningful
physical activity. The framework described in this paper pro-
poses a system by which to manage barriers to physical activ-
ity, improving lifestyle changes, and supporting T2D manage-
ment. Both rule-based system (if-then rules) and persuasive
technologies integrate with this framework, which works to
identify physical activity barriers and providing correct advice
at the end. Developing, testing and additional evaluation of
the preliminary framework will be conducted in future work.
Diabetes is only one of many chronic conditions impacting

peoples' lives. The preliminary proposed framework can be
applied to di�erent chronic diseases, including type one dia-
betes, obesity and high blood pressure. The method of identi-
fying physical activity barriers according to features can also
be applied to other chronic diseases.
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Increasing transparency of recommender systems for
type 1 diabetes patients

John Paul Vargheese1, Rachel Harrison1, Mireya Munoz Balbontin1, Arantza Aldea1, Daniel Brown1

Abstract. Self-management of type 1 diabetes is a challenging and
complex task due the constant need for self monitoring and the
diverse range of factors to consider in order to effectively regu-
late blood glucose levels. Recommender systems have been demon-
strated to be effective for supporting patient self-management of type
1 diabetes by providing recommendations for insulin doses. Recent
studies have expanded on this approach by incorporating case based
reasoning within existing recommender systems for type 1 diabetes,
to provide a more flexible and personalised approach to making rec-
ommendations. However, recommendations made by such systems
may be ignored, even when users consider the system’s performance
to be good. To address this, we propose a complimentary approach
to increase the transparency of such systems through the provision of
explanatory summaries that expose the reasoning process for making
the recommendation. Greater transparency may increase recommen-
dation acceptance rates and improve users’ trust and acceptability of
these systems.

1 Introduction and motivation
Type 1 diabetes is an autoimmune disease in which the pancreas is
unable to produce insulin which prevents regulation of blood glu-
cose levels (BGL). Regulating optimal BGL is essential in order to
avoid severe long-term health problems caused by hyperglycaemia
(high blood sugar levels) and hypolglycaemia (low blood sugar lev-
els). Current treatment involves administering insulin which can be
delivered either through subcutaneous injections or through an in-
sulin pump. Self-management of type 1 diabetes typically involves
the monitoring of BGL using a blood glucose meter and estimating
the required amount of insulin to regulate BGL. However, this usu-
ally results in a less than optimal regulation of BGL [8]. This com-
bined with the wide range of subjective and individual physiologi-
cal factors that may affect BGL such as stress, illness, exercise and
other activities of daily living and lifestyle, make self-management
and treatment recommendations a complex and challenging task
[21]. Furthermore, maintaining an optimal self-management regimen
can be difficult to achieve due to the need for persistent monitor-
ing of BGL, calculating and administering required insulin doses
and following recommendations for increasing exercise and adopt-
ing a new healthier lifestyle [14]. Despite these challenges, effective
self-management has been demonstrated to be effective for avoid-
ing long term health risks associated with type 1 diabetes [9]. Rec-
ommender systems such as insulin bolus calculators support patient
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self-management by recommending insulin doses [18, 10] and have
been demonstrated to be effective across a range of studies [12, 1].
However, recommendations made by such systems may often require
amendments due to the wide variety of factors that may impact upon
BGL [15]. To address this, recent studies have demonstrated the ben-
efits and effectiveness of enhancing insulin bolus calculators by in-
corporating case based reasoning (CBR) which offers a means of pro-
viding more flexible and personalised recommendations utilising a
knowledge base of previous experiences [15, 2, 8, 3]. However, as in
the case of other recommender, knowledge and expert based systems,
users sometimes ignore and reject recommendations due to a lack of
transparency [7, 13] even in cases where users consider the system’s
performance to be good [16]. Increasing transparency of such recom-
mender systems by providing an explanatory summary that exposes
the reasoning process for a proposed recommendation may increase
acceptance rates and improve users’ trust and acceptability. Previous
work has demonstrated how transparency of recommender systems
can increase user trust and acceptability of such systems [4, 5].

2 Research challenges and proposed studies

Hypothesis: To realise the potential benefits of increasing the trans-
parency of recommender systems for type 1 diabetes, a number of
research challenges must be addressed. Our hypothesis (H) is: In-
creasing transparency by providing explanations for recommenda-
tions will increase acceptance rates, users’ trust and acceptability.
Study design: To assess this, it is necessary to consider what metrics
to apply to measure these outcomes. For example, consider a pre-
liminary controlled evaluation consisting of two groups of patients,
where both groups are provided with sample data from which a rec-
ommendation is proposed. Group A are provided with a recommen-
dation and no explanation and group B are provided with a recom-
mendation with an explanation.
Metrics: Participants are provided with a questionnaire to indicate
whether they would accept a recommendation, how much they trust
it, whether it reduces the effort for deciding whether to accept or re-
ject a recommendation (using Likert scales) and whether they would
consider future recommendations proposed by the system. These out-
come measures provide an initial assessment of H , however, we pro-
pose an iterative series of evaluations varying the strategy for pre-
senting a recommendation. These strategies [20] include Top recom-
mendation: Providing a simple explanation for a proposed dose, for
example reporting BGL only as part of the recommendation. Pre-
dicted recommendation: Providing an indication of the user’s pre-
dicted BGL for accepting a recommendation and for rejecting a rec-
ommendation. Structured overview: Providing an overview all fac-
tors that have been considered by the underlying CBR for example,
BGL, glycemic index and physical activity. Further considerations
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for how to present explanations for recommendations and user sys-
tem interaction, include investigating how varying visualisation op-
tions may help to improve the effectiveness and comprehensibility
of an explanation. Various studies have demonstrated how visualisa-
tions of medical data does not always enhance decision making [6]
and is typically most beneficial for expert users but less beneficial for
those with varying ranges of expertise [19]. Similarly, visualisation
alone has been demonstrated to be less effective for supporting de-
cision making compared to expert authored textual summaries [11].

3 Automating explanations for recommendations
We propose investigating the potential for using natural language
generation (NLG) for producing explanations for recommendations.
NLG systems analyse data to produce human readable text using a
four stage process as shown in Figure 1. The proposed platform in
Figure 1 incorporates a standard NLG architecture proposed in [17],
that is capable or receiving data and or knowledge as inputs to the
system.

Figure 1. Potential platform for automated explanations incorporating an
NLG architecture adapted from [17]

4 Discussion
Recommender systems such as those mentioned in this paper have
the potential to significantly reduce the risks associated with type 1
diabetes by supporting patient self-management. Users’ trust and ac-
ceptance are crucial to ensure widespread use and adoption of such
systems. In this paper, we propose investigating a complimentary
approach to existing recommender systems for type 1 diabetes pa-
tients, by increasing the transparency of recommendations by pro-
viding an explanatory summary of a proposed recommendation. We
believe this research has the potential to increase acceptance rates,
users’ trust and acceptability of such systems and may provide in-
sights for developing new models of trust utilising provenance which
could potentially enhance the reasoning process for making recom-
mendations.
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Assessment of diabetic complications based on series of
records
Eva Armengol 1

Abstract.
We propose an approach to assess the risk of complications for

diabetic patients. This assessment is based on previous records of
the same patient and also in both records and evolution of similar
patients.

Keywords: Diabetes Mellitus, Individual Prognosis, Artificial In-
telligence, Case-based Reasoning

1 Introduction

In 1989 held in St. Vincent (Italy) a meeting focused to find ways to
improve the health of people with diabetes in Europe. The result of
the meeting was the so-called St. Vincent Declaration whose basic
demands were the use of evidence-based treatment, equity of access
and strong partnerships in care for people with diabetes [6, 7].

