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Abstract — We present the Fit4Work system for 
monitoring and management of physical, mental and 
environmental stress at the workplace. The system was 
designed specifically for older workers who are subject to 
sedentary stressful work in an office environment. It uses 
commercially available devices and intelligent methods, which 
utilize machine-learning models to monitor the three aspects of 
the users’ lifestyle, and provide recommendations for 
improving them. The results show that the system can 
adequately recognize the user’s physical activities, estimate 
energy expenditure and detect mental stress, as well as 
recognize and reason about unhealthy environment. The 
system provides recommendations according to the monitoring 
results.  

Keywords— Physical activity monitoring, mental stress 
detection, environment quality management, wearable sensors, 
ambient sensors 

I.  INTRODUCTION  
Unhealthy lifestyle characterized by insufficient physical 

activity and increased mental stress is a major issue in the 
developed countries. The lack of physical activity is mainly 
caused by a decline in physical labor, widely available 
motorized transportation and the fast pace life, which leaves 
little time and energy for leisure physical activity. Sedentary 
lifestyle contributes to the development of cardiovascular 
diseases, diabetes, obesity and other health problems, making 
it the fourth leading cause of death [1]. 

Mental stress is largely work-related, as the competitive 
labour market results in productivity pressure and job 
insecurity. While some stress increases productivity, a 
prolonged exposure to stress can result in chronical stress, 
which is a trigger for slower body recovery, poor mental 
health and vulnerability to infections due to a weakened 
immune system. The European Commission estimated the 
economic cost of work-related stress at €20 billion a year due 
to absence from work and decreased productivity [2]. 

Besides the physical and mental stress, unhealthy office 
environment can also negatively influence people by causing 
environmental stress.  The term Sick Building Syndrome 
(SBS) is used for buildings (environments) that cause the 
occupants various health and comfort problems, and is most 
commonly linked with air quality. It has been shown that bad 
environmental conditions can cause decreased productivity. 
Inappropriate temperature decreases the productivity by 
10%, humidity by 5% and air pollutants by 6–9%, which can 
in turn result in a higher level of mental stress due to 
productivity pressure [3][4]. 

Monitoring of physical activity is very popular in terms 
of the number of smartphone applications, dedicated devices 
and even smartwatch applications already available on the 
market [5][6]. Smartphone-only applications for activity 
monitoring use the smartphone accelerometer to estimate the 
burned calories and the amount of movement based on the 
number of steps the user takes over a day. Dedicated devices 
such as Microsoft Band 2 use simplified activity recognition 
and machine learning to improve the estimated calorie burn. 
Apple Watch [7], for example, goes a step further by 
featuring hourly reminders if the person is sedentary, and 
provides feedback and motivation to reach the daily goal. 
However, if the user wants to be monitored accurately they 
have to input the activity they are performing. The Fit4Work 
system offers similar functionality without the need for 
manual input of activities.  

Monitoring mental stress using commercial and 
unobtrusive devices is a relatively new and challenging 
research topic. Healey and Picard [10] were the first to show 
the feasibility of stress detection using physiological sensors, 
which required intrusive wires and electrodes. Hovsepian et 
al. [11] proposed cStress – probably the most advanced 
stress-detection system for everyday life until now – which 
continuously monitors the stress level using an ECG sensor. 
For the future, they proposed replacing the somewhat 
uncomfortable ECG sensor with a wrist device as seen in the 
latest commercial products [8][9], and using information on 

2017 13th International Conference on Intelligent Environments

2472-7571	/17 $31.00 © 2017 IEEE

DOI 10.1109/IE.2017.20

76

2017 13th International Conference on Intelligent Environments

2472-7571/17 $31.00 © 2017 IEEE

DOI 10.1109/IE.2017.20

76



the user’s context in the stress detection, which is what we 
do in the Fit4Work module for monitoring stress. 

