
Abstract 
Congestive heart failure is a common disease in 
people aged over 65 whose management can 
benefit from telemonitoring. In this paper we 
analyse the data from a year-long telemonitoring 
trial of 141 patients. The trial itself already reduced 
the number of hospitalisations, but our goal was to 
use machine learning to build a classifier that could 
predict the remaining ones. Such a classifier could 
then be used for timely interventions that could 
further reduce the number and/or duration of 
hospitalisations. By engineering a large number of 
features from the telemonitored parameters, and 
experimenting with various feature-selection and 
machine-learning methods, we built a Naïve Bayes 
classifier that predicted 7 hospitalisations out of 9, 
and raised a false alarm in only 1 instance out of 
117.  

1 Introduction 
Congestive heart failure (CHF) is a progressive chronic 
condition in which the heart cannot pump enough blood to 
meet the needs of organs and tissues for oxygen and 
nutrients. As a result, the patients’ capacity for physical 
activity is severely limited, making the disease highly 
debilitating. Being the most frequent cause of 
hospitalisation in people aged over 65 [Roger, 2013], it is 
also very expensive for the society. This makes effective 
management of CHF of paramount importance. 
 The management of some diseases, one of which is CHF, 
can be assisted remotely by telemonitoring [Kvedar et al., 
2014]. On one hand, this enables the patients to live at their 
homes as comfortably as possible (given their disease). On 
the other hand, it gives the clinicians an insight into the 
status of their patients’ health, so they can make informed 
decisions regarding the treatment and utilise their time 
efficiently, making telemonitoring cost-effective.  

Telemonitoring systems typically use automatic warnings 
based on thresholds which are set for each monitored 
parameter. The system thus warns clinicians to review the 
parameters and intervene if needed.  
 Telemonitoring has decreased the mortality and the 
number of hospitalisations of CHF patients in many cases 

[Martín-Lesende et al., 2013; Rudel et al., 2016], although 
there are also reports to the contrary from two major trials 
[Sousa et al., 2014]. However, the telemonitoring in these 
two trials was not very advanced – the monitored 
parameters were limited and no intelligent computer 
analysis was involved. To (further) decrease the number of 
hospitalisation, one can perform frequent laboratory tests 
[Pocock et al., 2006] or use a telemonitoring system which 
can detect more complex relations between the monitored 
parameters that are often not easily seen by clinicians. These 
relations can be extracted from data with machine-learning 
methods, which is the objective of this paper. 
 The analysis done in this paper was performed on the data 
of 141 patients collected through telemonitoring [Rudel et 
al., 2016]. The telemonitoring system sent a warning to the 
clinicians in case some monitored parameter exceeded a 
predefined personalised threshold. A clinician intervened by 
calling the patient and inquiring how he/she feels. If the 
patient reported a deterioration of health, he/she was 
instructed to change the treatment, come for a check-up, or 
was hospitalised. This in itself reduced the number of 
hospitalisations from 0.34 per patient per year to 0.1. In this 
paper we attempt to predict the remaining hospitalisations 
from the telemonitoring data. This should enable even more 
timely interventions, further decreasing the number and/or 
duration of hospitalisations. 
 The paper is structured as follows. In Section 2 we 
present the collected dataset and in Section 3 the extracted 
features. In Section 4 we present the results of the data 
analysis aimed at prediction hospitalisations, and then 
conclude with Section 5. 

2 Dataset 
The dataset was collected during a telemonitoring trial 
conducted by the General Hospital Slovenj Gradec 
[Hospital, 2016] in Slovenia within the United4health 
project [United4Health, 2016]. They recruited 141 patients 
with different New York Heart Association (NYHA) 
Functional Classification for CHF. The trial took place in 
2014 and 2015 for an average period of 369 days per 
patient.  
 One year before the start of trial each patient was tested 
in a laboratory to establish the N-terminal pro b-type 
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natriuretic peptide (primary proBNP) and left ventricular 
ejection fraction (primary LVEF). The former is an 
established biomarker of the severity of CHF, and the latter 
is a measure of cardiac function. Right before the trial the 
patients underwent the same tests (secondary proBNP and 
secondary LVEF). They were additionally checked for other 
cardiovascular diseases relevant for CHF: hypertensive 
heart disease with heart failure (I110), old myocardial 
infarction (I252), primary pulmonary hypertension (I270), 
nonrheumatic mitral (valve) insufficiency (I340), dilated 
cardiomyopathy (I420), ventricular fibrillation and flutter 
(I490) and right ventricular failure (I500). For each patient, 
the weight, height, sex, date of birth, date of the first 
diagnosis and the history of hospitalisations were also 
noted. 
 The patients were given a set of devices and were 
instructed to take daily measurements in the morning before 
breakfast and in case of health deterioration to repeat the 
measurements several times during the day. The measured 
parameters are the systolic (SYS_BP) and diastolic 
(DIAS_BP) blood pressure, the heart rate (HR), the blood 
oxygen saturation (SO2), the weight (WE) and the 
occurrence of arrhythmia (ARR). The blood pressure, heart 
rate and arrhythmia were measured with Cignus Senior Line 
TD-3128 [Cignus, 2016], the oxygen saturatuion was 