Diabetes mellitus (DM) is a metabolic disorder in which the hu-
man body has not enough insulin to move the glucose into the blood.
There are two major types of diabetes: diabetes Type I (or insulin-
dependent) usually found in people being less than 40 years old; and
diabetes Type II (or noninsulin-dependent) often developed in peo-
ple over this age. Both forms of diabetes produce the same short-term
symptoms (i.e. increase of thirst, and high blood glucose values) and
long-term complications. Physicians classify diabetic complications
in two groups [5]: 1) Macro-complications: ischemic cardiopathy,
low extremities vasculopathy, and stroke; 2) Micro-complications:
nephropathy, retinopathy and polyneuropathy

These complications can be delayed or minimized by maintaining
the glucose levels in blood close to the ones of a person without dia-
betes [10]. The prediction of the individual risk to develop long-term
complications is based on the analysis of a large quantity of data that
have to be continuously evaluated. The therapeutic goals to offer a
good life quality to the patient depend on this analysis.

The DIABCARE Q-Net project [12] developed a complete and
integrated information technology system to monitor diabetes care,
according to the gold standards of the St. Vincent Declaration Ac-
tion Program. Inside this project, partners developed what they call
a basic information sheet that contains around 150 items about a di-
abetic patient. These items are basic patient data, risk factors, and
blood analysis results, in addition to other general information such
as the ability of the patient to monitor himself, results of eye and limb
examinations, etc. Based on this information, we developed DIRAS
[11] (Diabetes Individualized Risk Assessment System), an applica-
tion whose goal is to predict the risk of complications for diabetic
patients.
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Figure 1. Features describing a diabetic patient in DIRAS.

In the present paper we want to improve DIRAS by taking into
account several clinical sessions of each patient to analyse the evo-
lution of that patient when assessing the risk of complications. Most
of works on diabetes management are oriented to a global approach,
taking into account the characteristics of a given patient and propos-
ing an appropriate insulin dose to maintain blood glucose levels in
the normal range (see [3, 4, 14, 15] among others). Our goal is to
make a global assessment of the complications, based on the histori-
cal record of a patient but also on similar historical records of other
patients. In the next section DIRAS is briefly described and then the
new approach to be constructed on top of DIRAS is introduced.

2 DIRAS
DIRAS is an application oriented to support the physicians to de-
termine the risk pattern for each diabetic patient according to the
clinical data of that patient. The outcome of DIRAS is a risk pat-
tern, i.e., a set of assessments concerning diabetic complications. The
main contribution of DIRAS was to focus on individual patients in-
stead of populations of patients. For each patient, DIRAS works with
five kinds of data (Fig.1): Personal-Data, Basic-Diabetes-Data, Info-
Patient-Consultation, Assessment, and Risk-Pattern. Personal-data
contains information such as the name, address, birth date, etc. Basic-
Diabetes-Data contains basic information of diabetes (such as dia-
betes type, duration, and whether diabetes is treated with oral drugs
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Function LID (p, SDi , Di, C)
if stopping-condition(SDi )

then return class(SDi )
else fd := Select-attribute (p, SDi , C)

Di+1 := Add-attribute(fd, Di)
SDi+1 := Discriminatory-set (Di+1, SDi )
LID (p, SDi+1 , Di+1, C)

end-if
end-function

Figure 2. The LID algorithm: p is the problem to be solved, Di is
the similitude term, SDi is the discriminatory set associated with

Di, C is the set of solution classes, class(SDi) is the class Ci ∈ C
to which all elements in SDi belong.

or insulin). Info-Patient-Consultation has data on relevant measures
(e.g. glycated hemoglobin, cholesterol, blood pressure, etc), eye and
foot examination, current treatments, etc. Assessment contains qual-
itative assessments of the data in Info-Patient-Consultationt. Risk-
Pattern is the assessment of individual long-term risks of a patient.
The Risk-Pattern has two parts: 1) the macro-complication risks, and
2) the micro-complication risks. There are two kinds of risk for com-
plications: development risk and progression risk. The development
risk has to do with patient’s likelihood of developing a new compli-
cation in the future. The progression risk is when a patient already
has a complication and thus the risk of further deterioration has to be
assessed. The goal of DIRAS is to obtain an individual risk pattern
for diabetic patients using LID [1] a Case-based Reasoning (CBR) [9]
method. DIRAS obtains the risk for each feature in an independent
way.

The LID method (Lazy Induction of Descriptions algorithm is
shown in Figure 2. The basic idea is to start with a patient description,
namely Di that is the most general one (i.e., an empty description
satisfied by all the patients in the case base) and to specialize it by
adding features until reaching a description D′

i satisfied by cases that
belong to the same solution class. In our diabetes domain, the cases in
the case base are complete, in the sense that they have the risk pattern
filled with the corresponding assessments. The new problem p has
not the Risk-pattern. The features added to specialize a description
Di are added with the value that the feature holds in p. For instance,
if the feature selected to add to Dj is albumin and p has albumin
with value high, the current Dj should be specialized by adding the
feature 〈albumin, high〉. The version of DIRAS introduced in [1]
does not take into account the features in Info-Patient-Consultation
to compare cases. The solution classes are independent for each fea-
ture of the risk pattern, and the labels are low, medium, high, very
high for each one of them. Therefore, if we are assessing the risk of
p for retinopathy, LID will stop if all the cases satisfying the current
Dj have the same risk for retinopathy without being aware of the risk
of the other complications.

3 Assessing the Risk of Complications based on
Similar Historical Records

Diabetic patients are periodically controlled by a physician. During
the visits, in addition to the results of clinical analysis, the doctor also
inspects eyes, limbs, and asks for the life style of the patient. Such
visit gives a picture of the patient’s state at that moment. This picture
is the one registered in the features Personal-data, Basic-diabetes-

data and Info-patient-consultation show in Fig 1. DIRAS uses do-
main knowledge to give qualitative values to those in Info-patient-
consultation and to fill, in that way, the features in Assessment. Such
qualitative description of the patient is the one considered by DIRAS
to search for similar patients and to assess the complication risks.
Our point is that the risk could be better assessed by taking into ac-
count historical records of that patient. For instance, a high value
of LDL-cholesterol is more significant when it has been historically
high, than when it is the first time that it is high. Our proposal is
to qualitatively analyze the records of a given patient to capture the
evolution in terms of some linguistic variables such as low, normal
or high.

Figure 3 shows an example of a patient’s record corresponding to
7 visits. In that record the physician can see that the HDL-cholesterol
has been always normal but that the LDL-cholesterol is now high al-
though in the most of previous visits, with only one exception, it has
been normal. The patient has high levels of both HbA1c and blood
pressure and the creatinine has decreased to normal levels in the last
visits (this could mean that the applied therapy is effective). Concern-
ing physical aspects, the patient has no problem in eyes, but there is
some abnormality in the left leg.