The monitoring and control of indoor environment 
parameters is a popular topic in smart–building research, 
which mainly focuses on the trade-off between the 
occupants’ comfort and energy consumption [12]. However, 
smart buildings are equipped with many sensors as well as 
automated heating and ventilation, which most buildings do 
not possess. To develop a system that does not need 
expensive equipment, one must develop virtual sensors for 
the detection/estimation of parameters that are not sensed 
directly, and develop prediction models for the effect of 
human actions on environmental parameters. A correlation 
between the environmental values and the occupancy or 
window state was reported in previous research [13], and the 
number of occupants was successfully estimated from one or 
multiple parameters [14]. The prediction of the dynamics of 
the parameters is usually done with the predictive control 
technique [15], which requires the user to describe the 
environment in detail (e.g., the material of walls, windows, 
etc.). In the Fit4Work system, virtual sensors and prediction 
models are built with machine learning, and combined with 
an ontology-based recommendation module that suggests 
actions to improve the environmental parameters. 

The system presented in this paper was developed as a 
part of the Fit4Work project [16], whose objective is to use 
wearable and environmental sensors to monitor the user’s 
physical activity, mental stress and quality of the 
environment. The results of the monitoring are inputs for 
recommendations to the user. We focus on older workers, 
who are at greater risk due to generally less robust health. 
The Fit4Work system needs an average accelerometer-
equipped smartphone, the Microsoft Band 2 [17] wristband, 
and the NetAtmo commercial weather station [18]. It 
interacts with the user via a smartphone application, which is 
a natural choice considering that by the end of 2017, over a 
third of the world population is projected to own a 
smartphone (2.6 billion users), and the number of devices a 
smartphone can connect to is increasing [19]. 

II. USER REQUIREMENTS AND ARCHITECTURE 
Considering the large number of applications and 

systems functionally similar to Fit4Work, we designed the 
system with the following objectives: (i) tailor it to the target 
population and ensure good user experience through careful 
examination of the user requirements; (ii) provide clear 
feedback and recommendations regarding the users’ 
behavior and environment to demonstrate the system’s short-
term benefits [20]; (iii) do not require the users to change the 
way they function dramatically [21] or alter their 
environment; and (iv) use affordable commercial devices. 

A. User requirements 
To develop the system that would fit the needs of the 

foreseen end users we collected the user requirements about 
two aspects of the system: (i) the most common habits and 
lifestyle parameters needed to design the intelligent modules 
for physical, mental and environmental stress monitoring, 
and (ii) the user interface to ensure good user experience. 

The enquiry about the users’ habits and lifestyle was 
conducted through a questionnaire with a number of 
questions related to health and fitness status of the target 
population, the characteristics of their occupation and the 
attitude towards technology. We gathered answers from 277 
persons aged between 50 and 75 years living in The 
Netherlands, Poland, Romania, Slovenia and Spain.  The key 
findings are:  

• Fit4Work should support and motivate the user to 
maintain good physical fitness level and detect 
prolonged sitting – Although 92% of respondents 
rated their physical fitness as fair or good, 80% of 
them have difficulty staying physically active in their 
everyday life. 80% of respondents declared that they 
do not sweat very often at work and 77% perform 
their work while sitting.  

• Fit4Work should automatically detect the most 
popular physical activities – The survey showed that 
the most popular activities are walking (23% find it a 
popular activity), gardening (18%) and cycling 
(17%). 

• Fit4Work should combine measures to monitor 
mental stress with helping the user to maintain their 
physical fitness – 82% of stressed respondents 
declared that they are bothered by mental stress rather 
than physical stress  

• Fit4Work should use commercial non-intrusive 
devices or devices the users already have – 
Smartphones were most often requested to be used 
for improvement of users’ health (70% of 
respondents were willing to use smartphones). Wrist 
devices were found as most likely wearables to be 
accepted (65% of respondents). 

The enquiry about the user interface design was 
conducted through focus groups in workshops where we 
discussed the functionality and design of the system. The 
first workshop was conducted with a group of nine Dutch 
older adults aged 55–75. The primary requirements resulting 
from this discussion were related to ensuring the system 
provides tangible health benefits and that it does not bother 
the end user too much. These conclusions served as our 
starting point to design the system and its user interface. The 
design we came up with (see Section VI) was then iteratively 

 
Fig. 1. Fit4Work system architecture. 
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evaluated through co-design techniques through a series of 
workshops with participation of a group of four Polish older 
adults aged 55–62 with various occupations (office worker, 
hairdresser, electronics technician and baker). We describe 
the methodology we used to evaluate the user interface and 
its usability in Section VII.  

