
Improving the Quality of Life for Elderly by Adapting

to Each Specific User

Božidara Cvetković, Erik Dovgan, Boštjan Kaluža,

Mitja Luštrek, Matjaž Gams

Department of Intelligent Systems

Jožef Stefan Institute

Ljubljana, Slovenia

{boza.cvetkovic, erik.dovgan, bostjan.kaluza,

mitja.lustrek, matjaz.gams}@ijs.si

Violeta Mirchevska

Result

Ljubljana, Slovenia

violeta.mircevska@ijs.si

Abstract—This paper presents the Confidence system, which aims

to prolong independent life of the elderly. It accomplishes this

with a set of intelligent modules that recognize falls and general

disabilities, and inform the emergency services when a hazardous

situation is detected. This way the elderly do not require constant

caregivers’ monitoring and are not forced to leave their homes

since they are confident that they will receive assistance when

needed. The Confidence modules adapt to each particular user by

initialization before the first use. The initialization requires

recordings of several user activities. The results show that the

accuracy of the system significantly increases if the modules are

properly initialized.

Keywords-Confidence, elderly care system, fall recognition,

general disability recognition, adaptation to the end user, active

learning

I. INTRODUCTION

The percentage of elderly people in the modern societies is
rapidly increasing. Consequently, the request for caregiver
assistance and its costs are also increasing. Nevertheless, the
elderly people would prefer to live an independent life without
a need for such assistance, but they raise a concern that nobody
could help them in case of an accident or a sudden health
problem. A solution would be to create a caregiver system that
is less expensive and more efficient than a caregiver assistance,
and enables an independent life for the elderly.

An efficient caregiver system has to monitor the elderly 24
hours a day and has to be non-intrusive to enable independent
life at home [1]. In order to develop such systems, the main
problems limiting the independent life of the elderly have to be
identified. Such problems range from a large set of possible
illnesses to the falls as a consequence of deteriorated motor
abilities. An efficient caregiver system has to detect falls and
discover various illnesses or general disabilities. When such
states are discovered, the system has to report them to an
emergency center, a caregiver institution or a hospital.
Consequently, such a system does not completely replace the
caregiver institution. Instead, it complements it and ensures that
its limited resources are used effectively.

This paper presents the Confidence system, developed as
part of the FP7 Confidence project [2], which aims to reduce

the dependency of the elderly people on the caregiver
institutions. It uses position and acceleration data from tags
placed on the user’s clothes in order to recognize falls and
general disability. The recognition procedure is performed in
three steps. Firstly, the input data has to be filtered. Next, the
activity of the user has to be recognized. Finally, the falls are
recognized using activity information, and general disabilities
are recognized by finding deviations in the user’s behavior.
When events such as falls and general disabilities are
recognized, an emergency center is informed that the user
needs help.

 In the real-world usage the Confidence system monitors
only one person. Therefore, the system is adapted to the
monitored person, which results in an increased accuracy. The
adaptation is done during the system initialization and the
system usage with active semi-supervised learning. In both
stages the built-in classifiers for activity recognition are
updated with the user-specific data.

This paper is organized as follows. Firstly, the proposed
caregiver intelligent system is presented. Secondly, the
initialization procedure is described. Thirdly, the active semi-
supervised learning for improving the activity recognition
classifiers is given. Fourthly, the proposed methods are tested
and the results are presented. Finally, the paper concludes with
ideas for future work.

II. SYSTEM ARCHITECTURE

The presented system recognizes falls and general
disabilities using position and acceleration of tags attached to
the user’s clothes [3]. These input data are received from the
Ubisense localization system [4] and acceleration system [5].
These systems process and send the data from four tags located
on the user’s ankles, chest and belt. When the system receives
these data, it processes them, analyzes them, and produces an
alarm if a fall is recognized, or a warning if a general disability
is detected. These messages are sent to the user via a basic
Portable device or an advanced Control panel on the computer
screen. If the user does not cancel the alarm or warning, an
emergency center is informed. The system modules and data
flow are shown in Fig. 1 and described in the following
sections.

Figure 1. System modules and data flow.

A. Preprocessing

The Preprocessing module receives the input data, i.e.,
position and acceleration data from the tags. The data from
individual tags are not synchronized and neither are
acceleration data synchronized with position data. Besides, the
frequency of incoming data is not constant even for each single
input system. Consequently, the input data has to be
synchronized and the information about all the tags is
combined into single snapshots. A snapshot stores the
information about all tags, i.e., their positions and
accelerations, at one moment in time. When a snapshot is
created, it is passed to the Filtering module.