measured with Nonin Onyx II 9560 [Nonin, 2016] and the 
weight with Libr-O-Graph [Libro, 2016]. If a patient did not 
attend the laboratory tests or did not measure some 
parameter, this is noted as a missing value in the dataset. 

The statistics of the trial and the patients involved are 
presented in Table 1. We can observe that more men than 
women were involved, and that they were mostly diagnosed 
with CHF from 3 to 6 years prior to the beginning of the 
trial. Most of the patients were categorised as NYHA class 2 
(patients with mild symptoms – mild shortness of breath) 
and class 3 (comfortable only at rest – shortness of breath 
even in light activity). All of them had at least one 
additional cardiovascular disease – more than half were 
coping with the hypertensive heart disease with heart failure 
(I110). The number of hospitalisation prior to start of the 
trial was mostly 0, while the maximum number was 4. 
 A sample of the collected raw data is presented in Figure 
1 and Figure 2.  Figure 1 shows raw signals of body mass 
index (BMI), systolic blood pressure, heart rate and oxygen 

Figure 2. Raw signals of the patient who was not hospitalised. The 
signals are the body mass index, systolic blood pressure, heart rate 
and oxygen saturation. 

SO2 

HR 

SYS_BP 

BMI 

Demographic variables 
Men  [no.]  102  
Women [no.] 39 
Age [mean ± sd] 71.5 ± 9.4 

General information about the patiens 
Trial duration [mean ± sd] 369 ± 134 
Disease duration in years [mean ± sd] 3.5 ± 3.2 
Hospitalisation history [mean ± sd] 0.4 ± 0.7 
Height [mean ± sd] 167 ± 9.1 
BMI [mean ± sd] 30.3 ± 5.2 

Clinical CHF variables 
Primary LVEF  [mean ± sd] 43 ± 13 
Secundary LVEF [mean ± sd] 41 ± 13 
Primary ProBNP [mean ± sd] 4179 ± 4926 
Secondary ProBNP [mean ± sd] 3406 ± 3507 
NYHA class 1 [no.] 1  
NYHA class 2 [no.] 101 
NYHA class 3 [no.] 35 
NYHA class 4 [no.] 1 

Other cardiac dieseses 
I110 [%] 59.6 
I252 [%] 19.1 
I270 [%] 0.7 
I340 [%] 1.4 
I420 [%] 5.7 
I490 [%] 0.7 
I500 [%] 29.8 

Table 1. Trial data statictics. We present the demographic 
statistics, the information about the patients, the CHF variables 
and other dieseses patients have. 

Figure 1. Raw signals of the patient who was hospitalised at the 
time represented with vertical line. The signals are the body mass 
index, systolic blood pressure, heart rate and oxygen saturation.  
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saturation for a patient who was hospitalised at the time 
point marked with a vertical line. Figure 2 presents the same 
raw signals, but for a patient who was not hospitalised. We 
can observe that the BMI of the hospitalised patient before 
the hospitalisation does not differ much from the BMI of 
non-hospitalised patient. The same goes for the systolic 
blood pressure, heart rate and oxygen saturation. From this 
we can conclude that the dataset is difficult to analyse. 
Patterns which occur prior to hospitalisations often also 
occur at other times. 

3 Features 
The parameters in the dataset can be divided into static 
parameters, which change little during the trial, and 
dynamic parameters, which change with each new 
telemonitoring measurement. The static parameters are the 
NYHA class, ProBNP (preferably secondary if it exist, 
otherwise the primary), LVEF (preferably secondary if it 
exist, otherwise the primary), age, sex, disease duration in 
years, hospitalisation history and other cardiovascular 
diseases.  The dynamic parameters are the weight, heart 
rate, systolic and diastolic blood pressure, oxygen 
saturation, number of interventions (phone calls to the 
patient), number of detected arrhythmias and number of 
hospitalisation during the trial until the analysed date. 
 Each parameter was transformed into features used for 
machine learning in the following three ways: 
- Raw feature values 
- Discretised feature values 
- Extracted statistical feature values 
 Raw feature values are the raw values of both the static 
and dynamic parameters, and additionally two features 
calculated from the raw values: the BMI and the difference 
between the systolic and diastolic blood pressure. 
 Discretised feature values represent the risk carried by 
the parameter values (high, medium, low). The 
discretisation is based on the thresholds presented in Table 
2. The thresholds were obtained from the research done in 
the CHIRON project [Chiron, 2016], in which a survey 
among 32 European opinion leaders in cardiology was 
performed as a means to obtain an evaluation of the 
parameters relevant to CHF [Kozina et al., 2013]. Each 
feature is also characterised by the “shape” of the relation 
between the parameter values and the risk. If the relation is 