LDL-cholesterol 	N 	 	N 	 	H 	 	N 	 	N 	 	N 	 	H	
	
HDL-cholesterol 	N 	 	N 	 	N 	 	N 	 	N 	 	N 	 	N	
	
HbA1c 	 	 	 	L 	 	N 	 	H 	 	H 	 	N 	 	H 	 	H	
	
Crea4nine	 	 	H 	 	H 	 	H 	 	H 	 	N 	 	N 	 	N	
	
Blood	pressure 	H 	 	H 	 	H 	 	H 	 	H 	 	H 	 	H	
	
Le;	eye 	 	 	N 	 	N 	 	N 	 	N 	 	N 	 	N 	 	N	
	
Right	eye 	 	 	N 	 	N 	 	N 	 	N 	 	N 	 	N 	 	N	
	
Le;	leg	 	 	 	N 	 	N 	 	N 	 	N 	 	N 	 	A 	 	A	
	
Rigth	leg 	 	 	N 	 	N 	 	N 	 	N 	 	N 	 	N 	 	N	

1 	 	2 	 	3 	 	4 	 	5 	 	6 	 	7																

Figure 3. Example of a historical record of a patient. It registers 7 visits
and the result of the examinations of several features.

This is a very preliminary work, so there are several issues that
still have to be fixed. In the next sections we discuss some of them.

3.1 Patient representation

We have available records of patients, with the information we need
to apply our approach. We estimate that there are not many records
for a given patient since, for instance, patients with Type II diabetes
are mostly elder people that commonly have one control at year. In
principle, this would not be a shortcoming, and this is the main rea-
son that suggest us to use qualitative data instead of numerical data.
Large series of numerical data give us curves that could be analyzed
using standard methods such as [8, 13] among others. Maybe this
could be appropriate for patients with diabetes type I, so we need to
analyze this point in more depth once we have data available. We
think that for short historical series of records, it could be easiest to
use a qualitative assessment of measures. Therefore, in a preliminary
study we will use a qualitative representation of patients as in DI-
RAS. This means that the measures in Info-patient-consultation will
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be discretized using domain knowledge and used to fill the features
in Assessment. Our assumption is that we do not lost important in-
formation for assessing the risk of complications.

3.2 Retrieval of similar cases

What we propose is to use CBR, particularly LID, to search for other
patients having similar historical records. There are many authors
proposing the [2, 15] use of CBR to manage diabetes. The system in
[15] claims that the analysis and comparison of patterns of events can
be more useful than just the analysis of single events as the other sys-
tems do. However, experiments does not support the idea that CBR is
a good methodology since patients have different insulin metabolism
rates and insulin tolerance levels, which influence the decision on the
type and amount of insulin to be administered. We have to analyze
this issue in detail, nevertheless our intuition is that the assessment
of the complication risk, although it has some dependence from the
patient metabolism, this is not so key as in the case of insulin dosage.
In fact, we want to assess the general risk prognosis and this does not
need to be so accurate as the determination of the insulin’s type or
the dose that a patient has to take.

Therefore, assuming that CBR is a good tool for our problem, what
we have to determine now is how the retrieval of similar cases has to
be done. First of all, patients with diabetes Type I have not to be re-
trieved as a precedents for a patient with diabetes Type II and vice
versa since both types of diabetes are considered as different dis-
eases by physicians. Also, the risk is also different between patients
that already have some kind of complications and those that have not
complications. These two considerations reduce the search for simi-
lar patients.

From here, the conceptual search is the one that takes into account
all the series for all the features describing a patient. Although we do
not want to take into account now the complexity of such search, we
will have to face with other problems as the different length of the
series. Therefore, we will have to study in depth techniques such as
the ones used in SparseFGM [16]. Such system analyzes a series of
lab test results of a potential diabetes patient to find particular com-
plications that the patient may have. The goal is to diagnose diabetes
complications from a set of lab test records of patients. In our ap-
proach, we do not only take into account lab tests but also all the
features that the physician takes into account during a consultation.
SparseFGM also takes into account the historical records of a patient
but the results are based only on the records of that patient. In our
approach we want to take into account the similar historical records
to assess the complication risk of a patient.

We also think that we could use DIRAS as is now, reduce the
search for similar patients. The idea is to find the features that are
relevant to assess the risk of each complication. These relevant fea-
tures in addition to other information we have, such as the years of
diabetes development and the years of complications initiation could
be key issues in searching the appropriate precedents.

3.3 Evaluation of Results

For each patient, we know the year of diabetes initiation and also the
year of complications initiation. That is to say, we know the charac-
teristics of the patient (analytical data, diet, lifestyle, etc) and also
how many years have been elapsed from diabetes diagnosis to the
initial complication. Therefore, we could use these dates to evaluate
our approach: the prediction of initiation of development for each

complication should approximately coincide with the actual year of
complications development.
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D1NAMO, A Personal Health System
for Glycemic Events Detection

Fabien Dubosson1 and Stefano Bromuri2 and Jean-Eudes Ranvier3 and Michael Schumacher4

Abstract. Several approaches are used nowadays to help dia-
betic people to handle their disease, one of them being the self-
management of diabetes. We developed in this context a platform
allowing patients to report and log their symptoms, medications and
glucose levels through an Android application. In addition to self-
management, the D1NAMO project aims at using ECG signals in or-
der to detect glycemic events and eventually predict glycemia levels.
The BioHarness Zephyr 3 sensor has been integrated in the platform
for this purpose. The resulting platform is a full-stack personal health
system for diabetes self-management with support for physiological
signals such as ECG: a physiological signals sensor, an Android ap-
plication, a central server, a database and a few webpages are com-
posing it. The question of the data lifecycle management in regards
to the platform usages is discussed.

1 INTRODUCTION

The diabetes (diabetes mellitus) is a metabolic disorder characterized
by chronic hyperglycemias — excessive glucose in the blood — due
to defects in insulin level [1]. The type 1 diabetes includes causes
due to a failure in the creation of the cells producing the insulin. The
only treatment consists of taking insulin shots several times a day in
order to regulate blood glucose level.

Several problems can arise from long-term diabetes, such as exces-
sive risks of vascular diseases [2] or even damage, dysfunction and
failure of various organs such as eyes and kidneys [1, 3]. Intensively
controlled glycemia get type 1 patients to have a higher outcome on
the risk of developing cardiovascular disease [3].

Insulin injections should be dosed correctly to avoid hypo-
glycemias — insufficient glucose in the blood — which are common
side-effect of insulin therapy, especially for type 1 diabetes [6]. Se-
vere hypoglycemias could be harmful for patients. This means there
exists a trade-off between limiting the frequency of hypoglycemia
while preventing cardiovascular disease later in patient’s life.

The management of diabetes requires to take a drop of blood sev-
eral times a day in order to measure the patient’s glucose level. This
measurement method is intrusive and the D1NAMO project aims at
exploring an alternative method using a non-intrusive measurement
method that requires the collection of Electrocardiogram (ECG) data
from patients in order to process them with machine learning algo-
rithms. Such system would improve the quality of life of patients in
two different ways. First by avoiding the patients to have to use in-
trusive measurement methods, and second by removing the need of

1 HES-SO Valais//Wallis, Switzerland, fabien.dubosson@hevs.ch
2 Open University of the Netherlands, stefano.bromuri@ou.nl
3 EPFL, Switzerland, jean-eudes.ranvier@epfl.ch
4 HES-SO Valais//Wallis, Switzerland, michael.schumacher@hevs.ch

patients to think about checking regularly for hyper/hypo-glycemia,
delegating this to an application that will throw alerts in such cases.

Up to our knowledge, no platform nor experiment to use the Bio-
Harness’ ECG in order to detect hypo/hyper-glycemia has been made
yet. A review paper [4] explores the use of sensors to improve man-
agement of glucose and references two articles [10, 11] that are pre-
senting methods that use the BioHarness, but only on Accelerometers
and Heart Rate signals.

The presentation of the D1NAMO project is made in the next sec-
tion and the developed platform is described in the following one. A
last section discuss the data lifecycle in regard to the platform usages.