B. Filtering

The Filtering module is used to increase redundancy since
the real input data may be inaccurate or even missing, e.g., a
missing position of a tag. In order to bypass these
shortcomings, the tags’ data is filtered and smoothed using six
methods. An example of such a method is the anatomic filter
that uses anatomic constraints, e.g., the distance between the
belt tag and the chest tag that is constant, in order to correct the
positions of the tags. In addition, the data of missing tags are
estimated using specific heuristic procedures. The output is a
snapshot with no missing data and with positions and
accelerations that are filtered and smoothed. A snapshot is then
passed to the Attribute computation module.

C. Attribute computation

The Attribute computation module calculates a set of
attributes related to the human body and available tags, e.g., the
speed of each tag and the distances between the tags, which are
used by the successive modules. When the attributes are
calculated, they are added to the snapshot that is then passed to
the Activity recognition module.

D. Activity recognition

The Activity recognition module recognizes the current
user’s activity. Examples of the activities are standing, sitting,
lying, walking, standing up etc. In order to determine the
current activity, two modules are used, namely Random forest
classifier [6] and expert-knowledge rules [7]. Their
classifications are combined into the final classification using
heuristics. The final classification is smoothed with a Hidden
Markov Model [8], which eliminates infeasible activity
transitions, e.g., from sitting to standing without standing up in
between. Afterwards, the assigned activity is added to the
snapshot, which is passed to the two main modules: Fall
detection and General disability detection.

E. Fall detection

The Fall detection module [9] recognizes falls and other
potentially dangerous situations, and produces alarms. An
example of such a situation occurs when the user lies
immovable on the floor for a prolonged time. In order to
recognize alarms, two methods are used, namely expert-
knowledge rules and two classifiers trained by machine
learning algorithms C4.5 [10] and SVM [11]. The two
classifications are fused using heuristics.

F. General disability detection

The General disability detection module recognizes general
disabilities and issues a warning. An example of a general
disability is limping. A general disability is recognized by
collecting a set of statistics about the user behavior, mainly
walking statistics, and comparing them to the past statistics of
the same person in order to recognize unusual or changed
behavior. If the behavior change is significant, it may indicate
the development of an illness/general disability. The changes
are recognized using the LOF [12] algorithm.

G. Control panel and Portable device

When an alarm or a warning is produced, it is sent to the
user, relatives and afterwards to an emergency center, a
caregiver center or a hospital. The modules for sending alarms
and warnings are implemented in the Control panel and
Portable device user interfaces. Both interfaces also enable
cancelling an alarm before it is forwarded. The Portable device
has a simplified interface that does not enable any other
communication with the user. On the other hand, the Control
panel has an advanced interface that also shows positions of the
tags in the current room, a detailed explanation of the alarms
and warnings, a video of the current situation in the room etc.
In addition, it displays the history of alarms and warnings upon
request. An important issue is that the user can define the
protocol of sending warnings and alarms thus adapting
communication according to his/her wishes.

H. Initialization of the modules

Since the system is used only by one user, the majority of
the modules have the potential to work better if they are
adjusted to that user either initially or during usage. For
example, when the current activity is calculated, it is more
appropriate to use user-specific machine learning classifier than
a general classifier. Therefore, an appropriate initialization
procedure is crucial for achieving high accuracy of the system.
The implemented initialization procedure is described in details
in the following section.

III. SYSTEM INITIALIZATION

A. Initialization procedure

The purpose of the initialization procedure is to
automatically adjust the parameters that are unique for each
individual user and improve the accuracy and precision of the
Confidence system. The procedure is introduced through a
user-friendly interface Initialization Wizard, containing up to
11 steps. These steps can be divided into four sets according to
their content. These sets are: (1) system connection and
initialization of the modules, (2) basic user information, (3)
activity recording, and (4) lying locations. A diagram
representing the initialization procedure is shown in Fig. 2.
During this procedure the system adjusts the machine learning
classifier for activity recognition module by scaling values of
certain attributes, calculates user specific expert rules for
activity recognition module, creates personal machine learning
classifier, and stores the data about the room. The following
sections describe the initialization steps in details.

1) System connection and initialization of modules
First, the position and acceleration systems have to be

installed and connected to the Confidence system. Second, the
following modules in the Confidence system have to be
initialized: (1) Preprocessing, where the raw data from the
sensors are collected and prepared for further processing, (2)
Filtering, where the data is smoothed and corrected with six
filters, (3) Attribute computation, where all significant
attributes for expert rule generator described in Section B and
activity recognition machine learning classifiers are calculated.
The acceleration data is not used in the adaptation process.
Therefore, the acceleration system can be disabled during the
initialization.