B. System architecture 
The Fit4Work system relies on the two devices rated 

most acceptable by the users (a wristband and a smartphone), 
and a commercial weather station. The primary objective for 
selecting the devices was the number of embedded sensors. 
The chosen devices are the Microsoft Band 2 wristband and 
the Netatmo weather station, while most modern Android 
devices can serve as the smartphone. The smartphone plays a 
central role for interaction with the user through the user 
interface and for the analysis of the wearable sensor data, as 
well as for producing daily recommendations. The 
architecture is presented in Fig. 1.  

The system is composed of three modules (physical 
activity module, mental stress module and environment 
quality module), each of which has its own component for 
data analysis (green box in Fig. 1): (i) the physical activity 
data analysis module utilizes data from the wristband and 
smartphone to recognize the current activity of the user and 
estimate the expended energy; (ii) the mental stress data 
analysis module utilizes data from the wristband and the 
results of the physical activity module to detect the level of 
mental stress; and (iii) the environment quality data analysis 
module utilizes data from the weather station to evaluate the 
current quality of the environment. The physical activity and 
mental stress data analysis is performed directly on the 
smartphone, whereas the environment quality data analysis is 
done remotely in the cloud. The results of the data analysis 
modules are evaluated and transformed into respective 
recommendations (blue box in Fig. 1), which are presented 
to the user through the user interface. The physical activity 
module produces two types of recommendations – daily and 
weekly; the mental stress module recommends stress relief 
exercises; and the environment quality module recommends 
the actions which will improve the quality of the 
environment. Each module is described in details in 
following sections. 

III. PHYSICAL ACTIVTIY MODULE 
The physical activity module aims at recognizing the 

current activity of the user and estimating the energy 
expended by the user during the activity. It also provides 
information about the daily and weekly achievements as well 
as physical activity recommendations when needed. 

A. Physical activity data analysis 
The physical activity data analysis method is composed 

of six steps as presented in Fig. 2. The method’s input is data 
from an accelerometer-equipped smartphone or the 
Microsoft Band 2 wristband capable of measuring 
acceleration and physiological signals (e.g., heart rate). The 
output are the recognized activity and the estimated energy 
expenditure in MET (1 MET is defined as the energy 

expended at rest, while around over 20 MET is expended at 
extreme exertion).  

The first step is the detection of the devices currently 
present on the user’s body. The smartphone presence is 
detected with heuristics in which we utilize the smartphone’s 
proximity sensor as well as the accelerometer to determine 
whether the device is being carried. The wristband self-
reports its presence. If only the smartphone is present, the 
method anticipates a walking period of 10 seconds. Walking 
is detected with a machine-learning model in a location- and 
orientation-independent manner. The machine-learning 
model is trained to distinguish between walking and non-
walking activity in two-second windows, and once the model 
recognizes the walking period (5 consecutive walkings 
recognized), the walking signal is used for normalizing the 
orientation (third step) of the smartphone, and for 
recognizing the location (fourth step) of the smartphone. The 
orientation is normalized under the assumption that the 
average acceleration during walking corresponds to the 
Earth’s gravity. The average acceleration during the walking 
period is processed with the quaternion rotation 
transformation according to Tundo et al. [22], which gives us 
the orientation matrix to be used on further data. The 
normalized data is fed into the location detection machine-
learning model, which is trained to recognize whether the 
smartphone is in the trousers pocket, jacket or a bag. 

The present devices and the recognized location serve as 
a context for the selection of an appropriate machine-
learning model for activity recognition. We trained four 
models: one for each location of the smartphone and one for 
the wristband. The recognized activity serves as one of the 
features in the feature vector of the energy expenditure 
estimation machine-learning model, which is again selected 
according to the present devices and the recognized location. 
For more information on the algorithm with a different 
device, the reader is referred to [23]. 