2 D1NAMO
The D1NAMO acronym stands for Diabetes type 1 Non-invasive Ac-
tivity MOnitoring and aims at providing to type 1 diabetic patients
a non-invasive way to manage their chronic disease. Several studies
have shown that hypoglycemias are causing some modifications in
the PQRST characteristics of ECGs, especially a prolongation in the
QT intervals [5, 7, 8], as presented in Figure 1. One of these stud-
ies also suggests that this may allow the development of an hypo-
glycemia detection device [8]. The D1NAMO project aims at using
such technology to monitor type 1 diabetes in a non-invasive way.

Figure 1. The PQRST characteristics with the QT interval

The D1NAMO concept is the following: Diabetic patients are
wearing an ECG sensor which is connected by Bluetooth to their
smartphones. An Android application acts there as a controller to
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start/stop data transmission, as an helper to manage the disease by
offering an interface to manually keep track of events, and as a buffer
to store data while dealing with connectivity issues. The application
send the data to a server that will analyze them on arrival, and then
store them in a database for visualization. In case of a detected event,
an alert is sent to the patient’s phone, warning him about a potential
event and asking him to take further measurements. Finally a web
interface allows medical doctors to see their patients’ data.

The studies having shown the prolongation of the QT interval have
been made in a clinical setup by using medical-grade ECG devices.
The D1NAMO project does not fit in such category as it is based on
a commercial sport-like chest belt for acquiring ECGs: The Zephyr
BioHarness 3 shown in Figure 2. The feasibility of hypolgycemias
detection in a real-life setup with a non-medical device is the goal of
another part of the D1NAMO project: some preliminary results with
models description are presented in [9].

Figure 2. The Zephyr BioHarness sensor with its belt

The usual management of type 1 diabetes only requires patients to
have a small pocket with them containing some needles, a stylus for
needles, and a glucometer. The requirements for getting ECG data, as
needed by the D1NAMO project, are quite different: an ECG sensor
and a smartphone. Additionally, the treatment of acquired ECG data
requires a network connection on the phone in order to send the sig-
nals to a server, which will apply machine learning processing. Data
are stored in a database by the server, and finally a web interface is
needed to consult the data. The following section describes in more
details all these components.

3 PLATFORM
The overall D1NAMO platform is depicted in the Figure 3. This sec-
tion describes in more details each component individually.

3.1 Sensor
The device that has been selected for D1NAMO is the Zephyr Bio-
Harness 35. The selection has been made by a ponderation of differ-
ent criterias such as price, ECG capabilities or connectivity. It is a
sport-like chest-belt — shown in Figure 2 — that allows the acqui-
sition of different kind of signals. It has three main sensors: ECG,
Breathing, and Accelerometers; from which it is also able to extract
higher level information. The data available over bluetooth are:

• ECG signal (250 Hz)
• Breathing signal (18 Hz)

5 http://www.zephyranywhere.com/products/bioharness-3

Figure 3. The overall platform architecture

• 3D Accelerometers signal (50 Hz)
• General information (1 Hz), among which:

– Heart rate

– Breathing rate

– Posture

– Activity level

– Statistics like amplitude, noise, peaks, max or min about base
signals

The device can be configured — over bluetooth — to send only
the requested kinds of signals, meaning it is possible to optimize the
battery life by requesting only the needed information.

3.2 Android
The sensor is connected by bluetooth to an Android application (Fig-
ure 4). The application asks the user to enable the bluetooth if not
already done and offers a configuration menu to select the Bluetooth
device to use. Another menu allows patients to select which packets
should be sent from the device.

Figure 4. Some screens of the Android application

As the smartphone connectivity may be interrupted, the Android
application has been designed to serve as a data buffer. This means
that the data are not continuously sent over the network, but that the
application gather the data locally before sending them as a batch on

2
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a regular time interval, or when a given memory threshold has been
reached. Another benefit of this approach is the battery saving that
arise of not having the data channel open all the time.

The application also provides helping functionalities for diabetes
management. Patients are offered interfaces for manually entering
glucose measurement, medications and symptoms they may have
taken/noticed. This can be seen as a personal diary allowing patients
to discuss with the medical staff if the later notice anormal patterns
in their signals.

3.3 Server

A central server gather the data from the Android application in or-
der to process them by applying machine learning algorithms. The
algorithms – worked out on another part of the D1NAMO project [9]
– will be integrated once performances would have been evaluated.
The server is responsible to save the data inside a database in order to
allow later visualization of the signals by the medical staff. For keep-
ing the access to the data centralized, only the server is accessing the
database but it provides an API to query the data.

The server application has been developed with Spring and JavaEE
technologies on top of the Wildfly6 application server. Communica-
tion with the server are done through two different APIs, one allow-
ing to receive data from the android application, and another one al-
lowing to query data from the database. The communication through
receiving API is not yet protected, but a placeholder library for en-
cryption is already present in the pipeline. The decision on the en-
cryption technology and algorithms still remains to be done.

3.4 Database

A PostgreSQL7 database is used to store the users physiological sig-
nals on the server side. A standard database table is used for storing
users credentials, with a hashed and salted format for the password
fields. The storage of data from the sensor is not done by saving one
data per row as it is usually done, but instead by saving the data as
gathered from the device in a bytes array format: the Zephyr sensor
is using all bits of the packets sent over Bluetooth in order to mini-
mize the energy needed. Saving the data in this format requires some
processing for accessing data later on, so this may be changed in the
future.

More generally, some discussions about the usefulness to keep all
the records should be made with the medical staff. It should be pos-
sible to use some heuristics to discard records older than a given
threshold age or to remove already seen data, with a feature to lock
and prevent interesting ones to be removed.

3.5 Web interface

The platform currently comes with a few simple web pages allowing
to manage the users (add, edit, delete) and to visualize users’ data.
The Figure 5 shows what the menu looks like.

All the features of the interfaces have not been implemented yet,
but an evaluation of the usability of the existing web pages is planned.
It will take the form of an qualitative evaluation with the medical staff
and will lead the future development and enhancement of interfaces.

6 http://wildfly.org/
7 http://www.postgresql.org/

Figure 5. The menu of the web interface

3.6 Deployment

In order to allow an easy deployment of the different components,
the docker8 software has been used. It allows to package binaries of
applications with their files in a single entity called a “container”.
Such container can be build in a reproducible and automated way,
and it is possible to reuse existing containers of already packaged
software. The PostegreSQL database for instance can be started from
an official docker’s container, with a single command that will take
care of fetching the container online and starting it. The server itself
is provided as a docker container. Finally a “Makefile” 9 orchestrates
the lunch of the different containers to allow administrators to easily
setup the whole platform.

4 DISCUSSION ON DATA LIFECYCLE
MANAGEMENT

Signals such as ECG or Accelerometers output are acquired at high-
frenquency rates. The BioHarness 3 is getting the ECG signal at
250 Hz, while the Accelerometers are sampled at 3×50Hz and the
Breathing at 18 Hz. Storing such kinds of data in relational database
tables will grow the number of entries quickly: summing these sig-
nals together, they represent 418 values per second, which adds up to
more than 1,5 millions entries per hour. The data Acquisition that has
been made for the project showed an usage of the device for at least
12h per day. Hence, an instance gathering the data of 20 patients, 12
hours a day during 1 month will accumulate more than 10 billions
entries. It is possible to estimate the lower bound of space needed by
the generated data. By using the device data sheet, we can get the
precision of each kind of signals values, i.e. the number of bits that
are used for each:

• ECG: 250 Hz × 10 bits = 2500 bits/second
• Breathing: 18 Hz × 10 bits = 180 bits/second
• Accelerometers: 50 Hz × 3 signals × 10 bits = 1500 bits/second

Which leads to a total of 4180 bits per second, which is around 523
bytes. Using the same scenario as previously described, this sums up
to more than 13 GB per month for 20 patients. While good relational
databases can handle such high number of queries, and hard drives
being cheap enough to handle the storage easily, this is not without
raising up some questions about the data lifecycle management.