2) Basic information
In this step, the user provides information about him/her

and his/her requirements. The system collects the following
basic information. Firstly, the user has to identify
himself/herself with a name or with an anonymous code.
Secondly, the user height is stored for classifier adjustment.
Thirdly, the user has to determine the time in the day when the
collected statistics and possibly warnings are shown on the
Portable device or on the User screen [13] if the user does not
use the Portable device. Finally, the duration of the activity
recordings has to be defined according to the user’s ability to
perform basic activities such as standing, lying and sitting. The
activity recording is described in the following section. The
default duration of a recording is 30 seconds. The user can
choose to perform one activity for up to ten minutes.

3) Activity recording
The activity recording procedure consists of four to seven

steps, depending on the vitality of the user. The user should be
able to perform the basic activities: standing, sitting and lying.
Additionally, more advanced activities are optional and can be
recorded after the basic activities. These activities are sitting on
the ground and being on all fours. The recorded data is used in
order to improve activity recognition rules and the machine
learning classifier thus increasing the accuracy of the entire
system.

4) Lying locations
This step of the initialization wizard stores the lying

locations for the current room where the system is installed.
Lying locations are all locations where the user is allowed to lie
(e.g., bed) or to perform activities that could be considered
hazardous by the system (e.g., exercise and yoga).

When the initialization procedure is completed, three files
are created. The first file describes the general information
about the user; the second file contains the new rules created as
described in Section B and used in the Activity recognition
module, while the third file contains the data for the personal
machine learning classifier for the Activity recognition module.
This module is used for active semi-supervised learning as
explained in Section IV.

B. Rule adaptation

The rule engine for activity recognition was originally
created by the domain expert using the knowledge stored in a
decision tree classifier and domain knowledge [7]. An example
of a rule in the rule engine is as follows: “IF coordinateZ(chest)
< 0.3 m and velocity(chest) ≈ 0 THEN lying”. However, this is
a general rule not specialized for a specific user (body
dimensions) and a specific room (e.g., low chair). The rules in
the rule engine for activity recognition need to be adjusted to
suite each particular user (e.g., to user’s height and movement
characteristics) as well as the particular system localization
hardware in a specific room (e.g., adjustments to perform
optimally given the hardware’s noise level).

The adaptation of the rule engine encompasses only the
adjustment of the limits in the conditions of its rules. In the
example above, this would be the values 0.3 m (the z
coordinate of the chest) and 0 (the velocity of the chest). The
form of the rules stays unchanged as defined originally by the
domain expert. Activity recordings obtained with the
initialization wizard represent training data for rule engine
adaptation. We considered two approaches for the adaptation of
the limits in the rule engine: (1) a genetic algorithms and (2) an
approach which computes information gain for each attribute
included in a rule in order to determine the most suitable rule
condition limit. Due to time constraints, the second approach
was used for the adaptation of the rule engine during system
initialization.

C. Machine learning adaptation

The machine learning module contains the Default
classifier for activity recognition that is created using position
data of several users. Similarly to the rules module, the Default
classifier may not be suitable for the current user since his/her
height might be different with respect to the previously tested

Figure 2. Individual steps within all four sets of the initialization procedure.

users. Consequently, this classifier has to be adapted during the
initialization procedure as follows. The initial data has to be
scaled by taking into consideration the height of the current
user that is stored during the initialization procedure (Section
IV.B.1). However, such minor adjustments of the Default
classifier do not guarantee a high accuracy of the activity
recognition module. Consequently, a more advanced procedure
for the adaptation to the user has been designed as described in
the following section.

In addition to the Default classifier, the activity recognition
uses the Person classifier. This classifier is created by taking
into account the data about the activities that are recorded
during the initialization procedure as described in Section A.3.