B. Physical activity recommendations 
The recognized activity and the estimated energy 

expenditure aggregated in real time represents the amount of 
physical activity done so far (in a day, week, etc.). The 
estimated energy expenditure is transformed from MET into 
the more familiar kilo calories (kcal) according to Equation 
(1), as well as into three intensities (energy < 3 MET = light 

 
Fig. 2. Workflow of the physical activity data analysis. 
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intensity, 3 MET < energy < 6 MET = moderate intensity, 
energy > 6 MET = vigorous intensity).  

 energy [kcal] = weight [kg] * energy [MET] * t [hours] (1)   

To monitor and motivate the user with goals and 
recommendations we have adopted the requirements for 
daily and weekly physical activity from the guidelines of the 
World Health Organization (WHO). The daily 
recommendations are that the user should (i) burn at least 
200 active kcal (active kcal are burned during physical 
activities over 2.5 MET), (ii) walk at least 10 minutes 
continuously, and (iii) stand up and walk once per hour. The 
weekly recommendation is that the user should be engaged 
into 150 minutes of moderate-intensity physical activity or at 
least 75 minutes of vigorous-intensity physical activity (or an 
equivalent combination of both). 

These recommendations are combined into daily and 
weekly goals. The daily goal is achieved if the user succeeds 
in burning 200 or more active kcal (ACrecomm = 1 in this case, 
and proportionally less otherwise), and they walk for 10 
minutes continuously (Walkrecomm = 1 in this case, and 
proportionally less otherwise). The percentage of the 
achieved daily goal is calculated with Equation (2). The 
weekly goal is achieved if the user satisfies the need for 
moderate or vigorous activity; the percentage of weekly goal 
is calculated with Equation (3). The user is constantly 
presented with understandable information about the 
achievements (e.g., you have achieved 60% of your daily 
goal). 

 dailyGoal = 0.5 * ACrecomm + 0.5 * Walkrecomm (2)   

weeklyGoal = (tmoderate [min] + tvigorous [min] * 2) / 150 min (3)  

IV. MENTAL STRESS MODULE 
The stress-monitoring module continuously monitors the 

user’s stress, provides an overview of stressful events and 
suggests appropriate relaxation exercises when needed. 

A. Mental stress data analysis 
The mental stress data analysis is performed using the 

machine-learning method presented in Fig. 3. The method is 
applied on the data collected via the Microsoft Band 2. It 
consists of two machine-learning modules: a laboratory 
stress detector and a context-based stress detector. 

The laboratory stress detector is a machine-learning 
model trained on laboratory data to distinguish stressful vs. 
non-stressful events in 4-minute data windows with a 2-
minute overlap. As input it uses features computed from the 
physiological signals (blood volume pulse, heart rate, beat-
to-beat intervals, skin temperature and electrodermal 
activity), and it outputs predictions of possible stress events.  

In real life, there are many situations that induce a similar 
physiological arousal to stress (e.g., exercise, eating, hot 
weather, etc.), so the laboratory stress detector is inaccurate. 

Therefore we introduce a context-based stress detector to 
include real-life circumstances of potential stress events, thus 
improve the detection performance. This detector is a 
machine-learning model that uses as input the predictions of 
the laboratory stress detector, the information on the physical 
activity from the respective module, and other information 
such as the time of the day and a short history of predictions, 
to provide a final prediction every 20 minutes. The interval 
of 20 minutes was chosen empirically. [24] 

B. Mental stress recommendations 
The stress-monitoring module monitors the user’s stress 

level continuously. The overall stress at time t (St) is 
calculated using the Equation (4), which combines the 
current stress at time t (Ct) as predicted by the stress-
monitoring module, and the stress earlier in the day. The 
parameter a is set to 0.6 according to expert opinion, unless 
the user performed a stress-relief exercise, in which case it is 
0.6 * 0.75 to provide an immediate positive feedback. The 
parameter b is set to 0.4. By subtracting 1 – St, we obtain the 
relaxation score, which is a “positive” view of the stress 
presented in the user interface. 

 −

=
+= 1

0
** t

i itt CbCaS  (4)  

Once the stress level (St) is increased for a prolonged 
period of time (e.g., 5 minutes), the Fit4Work system 
proposes relaxation exercises to the user. There are two types 
of exercises: breathing exercises and muscle relaxation 
exercises. The proposed exercise depends on the time of the 
day and the previous choices of the user. E.g., breathing 
exercises are more suitable during the day and muscle 
relaxation exercises are more suitable in the evening. In 
addition, the system tracks the previously chosen exercises 
by the user in order to make personalized suggestions. 