The different usages of the platform are triggering different needs
in term of lifecycle management. Three classes of usages can be de-
rived from the platform: the alerting need for patients, the querying
and visualizing needs for the medical staff, and finally the machine
learning need for researchers.

8 http://www.docker.com/
9 https://www.gnu.org/software/make/
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The patients need is allowing patients to receive alerts regarding
their blood glycemic state. This goal requires the last minutes of re-
ceived data to be analyzed in order to detect glycemic events. The
smartphone is sending data in a batch on regular intervals, so the an-
alyze may be triggered on data reception before putting them into the
database.

The medical staff needs are the visualization of patients data and
the querying of past signals events. Both of these goals are in the tar-
get of relational databases as they are made for querying data, either
it is for a visualization purpose of for finding event. This brings a
first question about the data lifecycle: which data should be kept, for
how long, and for which goal. However these questions are easy to
address by discussing with the medical staff who can decide which
kind of data they want to have, and for how long.

The researchers needs are to keep the data available for further
research, and using incoming data for training algorithms. Creating
backups of all signals for later use in research can be made eas-
ily by dumping the database. On the other side, depending on the
machine learning techniques used, models refinements are possible.
These could be done when data are arriving.

Figure 6. The data lifecycle

The data lifecycle management of such Personal Health Systems
could then follow this schema (depicted in Figure 6): The data are
sent as batch to the server. Data arrival trigger an analysis of the data
in order to detect eventual glycemic events for the patient. The data
can then be used to refine machine learning algorithms before being
saved in the database. Database dumps could be done when data are
needed, or when limits are reached. On a regular basis — that should
be discussed with the medical staff — a cleanup of old data can be
made to save space and avoid performance issue later on.

5 CONCLUSION AND FUTURE WORK

In this paper we present the platform we developed in the context of
the D1NAMO project. The platform allows diabetic patients to gather
their physiological signals, such as ECG, Breathing or Accelerome-
ters output, into a central database. Predictions about their glycemic
states and detection of eventual glycemic events, such as hypo- or
hyper-glycemias, can then be made out by using machine learning
algorithms. The data lifecycle is also discussed in regards to the dif-
ferent usages of the platform.

By using the platform, medical doctors will be able to access and
visualize their patients data. The developed user interfaces are in their
first version, but a qualitative evaluation by a medical staff is planned
in order to improve their usability. The detection of glycemic events
is part of another side of the D1NAMO project with some preliminary
results, but formal performances evaluation still remains to be done.

Once the D1NAMO project will be fully integrated, this platform
will serve as a proof of concept for the validation of the feasibility
of such non-invasive technologies in real conditions. This platform
is not ready for production as several improvements should be made
before being used outside of the research area, especially as med-
ical platforms require a special care on security for users and data
protection.

The future work on this platform includes the integration of the
machine learning algorithms developed on the second part of the
D1NAMO project, as well as the integration of a query interface to
allow the medical staff to search for patterns in the patients data.
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Abstract.1  The PAL project is developing: (1) an embodied 
conversational agent (robot and its avatar); (2) applications for 
child-agent activities that help children from 8 to 14 years old to 
acquire the required knowledge, skills and attitude for adequate 
diabetes self-management; and (3) dashboards for caregivers to 
enhance their supportive role for this self-management learning 
process. A common ontology is constructed to support normative 
behavior in a flexible way, to establish mutual understanding in the 
human-agent system, to integrate and utilize knowledge from the 
application and scientific domains, and to produce sensible human-
agent dialogues. This paper presents the general vision, approach, 
and state of the art. 

1 Ontologies in Cognitive Engineering 

In Europe, an increasing number of about 140,000 children (<14 
year old) have Type 1 Diabetes Mellitus (T1DM) [1]. The PAL 
project develops an Embodied Conversational Agent (ECA: robot 
and its avatar) and several applications for child-agent activities 
(e.g., playing a quiz and maintaining a timeline with the agent) that 
help these children to enhance their self-management (PAL, 
Personal  Assistant for healthy Lifestyle, is an European Horizon-
2020 project; www.pal4u.eu). In addition, it develops dashboards 
for caregivers (like diabetes nurses and parents) to enhance their 
supportive role. The general objective is to establish a smooth 
transition of the diabetes care responsibility from caregiver to the 
developing child, so that the child will have the required 
knowledge, skills, and attitude for adequate self-management at 
adolescence.  

   PAL is part of a joint, cognitive system, in which humans and 
agents share information and learn to improve self-management. 
The required sharing of (evolving) knowledge in the envisioned 
“blended care” setting has four important challenges:  

1. To address the values & norms of both the caregivers in 
their different hospitals (e.g., diabetes regimes), and the 
caretakers in their different contexts (e.g., privacy, 
literacy).  

2. To establish mutual understanding (a) within and between 
the different stakeholders of the PAL system  (e.g., the end-
users like children and caregivers and research & 
developers like academics and engineers), and (b) between 
the humans and PAL-agents.  
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2Delft University of Technology, Netherlands, F.C.A.Kaptein@tudelft.nl 
3DFKI, Germany, krieger@dfki.de 
4Imperial College, United Kingdom, y.demiris@imperial.ac.uk  

3. To continually acquire, utilize and deploy knowledge about 
child’s self-management support.  

4. To produce natural, flexible, personalized human-agent 
interactions that are sustainable in the long term as well as 
allow to extract data about the user from these interactions. 

To meet these four challenges, we are developing an ontology 
as an integrated part of system development, i.e., in a systematic, 
iterative, and incremental cognitive engineering process. First, 
available ontologies and approaches are assessed and, possibly, 
improved and integrated for our purposes (section 2). Second, 
relevant theories and models of the concerning scientific research 
fields are identified and formalized for adoption in the ontology 
(section 3). Third, the ontology is implemented in an artefact or 
prototype (i.e., the PAL system) and, subsequently, tested and 
refined (section 4). 

2 Models for Diabetes Self-Management  

Because PAL covers a large domain of interest, we have developed 
ontology models as high-level building blocks for smaller, separate 
areas of interest (frames). First, appropriate frames were selected 
from existing (global) libraries and, if needed, tailored to the PAL 
purposes. Second, for the missing elements, frames were modeled 
by constructing a new ontology. Subsequently, the individual 
frame models were related (interlinked) in an integrated PAL 
model. Because most existing ontologies provide “only” a partial 
fit to the intended scope of PAL, we needed to adapt these models  
by extending them (e.g., when concepts were lacking), or by 
selectively downsizing them (e.g., when there were too many 
details or concepts in the model). The frames we have identified 
and modeled so far are among others: (1) human and machine roles 
involved in self-management; (2) emotions and sentiments that 
cover the emotional responses of both robot and child to interaction 
as well as the general state of mind of the child; (3) tasks that 
include among other things: learning and self-management tasks, 
associated goals, and objects; (4) issues related to medical 
examinations (e.g., lab values); and (5) dialogue management 
through a combination of dialogue acts and shallow semantics. A 
more elaborate PAL ontology will also include interaction and 
behavior models of robot and avatar, a model for privacy of 
information of self-management activities and a model to cover the 
agreements and social contracts between child and ECA.  