IV. ACTIVE SEMI-SUPERVISED LEARNING

In order to increase the accuracy of the machine learning
classifier for activity recognition, a combination of the active
learning method and semi-supervised learning method has been
implemented. The idea of active learning is to improve the
accuracy by choosing the data for the training set. The active

learning method updates the existing classifier, namely the
Default classifier, by taking into account the data that has not
been included in the existing classifier (e.g., recent data gained
after the classifier was created). The implemented method is
based on the stream-based selective sampling method. The
presented system receives the data from the tags and creates
instances in real-time. The instance contains calculated
attributes describing distances between tags, velocity of tags
and angles between tags. The activities of the instances are
obtained with the Default and Person classifiers. In addition,
the confidences of such classifications are also obtained. Since
the classifiers may classify an activity into different classes, a
new Meta classifier is created in order to select the most
suitable classification. Afterwards, if the confidence of the
classification is sufficient, the instance is used by the active
learning method to update the existing Default classifier. A
similar method to ours was used for video annotation [14].
Their method uses two complementary classifiers for the
classification and the decision on the more suitable classifier is
based on an effectiveness measure. If the effectiveness measure

is higher than certain value, the video has to be labeled
manually.

A. Activity recognition classifiers and Meta classifier

This section describes the three classifiers, namely the
Default, Person, and Meta classifier. The first two are
classifiers for activity recognition while the last classifier
chooses which of the first two should be trusted.

1) Default classifier
The Default classifier is a generic classifier. It contains

activity data from recordings of three persons. The activities
that are recognized by this classifier are lying, standing, sitting,
going down, standing up, falling, sitting on the ground, and on
all fours. The classifier was built using the Random Forest
algorithm. Afterwards, it was tested with leave-one-person-out
cross-validation. The achieved accuracy was 86%. By
examining the results we have learned that certain physical
characteristics of a person can be significant for classifier
accuracy. One of these characteristics is the height of the
person. In order to test how the user’s height affects the
accuracy, an additional person with a different height compared
to the already tested persons has been tested and the accuracy
has decreased to 73%. In order to overcome this shortcoming,
the active semi-supervised learning method has been
implemented that updates and adapts this classifier which
resulted in increased accuracy (see Section V for the results).

2) Person classifier
The Person classifier is user specific classifier that contains

only three basic activities: lying, sitting and standing. Amount
of the data representing each activity depends on the previously
chosen time for recording the individual activity. Since the
dataset is relatively small, each recorded instance is multiplied
four times before the classifier is built with the Random Forest
algorithm. In order to define the Meta classifier described in
the following section, a Person classifier was build and
afterwards tested with a 30 minutes recording with labeled data
of the current user. The achieved accuracy was 69%. The
accuracy was low since the recording contains all eight
activities while the Person classifier can classify only three of
them.

3) Meta classifier
The Meta classifier is used to decide which of the

previously mentioned classifiers is more appropriate for the
classification of the current instance. It was built on two
recordings with labeled data of the current user. The duration
of each recording is 30 minutes. The attributes of the classifier
are calculations that reflect statistical relation between the
classifiers and attributes that include the classifications of the
Default and Person classifiers. The actually used attributes
were selected manually from three different sets of attributes
after an extensive testing of several Meta classifiers. Each Meta
classifier was tested with the ten-fold cross-validation. The
tested sets of attributes can be seen in Table 1 while the
accuracy of the tested Meta classifiers can be seen in Table 2.
The results show that the most efficient set of attributes is the
combination of the first and third set of attributes. The
algorithm with the highest accuracy is Random Forest
algorithm.

B. Classifier adaptation

The adaptation procedure consists of four steps: 1) Default
classifier scaling, 2) Person classifier creation 3) usage of the
Meta classifier to label the instances and 4) Default classifier
update if the confidence in the activity label is high. In case the
fourth step is positive, the system updates the learning data for
the Default classifier thus building a new classifier. The first
two steps are done during the initialization procedure (Section
III.A). The last two steps are implemented as the active semi-
supervised learning that is done during the normal usage of the
system. The entire process of the active semi-supervised
learning can be seen in Fig. 3.

1) Default classifier scaling
The height of the person is a parameter that significantly

affects the classifier accuracy. Consequently, the Default
classifier may not be efficient. Nevertheless, the data used to
build this classifier, which are correlated to the height of the
tested users, can be easily scaled to the current user’s height
using the equation (1) where we calculate the ratio between the
height of the current user (hP) and the average height of people
(hA) whose data is contained in the Default classifier and
multiply it with the old value of the attribute (attribute_old).
Consequently, the accuracy of the updated Default classifier
increases as presented in Section V.

oldattribute
h

h
newattribute

A

P __ (1)

2) Person classifier creation
The purpose of the second step is to capture the data of the

basic activities of the user and create a new classifier for
activity classification. However, this classifier is built
considering only the data of the three basic activities while the
Default classifier is built using the data of all activities.
Consequently, the Meta classifier in general should use the
Person classifier to classify three basic activities with higher
confidence and accuracy, and the Default classifier to classify
the other activities.