V. QUALITY OF THE ENVIRONEMNT MODULE 
The quality of the environment module aims at 

monitoring the environmental parameters (temperature, 
humidity, CO2, noise, light) at the workplace and 
recommend appropriate actions if needed (open/close 
windows, turn on/off humidifier, air conditioning etc. ).  

A. Quality of the environment data analysis 
The data analysis module is composed of two 

components: the monitoring component and the ontology, as 
presented in Fig. 5. The task of the monitoring component is 
to retrieve data from hardware sensors and from virtual 
sensors. The hardware sensors in the NetAtmo indoor and 
outdoor modules sense the indoor (Tin) and outdoor 

 
Fig. 3. Method for mental stress detection 
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temperature (Tout), indoor (Hin) and outdoor humidity (Hout), 
indoor concentration of CO2 and noise. The virtual sensors 
use machine-learning models to estimate the parameters such 
as the state of the office windows and the number of 
occupants, which cannot be measured directly. The machine-
learning models are trained on features extracted from data 
from the hardware sensors. All machine-learning models 
return their classification/regression result in 5 minute 
windows (with features considering historic data up to 40 
minutes), which we consider one time step. 

The virtual sensor for the estimation of the number of 
occupants utilizes two machine-learning models in two steps. 
First, a binary classification model is used to distinguish 
between an occupied and non-occupied office. If the 
classifier returns occupied, a regression model is used to 
estimates the number of occupants. While the relation 
between the occupancy and CO2 concentration is pretty 
straightforward (more occupants  CO2 concentration 
increases), the relation between the window state and the Tin, 
Hin and CO2 parameters is more complex. In order to detect 
the window state, we use a single classification model 
trained to distinguish between open and closed windows. A 
window is considered open if it is detected as such in two 
consecutive time steps. The same approach is used to detect 
if the window is closed.  

The task of the ontology component is to use the 
parameters sensed by the hardware and virtual sensors to 
infer actions that can improve the quality of the environment 
if required. We encoded the devices, actions, and domain 
expert knowledge in an ontology using the Web ontology 
language (OWL) using Protége [25]. The reasoning is done 
with the descriptive logic reasoner Pellet. The representation 
of the knowledge with an ontology enables us to adapt the 
ontology to the specific office without any additional 
software development due to the simplicity of adding and 
removing new devices, actions, parameters and relations. 

B. Quality of the environment recommendations 
The reasoning on the ontology provides a wide set of 

actions that can improve the quality of the environmental 
parameters. Each action can influence a single or multiple 
parameters, and it is not immediately obvious which action is 
best. Therefore we simulate and evaluate the effect of the 
entire set of actions. The simulator is composed of prediction 
models and the quality rating (Q-rating). The prediction 
models utilize machine-learning models trained to predict the 
environmental parameter values for Tin, Hin and CO2 for all 
combinations of actions returned by the ontology. For each 
parameter we trained four prediction models to estimate its 
value in four time frames (15, 20, 25 and 30 minutes). The 

results of each action are evaluated with the Q-rating as 
good, medium or bad based on workplace regulations. The 
overall quality rating is composed of the ratings of the 
individual parameters, which we treat as equally important as 
follows. Good parameters are assigned the value of 1, 
medium parameters are assigned values between 0 and 1, 
and bad parameters are assigned values between 0 and –1, 
using linear interpolation both in the medium and bad range. 
The overall quality is the average of all three parameter 
values and can range from –1 to 1, which are scaled to the 
range from 0 to 1. The action resulting in the best Q-rating is 
recommended by the system. The reader is referred to [26] 
for more details. We also consider the Q-rating as the 
indicator of the current quality of the environment, which is 
presented to the user through the user interface.  

VI. USER INTERFACE 
The user interface is composed of the current status 

section, recommendation section, performance section and 
extended function section as seen on the left side of Fig. 7.  

The current status section combines information related 
to the three areas of monitoring in one holistic view. Each 
area of monitoring is presented in a visual form (body – 
physical, head – mental and the circle – environmental state) 
with colors representing the current state (from green = good 
to red = bad). The value for each state represents the daily 
goal (Section III), relaxation score (Section IV) and Q-rating 
(Section V) respectively.  