Figure 1 provides a simple example of the task frame (cf. [2]). 
An Agent, such as a child or avatar, is an entity that performs a 
certain task, like an educative quiz game. An associated goal  
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Figure 1: Simple example of the general task frame at the top and an instantiation at the bottom. 
 

(e.g., learning about Insulin taking) can be attained by performing 
the related task (e.g., answering related questions correctly while 
playing the quiz). Objects such as a tablet device, are typically used 
when performing the task. The agent has a role while performing 
the task (e.g., patient) and can be part of a group of agents (e.g., 
parents). 

Important objectives of the PAL ontology are norm-
compliancy, shared understanding, interpretation, reasoning, and 
generation of verbal utterances. The ontology is based on a uniform 
representation of an application semantics that uses dialogue acts 
and frames that are defined in an extended RDF and OWL 
ontology [3]. In addition, all data that influence multimodal 
utterance generation are specified in the ontology (e.g., user data), 
which facilitates access and combination of the different bits of 
information. We heavily extended existing processing components, 
e.g., the reasoning engine HFC from DFKI and its database layer 
[4], which make information available to the interaction 
management and analysis. We defined a new formalism for the 
specification of dialogue policies that combines dialogue rules, 
transaction time-based knowledge representation [5], and dialogue 
history in a unique way. One important part of the PAL ontology 
combines dialogue acts using the DIT++ standard [6] and semantic 
frames, loosely based on thematic relations [7], used in today’s 
frameworks VerbNet, VerbOcean, or FrameNet. Below, we show a 

simplified version of the combined representation, built for the 
sentence: “I could show you a picture of the last football game”.  

Offer(Showing, theme=Picture, sender=I MYSELF, 

addressee=NAO ROBOT, topic=Football).  

3 Integrating Relevant Theories  

In the PAL project,  dedicated studies of models in the concerning 
scientific research areas are being conducted. For supporting the 
social processes that are involved in self-management learning, 
PAL models relationships in terms of familiarity or intimacy, liking, 
attitude and benevolence [8]. Particularly, the child-ECA bonding 
process is being supported by the Dyadic Disclosure Dialog 
Module (3DM) that supports the mutual child-agent self-
disclosures. The PAL ontology distinguishes  three main classes 
for these dialogues: disclosure, prompt and closer. In addition to 
valence and topic, each disclosure has an intimacy level according 
to the 4-level Disclosure Intimacy Rating Scale (DIRS). Burger et 
al. (2016) provide more detailed information on the 3DM of PAL 
and its theoretical foundations [9].  

For supporting the cognitive processes, the diabetes knowledge 
and corresponding learning goals have been modeled to monitor 
and reason about progress (e.g., on diabetes regimes, self-control, 
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food, physical exercises, and stress coping). Goal attainment is an 
important indicator of the changes in behavior of children [10], and 
can be supported by personalized feedback of the ECA. Figure 2 
provides a simplified sketch of a dialogue instantiation in the PAL 
system. Answering a quiz question is an example of a task (Fig 1). 
Answering correctly (partly) fulfills one or more (learning) goals. 
Note that the same goal can be satisfied by another task too, such 
as a sorting game. The different goals have specific difficulty 
levels (0-3). The caregivers decide what goals are currently 
relevant and achievable for a child. Together with caregivers, a 
child selects the specific goals to attain: <child:URI> <hasGoal> 

<goal:URI>. Since the system will only suggest tasks that can 
achieve the child’s current goals, these tasks are implicitly 
following these same difficulty levels. For example, a quiz 
question that satisfies a level 3 goal will be more difficult than a 
question satisfying a level 0 goal. Goal attainment is an important 
aspect of self-management. PAL will monitor the goal attainment 
progress: <Goal:URI> <hasProgress> float. For every goal, the 
ontology defines what tasks, and (sub-)goals should be achieved to 
achieve the goal itself. GoalProgress is function of 
goal:neededForAsClass and goal:requiresAsClass. By computing 
the percentage of tasks, subtasks, and sub-goals currently achieved, 
the system computes a current progress on this goal. This is 
recorded with a time stamp, so that progress over time can be 
calculated. 

 

 
Figure 2: Simplified situated speech act of the avatar. 

 
For supporting the affective processes, the PAL system introduces 
several methods to model the affective state of a child. First, 
sentiment mining technology is applied to estimate child’s mood in  
the child-PAL textual dialogues [11]. Second, in the tablet 
application, the child can further self-report on the experienced 
emotions and moods for activities the child performed during the 
day. Third, the child model will estimate emotions experienced by 
the child resulting from activities proposed by the ECA. For 
example, the ECA can propose to play a quiz with the child, and 
predict joy when the child did well during the quiz. This child 
model is based on the belief desire theory of emotions [12, 13], in 
which emotions are a direct consequence of beliefs and desires of 
an individual. For example, if one beliefs X and desires X, then one 
is happy about X. This way, the child model can reason about the 
child’s beliefs and desires. The model improves over time. If the 
child self-reports positive emotions during an activity while the 
child model estimates negative ones, then the child model updates 
the beliefs-desire assumptions concerning the child. The PAL 
ontology will represent complex affective states. Emotions are 

directed at objects, or events, and are short intense episodes. 
Moods are undirected and less intense, but linger for a prolonged 
period of time. Emotions are stored with the activity that had this 
emotion as a consequence. Moods contain a timestamp, indicating 
when it was measured. This representation makes it possible to find 
correlations between activities and affect over a prolonged period 
of time.  

4 Implementation and Evaluation 

The PAL system consists of several modules with dedicated 
support objectives. For example, the dialogue manager aims at 
engaging conversations between child and the ECA, the action-
selection module HAMMER [14] learns over time what the best 
actions are (e.g., proposing to play a quiz, or starting a new 
dialogue) to improve the child’s knowledge of diabetes while 
maintaining a positive emotional state for the child, and the child 
model aims at estimating the emotional states. 

Figure 3 shows the data flows of the PAL system with an 
extendable set of modules that communicate through a common 
Nexus. When a module has new information to share with other 
modules (e.g., action selection proposes to play a quiz) then this 
information is posted on the Nexus. Any module can read and use 
this new information. The application can then read this proposal 
and start a quiz on the tablet, and/or the dialogue manager can start 
a small dialogue by asking the child whether he/she wants to play a 
quiz. The PAL ontology provides the shared knowledge 
representations, defined in the extended HFC reasoner and 
allowing for testing and refining. 

 

 
Figure 3: The PAL system. 

 
Currently, we are analyzing the first data sets of children and 

caregivers that used the PAL system in diabetes camps, hospitals 
and at home (in Italy and in the Netherlands) from a few days to 4 
weeks. Based on the ontological concepts, we can identify 
meaningful patterns in the data that will be used to improve the 
intelligence of PAL, e.g. concerning the goal attainment progress 
(i.e., enhance the knowledge base with refined ontology and 
reasoning mechanisms). Furthermore, the data analysis will help to 
refine the ontology substantially. For example, parents’ 
relationship (cohabit or divorce) seems to affect child’s PAL usage 
(quantity and regularity) substantially. These concepts with their 
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mutual relations  are being added to the ontology to “feed” 
mitigating support functions. A second example concerns the 
identified cultural differences in Italian and Dutch children for the 
wealth and directness of their multimodal interactions with the 
robot [11]. Among other things based on these results, the child 
and robot models will be enriched to establish adaptive —
personalized and culture-harmonized— child-robot interactions.  