1) Meta classifier labeling
The Meta classifier labeling is done as follows. Each

instance that the system receives is classified with the Default
and the Person classifier. In addition, both classifiers return the
confidence values of the predicted classes. The attributes of the
learning data for the Meta classifier are the predictions and
confidences of the two classifiers, statistical attributes and
attributes calculated with logical functions. The output of the
Meta classifier is the index of the classifier that is more
appropriate for the classification of the current instance.

2) Default classifier update
The update of the Default classifier occurs only if the

confidence of the classification that is chosen by the Meta
classifier and the confidence of the Meta classifier are
sufficiently high. More precisely, both parameters have to be
100% confident in order to use the current instance for the
adaptation. Such instances are added to the training set of the
Default classifier and after a certain time interval a new Default
classifier is built. Consequently, the Default classifier is

adapted to the current user during the classifier update
procedure.

The classifier update using active learning procedure stops,
when the Meta classifier chooses only the Default classifier
during the last 30 minutes. When active leaning stops, only the
Default classifier is used for further activity classification.

Figure 3. Active semi-supervised learning procedure assembled of
classification, semi-supervised labeling and Default classifier adaptation.

TABLE I. ATTRIBUTE SETS

Set
Attributes

Attribute Label/Equation

1

Default classifier classification C1

Person classifier classification C2

Default classifier confidence in C1 MD(C1)

Person classifier confidence in C2 MP(C1)

Is C1 a basic class C1 R0

Are the classes equal C1 = C2

2

z coordinate of all tags /

Distance in height betwwen neck and average

height of ankles
/

Distance in height betwwen neck and belt /

3
Default classifier confidence in C2 MD(C2)

Person classifier confidence in C1 MP(C1)

TABLE II. TESTED ALGORITHMS

Algorithm
Attribute set combination

Snapshot + 1 1 2 1+2 1+3

SMO 86.6% 92.9% 88.9% 87.8% 88.3%

C4.5 96.8% 95.4% 96.1% 96.6% 95.9%

Random

Forest
90.9% 95.9% 96.6% 96.9% 97.4%

Naïve
Bayes

61.0% 75.7% 70.1% 68.8% 82.3%

AdaBoost 88.6% 84.8% 84.6% 84.6% 79.0%

Bagging 96.9% 94.7% 95.8% 96.2% 95.8%

TABLE III. ACCURACY OF THE CLASSIFIERS FOR EACH ACTIVITY

Activity

Classifiers

Default classifier

not scaled

Default

classifier

scaled

Person

classifier

Default

classifier

after

learning

Standing 95.5% 98.1% 99.8% 98.4%

Sitting 35.9% 41.7% 100% 97.3%

Lying 81.6% 75.3% 98.3% 93.3%

Sitting on the

ground
28.8% 52.0% 0% 84.5%

On all fours 100% 98.0% 0% 71.7%

Going down 52.0% 54.7% 0% 45.3%

Standing up 56.7% 58.6% 0% 74.5%

Falling 3.6% 9.1% 0% 11.0%

Classifier

accuracy
73.0% 79.0% 69.0% 84.5%

V. EXPERIMENTAL RESULTS

This section describes the experiment of the classifier
adaptation procedure consisting of the initialization procedure
and active semi-supervised learning. The Default classifier
used for the experiment has accuracy of 73% when the current
user is tested. Such low accuracy is achieved since the current
user is shorter than the users whose data was used to build the
Default classifier. More precisely, low accuracy is achieved
during the classification of the basic activities, namely sitting
(35.9% accuracy) and lying (81.64% accuracy). The low
accuracy of sitting is caused by mistakenly classifying sitting
as sitting on the ground. The accuracy of the classification for
each activity can be seen in Table 3.

The first step of the adaptation consists of scaling the
Default classifier to the current user height. This was done by
scaling the attributes related to the user height using the
equation (1), where the height was reduced from 176 cm to 160
cm. The scaling increased the accuracy of the Default classifier
by six percents thus the final accuracy was 79%. By scaling
previously described attributes we have increased the accuracy
of the classification of almost all activities except lying and on
all fours, where the accuracy has decreased. The reason is that
the height of the person does not affect certain activities like
falling.

Figure 4. Confusion matrix of the Default classifier after the active semi-supervised learning was applied.