The Recommendations section presents the outcomes of 
the recommender system in an understandable way, using 
icons enabling easy interpretation (A in Fig. 7.). Tapping on 
each icon displays a short explanation of the 
recommendation (B in Fig. 7.). It is important to note that the 
recommendations are only displayed to the user and are 
available for them to see when they decide to look at the 
application, no sound or other measure is taken to alert the 
user to a new recommendation. The Performance section of 
the user interface presents the performance of the user versus 
the daily and weekly achievements (C in Fig. 7.). Extended 
functions section is the entry point for the functionalities 
such as functional fitness exercises (not discussed in this 
paper) and mental stress relief exercises (Section IV), both 
intended to help the user to stay in good health. It also 

 
Fig. 4. Elements of the smartphone-based user interface of the 
Fit4Work system  

 
Fig. 5. Method for monitoring and management of the quality of the 
environment. 
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contains a monthly calendar view of achievement so the user 
can self-evaluate his/her performance over a longer period. 

VII. EVALUATION AND RESULTS 

A. Datasets 
Three datasets were used for training and evaluation.  
1) Physical activities dataset: To train and evaluate the 

machine-learning models of the physical activities module 
we utilized the dataset of ten healthy volunteers equipped 
with four smartphones (one in each trousers pocket, one in a 
jacket and one in a bag), a wristband that was used for heart-
rate monitoring, and the Cosmed indirect calorimeter [27], 
which was used to label the real expended energy of the 
person. The volunteers were instructed to perform a 
predefined scenario (1 hour 45 minutes) containing rest 
activities, household chores and common types of exercises 
such as walking and cycling and running [28]. The dataset 
was collected in a laboratory at the Faculty of Sports, 
University of Ljubljana.  

2) Mental stress dataset: To develop the stress-
monitoring module, two datasets were recorded, one in a 
laboratory for training and evaluation of the laboratory 
stress detector, and one in real life for training and 
evaluation of the context-based stress detector. The 
laboratory data was collected with a standardized stress-
inducing experiment [29] where we monitored 21 subjects 
while solving mathematical tasks under time and evaluation 
pressure. The baseline (no-stress) data was recorded on a 
separate day when subjects were relaxed. The subjects filled 
short STAI-Y questionnaires during the experiments, which 
were used to provide labels for the laboratory dataset. The 
real-life dataset was collected during everyday life. Five 
subjects were monitored using a wristband equipped with 
physiological sensors. The data was labeled with the 
combination of stress log and Ecological Momentary 
Assessment (EMA) prompts on the smartphone. The EMA 
prompts are questionnaires displayed at a random period of 
the day. The subjects had to answer 4-6 EMA prompts per 
day (with at least 2 hours between consecutive prompts), 
and in the case of a stressful situation, they logged the start, 
the duration and the level of stress on a scale from 1 to 5 (1 
– no stress, 2 – low stress, 3 to 5 – high stress). Overall, the 
dataset contains 73k minutes of no-stress data, and 6.7k 
minutes of stress data per sensor. 

3) Quality of the environment  dataset: We equipped 
three offices – A (43 m2), B (27 m2), and C (20 m2) – for 
data collection and real-time validation of the 
recommendations. The offices were equipped with the 
NetAtmo indoor and outdoor modules to measure the 
environmental parameters, humidifier, window sensors to 
detect the window state (open, closed) and a smartphone 
application to self-report the occupancy and the state of 
other devices, and to receive the recommendations.  We 

collected 67 days of data which was divided into three time 
periods: 1st period (2016-01-16 to 2016-02-26), when the 
occupants were allowed to manipulate room devices freely; 
2nd period (2016-02-26 to 2016-03-23) when the office A 
was given the recommendation system, while the occupants 
of the other offices continued using the devices freely; and 
3rd period (2016-03-23 to 2016-03-30), when the offices A 
and B were given the recommendation system, while the 
office C stayed as a control. The average number of 
occupants per office was 2.6 ± 1.5 (max 9) in A, 2.0 ± 0.9 
(max 7) in B and 1.6 ± 0.9 (max 7) in C. 