5 Discussion 

The PAL project develops personalized support for children, 
helping them to acquire the required attitude, knowledge and skills 
for adequate diabetes self-management. It applies a situated 
Cognitive Engineering (sCE) methodology to design and test: (1) 
an ECA for children, (2) several (educative) child-ECA activities, 
and (3) dashboards for caregivers. This methodology includes an 
ontology engineering component to establish a system’s knowledge 
base that is univocal, theoretically sound, coherent, consistent and 
transparent [15]. The resulting common ontology is used to 
establish mutual understanding in the human-agent system, to 
integrate and utilize knowledge from the application and scientific 
domains, and to produce sensible human-agent dialogues. For the 
first version of the PAL ontology, a network of connected 
ontologies ("frames") have been constructed, each consisting of 
general concepts and their relations. The “dialogue management 
frame” was worked out in more detail, i.e., the specification of the 
data structures to be used by the dialogue specifications, dialogue 
history, and information state. Furthermore, the reasoning 
components were adapted, so that this knowledge source can be 
used efficiently once the formalism specification is fully 
implemented.  

The PAL project entails multi-disciplinary research and design of 
a “blended care” system with the involvement of a large diversity 
of stakeholders. In general, the ontology construction helped to 
identify (interrelated) key concepts that should be univocally 
addressed in the design (e.g., requirements), implementation (e.g., 
dialogues) and evaluations (e.g., goal attainment). Furthermore, it 
enforces the systematic integration of relevant theories on social, 
cognitive and affective processes into the support system (e.g., on 
bonding, goal-driven learning and emotion). In line with the 
general iterative development process, the ontology will be refined 
for enhanced self-management support in the next versions of the 
PAL system.  

It is interesting to note that the PAL ontology can be viewed as a 
frame-based ontology in terms of Minsky [16] and Hoekstra [17]: 
An explicit, structured, and semantically rich representation of 
declarative knowledge like psychological theories of human 
cognition use, distinguishing “frames” or “classes” (upper level) 
from “instantiations” (lower level). This approach seems therefore 
particularly appropriate for representing knowledge involved in 
learning [15], e.g., learning to cope with a chronic disease.  
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Handling Missing Phenotype Data with Random Forests
for Diabetes Risk Prognosis

Beatriz López1, Ramon Viñas2, and Ferran Torrent-Fontbona3, and José Manuel Fernández-Real4

Abstract. Machine learning techniques are the cornerstone to han-
dle the amounts of information available for building comprehen-
sive models for decision support in medical practice. However, the
datasets use to have a lot of missing information. In this work we
analyse how the random forests technique could be used for deal-
ing with missing phenotype values in order to prognosticate diabetes
type 2.

1 INTRODUCTION

Diagnosis of type 2 diabetes is made typically using clinical criteria.
However, some population studies, specially in which young people
is involved, have provided evidence that the diagnosis should be sup-
ported by phenotype data [16]. This phenotype data is not just useful
for handling inheritance factors, but also for understanding nutrition
conditions in pre and post-natal stages (see [8] and [9] for a reviewed
version). In fact, phenotype data could provide new possibilities for
handling risk prognosis for both, type 1 and type 2 diabetes [17],
and also find explanations for other combination processes known as
undetermined diabetes or 1.5 diabetes [16].

Our work concerns on using phenotype data to building a clini-
cal decision support system (CDSS) for diabetes 2 prognosis. To that
end, we are provided with a huge dataset of patient samples, each
one characterised by a considerable amount of phenotypes. There-
fore, we require the application of a machine learning technique to
obtain a prognosis model to be handled by the CDSS. In so doing,
our challenge is to handle the considerable amount of missing infor-
mation, a typical situation when dealing with phenotypes [14].

There are several methods to deal with missing data that can be or-
ganized in four categories [15]. First, methods that discard instances
(i.e. samples) with missing information. Second, methods that ac-
quire missing values to complete the information, which involves
some additional costs. Third, imputation methods are the largest fam-
ily, and can be in turn organized in three groups: predictive value
computation methods (e.g. mean, mode, the most popular ones),
distribution-based computation (which take into account the class or
diagnose of the samples), and unique-value imputation (replacing the
missing value by a given value that represents it). Finally, the fourth
category of methods are the reduced-feature models which incorpo-
rate only the phenotypes known in a given query (test). These latter
kind of methods have been shown to be the ones that most improve
the prognosis accuracy [15]

1 University of Girona, email: beatriz.lopez@udg.edu
2 University of Girona, email: rvinast@gmail.com
3 University of Girona, email: ferran.torrent@udg.edu
4 Biomedical Research Institute of Girona, email: jmfreal@idibgi.org

Handling missing values by adding and removing features accord-
ing to a given query as reduced model approaches do is quite simi-
lar to the random forests (RF) machine learning technique. RF is a
method that combines several decision tree models to provide a clas-
sification outcome (i.e. prognosis) [5]. Each decision tree is learned
by using a base learner method applied to a subset of features (phe-
notypes) that are randomly selected, as well as to a subset of samples
that are also randomly chosen. In fact, the RF technique could be con-
sidered as a combination of discard instance methods and reduced-
feature models for handling of missing values. However RF does not
remove any information which could be useful towards a person-
alised prognosis. In this paper, we analyse such possibility by apply-
ing RF to prognosticate diabetes type 2 from a dataset of phenotypes
with a considerable amount of missing values.

This paper is organized as follows. First, we describe in Section
2 some previous related work. Next, in Section 3 we explain our
method. We continue in Section 4 by describing the experimentation
carried out and providing the results obtained. We end the paper in
Section 5 with some conclusions and discussion about future work.

2 RELATED WORK

The application of machine learning techniques to gene expression
data is becoming a key issue for Biomedicine [3]. For example, [7]
build a binary logistic regression model based on phenotypes and
genotype data to risk prediction of inheritance diabetes. 5639 patients
were considered in the study, from which samples with at most a
10% of missing features were considered. We are not provided with
so many patient data, and we need to handle a higher number of
missing information to keep enough samples for learning a model.

In [14] and approach for imputing missing phenotypes based on
a method called co-trained is presented. Co-trained means that miss-
ing phenotypes are predicted (in-silico phenotypes) based on a sec-
ond class of information (i.e. clinical data). The method is applied
in phenotypes related to migraine. the use of in-silico phenotypes
generation implies that two machine learning methods are combined
(one for phenotype learning, the second one for disease prediction
from the phenotypes), and transfer leaning complex issues should be
taken into account. Our aim is to keep original data as much as pos-
sible, handling missing data in the machine learning technique itself.

Another interesting work is [11], which use self-organizer maps
to look for associated diseases (kidney disease, retinopathy, hyper-
tension). Self organized maps allows to obtain groups of biomakers
than should next be interpreted by the clinicians. In our work, we are
dealing with classification (i.e. prognosis), although [11] could be
considered to extend the follow-up of diagnostic persons, in a hybrid
methodology of [11] and ours.
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Figure 1. Example of Random Forests.