The Person classifier used in this experiment is described
in Section IV.A.2. We have used 30 seconds of each basic
activity to build the classifier. Its accuracy is 69%. The
accuracy of classification of the basic activities is seen in Table
3. This classifier and the scaled Default classifier were used by
the active semi-supervised learning process. The test of this
process was done by using three 60 minutes recordings of
unlabeled data of the current user. Those data were balanced to
the percentages of the average activities in daily living that are
shown in Fig. 5. Each recording was used twice. During the
active semi-supervised learning, each instance with 100%
confidence was added to the learning set of the Default
classifier four times. This classifier was rebuilt every five
minutes. The result was increased accuracy of the Default
classifier from 79% to 84-85%.

Accuracy of the individual activities has increased (e.g.,
sitting from 35.9% to 97.3%) except those activities that could
be easily misclassified as lying. Even the recognition of the
falling activity has increased even though it is the shortest
activity to classify. The confusion matrix of the final classifier
with accuracy 84.5% (Fig. 4) reveals the misclassification
problem. The error is a result of scaling the attributes in lying
instances. Exclusion of these instances from scaling should be
done in further research.

VI. CONCLUSION

This paper describes the adaptation part of the Confidence
system. The main module of Confidence is the activity
recognition module that uses three classifiers to recognize
current activity of the user, and all three classifiers are adjusted
to each particular user. The initialization procedure includes the
scaling of the activity recognition classifiers and their update
using active semi-supervised learning. With the usage of the
initialization procedure, the accuracy of the activity recognition
module in the experiments increased from 73% to 84%. To
achieve this improvement, several reasonably novel approaches
were designed. Overall, the Confidence system is now in the
extensive testing phase by several users and independent
reviewers. The results so far, including a live demonstration at
the ICT Digitally Driven 2010 Event in Brussels were better
than promised in the project proposal.

In the future work, certain activities will be excluded from
the scaling process, new attributes will be added to the activity
recognition classifiers, e.g., the ratio of different activities in
the data, history of the classification for Default and Person
classifier, and more complex statistics. Besides, the aging of
the data will be added to the learning data by removing the
oldest data from the classifiers. Future work also includes
extensive testing of the method with various end users.

Figure 5. Percentage of activities during the day.

ACKNOWLEDGMENTS

This work was partly supported by the ARRS under the
Research Programme P2-0209, partly from the EU FP7/2007–
2013 under grant agreement No. 214986, and partly by the
European Union, European Social Found.

REFERENCES

[1] R. Means, S. Richards, and R. Smith, Community Care: Policy and
Practice. Basingstoke, Hampshire: Palgrave MacMillan, 2008.

[2] Confidence. http://www.confidence-eu.org, 2010-09-01.

[3] B. Kaluža, V. Mirchevska, E. Dovgan, M. Luštrek, and M. Gams, “An
agent-based approach to care in independent living”, Proc. of
International Joint Conference on Ambient Intelligence 2010, in press.

[4] Ubisense. http://www.ubisense.net, 2008-09-15.

[5] Fraunhofer. http://www.fraunhofer.de, 2010-09-03.

[6] M. Lustrek and B. Kaluza, “Fall detection and activity recognition with
machine learning,” Informatica, vol. 33, no. 2, pp. 197–204, 2009.

[7] V. Mirchevska, M. Luštrek, and M. Gams, “Combining machine
learning and expert knowledge for classifying human posture”, Proc. of
International Electrotechnical and Computer Science Conference 2009,
pp. 183–186, 2009.

[8] L. R. Rabiner, “A tutorial on Hidden Markov Models and selected
applications in speech recognition,” Proc. of the IEEE, vol. 77, no. 2, pp.
257–286, 1989.

[9] V. Mirchevska, B. Kaluža, M. Luštrek, and M. Gams, “Real-time alarm
model adaptation based on user feedback”, Proc. of Ubiquitous Data
Mining workshop in conjunction with ECAI 2010, pp. 39–44, 2010.

[10] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

[11] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge:
Cambridge University Press, 2000.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF:
identifying density-based local outliers,” Proc. of the 2000 ACM
SIGMOD international conference on Management of data, pp. 93–104,
2000.

[13] B. Cvetković, V. Mirčevska, E. Dovgan, B. Kaluža, M. Luštrek, and M
Gams, “User manual – User screen,” Technical Report IJS-DP 10559,
2010.

[14] Y. Song, X. Hua, L. Dai, and M. Wang, “Semi-automatic video
annotation based on active learning with multiple complementary
predictors,” Proc. of the 7th ACM SIGMM international multimedia
conference, pp. 97–104, 2005.