B. Evaluation of the physical activity module 
We used the dataset presented in Section VII for the 

evaluation of the activity recognition (AR), in which we tried 
to recognize seven activities (lying, walking, running, 
standing, sitting, cycling, mixed), and the evaluation of the 
energy expenditure estimation (EEE). The results for the AR 
are presented in terms of the classification accuracy, and the 
results for the EEE in terms of the mean absolute error 
(MAE), where a smaller error means better performance. All 
the experiments were performed in the leave-one-subject-out 
(LOSO) manner, which means that we trained the models on 
data of nine people and tested on the remaining one (ten 
times, once for each person). The results are presented in 
Table I. The results for the EEE are also compared against 
the commercial device Bodymedia [30], one of the most 
accurate consumer devices for EEE. We can observe that we 
achieved an average accuracy of 84% for the AR and a better 
EEE compared to Bodymedia, except when the smartphone 
was carried in a bag. We assume that we outperformed 
Bodymedia because it is developed for sports activities and 
not everyday activities such as cleaning, cooking, etc.  

C. Evaluation of the mental stress module 
The results of the evaluation of the mental stress module 

are presented in Table II. It can be seen that the accuracy of 
the method for detecting stress events is 92%. In addition, 
the table provides performance comparison between stress 
detection with and without context. The no-context method 
is the laboratory stress detector applied directly on real-life 
data. For both experiments we used the LOSO evaluation. 
The context-based method performs significantly better than 
the no-context method. For example, the context-based 
classifier achieved a mean F-score of 80% (the mean value 
of the stress and no-stress F-scores), while the no-context 
classifier achieved a mean F-score of 62%. Additionally, the 
confusion matrix “with context” shows that the precision 
(73%) of the model is higher than the recall (55%) by 18 
percentage points. This means that the model detects 
(recalls) 55% of the stress events with a precision of 73%. 

D. Evaluation of the quality of the environment module 
The evaluation was performed on the dataset presented in 

Section VII. We evaluated the performance of the developed 
machine-learning models (virtual sensors and prediction 
models) and the objective and subjective performance of the 
recommendations. The results of the developed machine-
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learning models are presented in Table III, where the 
window state is evaluated in terms of the classification 
accuracy (open/closed), and regression models in terms of 
the MAE and root mean squared error (RMSE). We can 
observe that we achieved 91% accuracy for the window state 
detection, and we miss-estimated the number of occupants 
by 0.6 person. The results for the prediction of the 
parameters shows that we mis-predicted the temperature by 
0.4°C, humidity by 0.6% and CO2 by 55 ppm on average. 
These errors are small enough that they are unlikely to result 
in the selection of grossly inappropriate actions, which is the 
final objective of the virtual sensors and prediction models. 

We also evaluated the recommendations over the three 
periods. The results in terms of Q-rating, which can be 
interpreted as comfort, are presented in Table IV. We can 
observe that in first period all the offices had a comparable 
overall comfort. Office B was the best at keeping CO2 at a 
good level due to frequently opening the windows, which 
resulted in a worse temperature. In the second period, the 
occupants of office A were using the recommendations and 
consequently the per-parameter quality and overall comfort 
increased, while the comfort of offices B and C stayed 
similar to the first period. In the third period, both offices A 
and B were using the recommendations and their comfort 
increased to the similar level, while the comfort of office C 
did not change significantly. These results prove that using 
the system objectively improves the comfort in the offices 
where it is used. 

E. Evaluation of the user interface 
The Fit4Work system was designed within an iterative 

process of usability evaluation where test groups were 
gathered in line with the suggestions of Nielsen and 
Landauer who argued that the best results of information 
system usability evaluation come from testing through 
running a series of small tests [31]. The working sessions 
were constructed according to the Concurrent Think-Aloud 
(CTA) methodology [32]. In a CTA session, the users were 
asked to use the system and to express their thoughts. The 
observations about the execution and stated problems are 
noted and taken into account before next iteration.   