In [1] a comparison analysis among different imputation meth-
ods is performed, including instance deletion, mean imputation, me-
dian imputation, and k-nearest neighbour (knn) over a parametric
and a non-parametric machine learning methods. The results highly
depend on the characteristics of the data set, that is, the amount
of missing features. Nevertheless, it seems that the case-deletion
methods is the one that performs the worst, while the knn showed
a higher robustness to missing data. The latter results agree with
[2], where the authors analyse also several methods and demon-
strate the out-performance of knn. The knn approach was analysed
also in [15] as part of the reduced model approaches, and the results
were slightly different, obtaining best performance with the authors
approach called reduced-feature ensemble (RFE). RFE consists on
generating several models, in which a feature is excluded in each of
them. Given a query case, the outcomes of the different models are
combined in a voting approach to obtain the final prediction value.
This approach is also known as bagging (”bootstrap aggregating”)
[4]. However, bagging suffers from a higher correlation of the pre-
dictions [12]. The RF technique applied in our work decorrelate the
base learners thanks to the random choice of features and samples.

3 METHODOLOGY
Our aim is to build a prediction model from phenotype data, which
involves a considerable amount of missing values. The technique we
are proposing is RF, because our hypothesis is that RF are able to
handle missing information in a similar way than remove-feature and
remove-instance missing information methods. However, RF does
not discard any data a priori, which could provide nice properties
regarding individualization (i.e. personalized prognosis).

RF is a supervised method, meaning that each instance or sample
is labelled with the outcome (prognosis). Each instance is noted as

(x, y), where x is a list of attributes a1, a2, . . . , an and its values
v1, v2, . . . , vn; and y the class to which the patient belongs. In our
particular case, y ∈ C = {healthy, diabetisType2}. Moreover, ai
are the phenotypes, and we use vij to denote the j value of the i phe-
notype. Each phenotype i has NV Ai values. In our particular case,
NV Ai = 4 (∀i), 3 values, plus the unknown value. Therefore, we
are considering phenotypes with missing information in our machine
learning technique 5.

RF consists of an ensemble of k classifiers
h1(x), h2(x), . . . , hk(x), being h(x) the joint classifier [13, 5].
Each classifier hi(x) consists of a decision tree, in which nodes
are attributes (see Figure 1). The selection of which attribute is
collocated in a node is performed as follows: 1) by randomly
selecting a subset of features, 2) an evaluation measure is applied
to the selected attributes according to their capability to provide
homogeneity partitions of the samples, and 3) the attribute with
the highest score is chosen. In particular, we use the change of the
Gini impurity function (GC) to compute the score, as described in
Equation 1:

GC(ai) = −
∑
Ck∈C

p2(Ck) +

NV Ai∑
j=1

p(vi,j)
∑
Ck∈C

p2(Ck|vi,j) (1)

Once a node is set with an attribute ai, the the data is split into as
many sets as values the ai attribute has. Then, the tree is growth with
new nodes in each branch that are obtained by repeating the attribute
selection process. The stopping conditions is defined according to
the number of instances remaining in a node: if this number is lower
than a given threshold τ , the algorithm stops. Samples used to build
each tree are also selected randomly with replacement.
5 In fact, this could be considered as a unique-value imputation method, as

the unknown or missing value is treated as another attribute value.
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Given a query case q, each decision trees provides an outcome,
h(q), and the final prediction is obtained by using a voting mecha-
nism.

4 RESULTS AND DISCUSSION
In this section we describe our data, the experimental scenarios, and
the results obtained.

4.1 Dataset description
The experimentation has been carried out with a dataset of 1074 pa-
tients, of whom we knew whether they had diabetes or they do not.
For 196 patients, the diagnosis was unknown and therefore, have
been removed from the dataset, remaining a total of 878 instances
for experimentation. Each sample contains 101 phenotypes regard-
ing diabetes type 2.

Regarding missing information, Figure 2 shows the distribution of
missing data along the different samples. It is worthy to observe that
some of the samples accumulates a huge percentage of missing in-
formation. On the other hand, Figure 3 shown the amount of missing
values per phenotypes6 (blue color). Phenotypes have been ordered
in the x-axis according to their amount of missing values.

Figure 2. Percentage of missing phenotype values per sample. X-axis:
cases.

4.2 Experimental set up
In order to analyse the implications of RF to handle missing data, the
following experimental scenarios have been defined:

Raw data The dataset is used as provided.
Reduced features Features with the highest degree of missing in-

formation are removed. In particular, all features with more than
23% of missing values have been removed. This percentage has
been set up according to the information visualized in Figure 3.

Reduced samples Samples with more than 25% of missing infor-
mation has been removed. The percentage has been set up accord-
ing to Figure 2.

6 Phenotypes names are hidden for simplicity reasons and medical research
confidentiality issues.

Reduced features and samples Both, the reduced features and
samples criteria is applied to the dataset.

The number of decision tress has been set to k=1000. According
to [5], as the number of trees increases, for almost surely the RF
converges to the real predictor. The experimentation methodology
used has been the stratified k-fold cross validation (we set 5 folds).
Results are analysed in terms of accuracy.

4.3 Results
Table 1 shows the results obtained in the different scenarios. The
highest accuracy is obtained when removing samples with a huge
amount of missing values (in bold). On the other hand, it is interest-
ing to observe that the results when removing features are very bad,
even when the removed features contain a lot of missing values. This
fact also impacts in the combination scenario. Therefore, RF is han-
dling appropriately missing information. Internally, RF are building
several trees in which the phenotypes with a high amount of missing
features could be skipped, but the presence of all of the phenotypes
are important for prognosis prediction. In that regard, individualiza-
tion is keep in the model, favouring a personalized prognosis.

On the other hand, RF is not able to handle samples with a huge
number of missing information (scenario raw data). Although inter-
nally samples are randomly selected for building the decision trees,
RF require from some pre-processing that filter outs the data with
a huge amount of missing information in order to provide good ac-
curacy results. Therefore, a pre-processing step for performing such
remove-instances method is still required.

Table 1. Accuracy results

Scenario Experiment Accuracy
1 Raw data 80.50%
2 Reduced features 62.93%
3 Reduced samples 86.91%
4 Combine 2+3 62.67%

5 CONCLUSION
The application of machine learning techniques to phenotype
datasets for building models for disease prognosis need to deal with a
huge amount of missing information. In this work we present an ap-
plication of RF that shows how this technique could deal with miss-
ing information. Results show than RF can perform well with fea-
tures with missing values. Keeping all phenotypes lead us to think
that RF favours personalized prognosis, considering all the particu-
larities of an individual. However, regarding samples, RF requires a
minimum information in the samples to achieve good accuracy re-
sults.

As a future work, we need also to explore the combination of phe-
notype data with clinical information, as well as other environmen-
tal factors; diabetes type 2 is an heterogeneous disorder that require
considering all these factors [10]. On the other hand, the use of RF
causes a loss of the nice interpretation properties of a single decision
tree. In that regard, the work of [6] could provide some insights.
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ing missing heritability and early risk prediction for type 2 diabetes: a
new perspective for genome-wide association study analysis with the
Nurses’ Health Study and the Health Professionals’ Follow-Up Study.’,
Turkish journal of medical sciences, 44(6), 946–54, (2014).

[8] C. N. Hales and D. J. P. Barker, ‘Type 2 (non-insulin-dependent) dia-
betes mellitus: the thrifty phenotype hypothesis’, Diabetologia, 35(7),
595–601, (jul 1992).

[9] C. N. Hales and D. J P Barker, ‘Type 2 (non-insulin-dependent) dia-
betes mellitus: the thrifty phenotype hypothesis’, International Journal
of Epidemiology, 42(5), 1215–1222, (2013).

[10] H E Lebovitz, ‘Type 2 diabetes: an overview.’, Clinical chemistry, 45(8
Pt 2), 1339–45, (aug 1999).
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