Our evaluation test was composed of 24 tasks in which 
the participants used functions of various sections and 
screens. The tasks included (i) understandability of the main 
screen, e.g., what is current state of the physical activity, 
mental stress, and environment, what recommendations do 
you see, etc., (ii) the interpretation of achievements, e.g., 
how well are you doing today/this week for each state, (iii) 
the flow of the user interface (navigate to today view, how to 
check yesterday achievements, how many relaxation 
exercises did you perform this week, etc.), and (iv) the use of 
extended functions (e.g., how would you start relaxation 
exercises, etc.).  

At the end of each session we additionally used a 
Retrospective Probing technique to find out any more 
general issues with the user interface and the system as a 
whole [33]. The questions asked to the users included 
requesting them to suggest any modifications they would 
make to the system, listing three elements they liked and 

three they disliked, and provide any additional feedback. 
Using the methodology as described above we iteratively 
designed the user interface as presented in Fig. 7 to be used 
in long-term field trials. 

 
TABLE I. RESULTS OF THE ACTIVITY RECOGNITION (CLASSIFICATION 
ACCURACY) AND ESTIMATION OF ENERGY EXPENDITURE (MEAN ABSOLUTE 
ERROR). 

Module 
 Smartphone  

Wristband Trousers Jacket Bags Bodymedia 

AR [%] 88.4 87.9 78.9 79.5 / 
EEE [MET] 0.87 0.87 0.92 1.15 1.0 

 
TABLE II. CONFUSION MATRIX FOR THE MENTAL STRESS DETECTION 

MODULE. 
No Context With context 

No Stress Stress No Stress Stress 
No Stress 638 175 790 23 

Stress  44 70 51 63 
Recall (%) 78 61 97 55 

Precision (%) 94 29 94 73 
F1-score (%) 85 39 96 63 
Accuracy (%) 76 92 

 
TABLE III. RESULTS OF THE EVALUATION OF VIRTUAL SENSORS (WINDOW 
STATE AND NUMBER OF OCCUPANTS) AND OF THE PREDICTION OF 
ENVIRONMENTAL PARAMETERS.  

ACC MAE RMSE 
Window state [%] 91  
No. of occupants  0.6 1.2 
Predict Tin [ ]  0.4 0.5 
Predict Hin [%]  0.6 0.9 

Predict CO2 [ppm]  55 104 
 

TABLE IV. EVALUATION OF RECOMMENDATIONS. THE VALUES PRESENT 
COMFORT FROM 0 = BAD TO 1 = GOOD. 

 Experiment period 

 1st 2nd 3rd 

Office A B C A B C A B C
Recomm. 

Temp. .65 .59 .81 .76 .48 .73 .97 .95 .93 
Hum. .29 .35 .38 .50 .41 .29 .29 .35 .26 
CO2 .83 .94 .72 .93 .93 .78 .92 .91 .72 

Comfort .59 .62 .64 .73 .61 .60 .73 .74 .64 

VIII. CONCLUSION  
We presented a system for the management of physical, 

mental and environmental stress. The system collects data 
with wearable and environmental sensors, interprets it and 
provides recommendations to the user through a smartphone 
application. The system is composed of three intelligent 
modules: physical activity monitoring, mental stress 
monitoring and quality of the environment monitoring 
module. Each module uses machine learning to interpret the 
sensor data for its respective task, and expert knowledge to 
provide recommendations with the goal to improve user’s 
physical, mental and environmental well-being. The 
evaluation show that the system can adequately detect 
sedentary, stressful and unhealthy environment and provide 
recommendations to the user. 
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The presented system was developed as part of the 
Fit4Work project [16], which aims to develop an affordable 
system that can be used in any environment without the need 
to renovate or automate the building. In the next phase of the 
project, the developed system will be validated in pilots with 
end-users. This will provide an opportunity to evaluate the 
performance of the algorithms in real life, as well as collect 
long-term user feedback of recommended actions, and 
acceptability and understandability of the user interface. 

Future work includes: improved physical activity 
monitoring module to utilize data from both devices 
simultaneously; personalized mental stress monitoring and 
personalized stress-relief recommendations; enhanced 
quality of the environment monitoring module with 
additional machine-learning models to detect current state of 
other devices such as air conditioning, humidifier, light, etc.; 
and improved user interface based on real-life user feedback 
received through a long-term user experience assessment. 
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