linear (Figure 3), then the parameter is directly proportional 
(+) or inversely proportional (–) to the feature (risk). 
Interestingly, a decrease of systolic blood pressure in CHF 
patients means a higher risk. If the feature has a U-shaped 
relation (this is the case only for the BMI in this dataset), it 
means that it has two high thresholds and two low 
thresholds (Figure 4). 
 Extracted statistical features were obtained by statistical 
processing of the raw and discretised features over four time 
intervals (4, 14, 30 and 90 days). For every time interval we 
calculated the following statistics: the average value, the 
discretised average value (with thresholds from Table 2), the 
number of times the value exceeded the high-risk threshold, 
the standard deviation, the amount of missing values, the 
relative deviation from the patient’s average value for that 
feature, and the trend calculated with linear regression as 
implemented in the R statistical tool [R, 2014]. 
 We ended up with 168 features from which feature 
vectors were constructed. To these feature vectors we added 
the class, which indicates whether the patient was 
hospitalised at the end of the interval for which the features 
were computed, or not. The features were finally evaluated 
with the information gain as implemented in the Weka 

 Risk  
Parameter Low  Medium  High  Relation 
LVEF 50 40 25 linear (–) 
NYHA 2 3 4 linear (+) 
Age 58 64 81 linear (+) 
Systolic BP 140 120 100 linear (–) 
Diastolic BP 70 80 95 linear (+) 
SO2 94 88 82 linear (–) 
BMI 21–23 18–21 

23–30 
<18 
>30 

U-shape 

Table 2. The discretisation thresholds. 
 

 
 

Figure 3. Trasholds and linear relation of the paramter 
systolic blood pressure. 

 
Figure 4. thresholds and U-shape relation of the parameter 
BMI. 
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machine-learning suite [Weka, 2009]. The information gain 
of a feature corresponds to the amount of information about 
the class obtained by knowing the value of the feature. The 
information gains of the top-rated features are shown in 
Table 3. 

To illustrate the computation of the features, Figure 6 and 
Figure 5 show some features of the two patients whose raw 
parameters are shown in Figure 1 and Figure 2.  The blue 
line is the trend calculated with linear regression, and the 
band around it is the standard deviation of the parameter. 
We can see that there is again no obvious difference 
between the data of the hospitalised patient before the 
hospitalisation, and the data of the non-hospitalised patient. 

4 Hospitalisation Prediction 
Our goal was to construct a classifier which will predict 
hospitalisations before they occur. Our dataset has only nine 
occurrences of hospitalisation for eight patients – one 
patient was hospitalised twice. This gives nine 
hospitalisation instances. We then randomly selected one 
interval from each patient to create 117 non-hospitalisations 
instances (we omitted 15 patients due to many missing 
values for all the measured parameters). 

 The evaluation was performed with the leave-one-
hospitalisation-out approach: we created nine training 
datasets and nine test datasets. The training dataset was 
always created from randomly chosen 104 instances of non-
hospitalisation and 8 hospitalisation instances. To balance 
the training dataset, we multiplied the hospitalisation 
instances to the same number as the non-hospitalisation 
instances. The test dataset contained the left-out 
hospitalisation instance and the 13 left-out non-
hospitalisation instances. 
 The prediction was performed with four machine-learning 
algorithms as implemented in the Weka suite: J48 decision 
trees, Random Forest (RF), Support Vector Machine (SVM) 
and Naive Bayes (NB). The first experiment was performed 
on instances containing all the features, and returned rather 
poor results: we were not able to predict a single 
hospitalisation, so the recall was 0. 
 To improve the results, we tried out several feature 
selection methods, again as implemented in the Weka suite: 
Information Gain, ReliefF, Correlation-based Feature Subset 
Selection, Wrapper, and Chi-squared correlation test. The 
results are shown in Table 4 in terms of recall (the fraction 
of hospitalisation instances classified as such), precision 
(the fraction of instances classified as hospitalisation that 
truly belong to the hospitalisation class), the F-measure (the 
harmonic mean of the precision and recall), and the area 
under the receiver operating characteristic (ROC) curve 
(AUC, explained later alongside Figure 7). The approaches 
yielding the best results were the wrapper-based approach 
(using the Naïve Bayes or SVM) and the correlation-based 
feature subset selection using the SVM machine-learning 
algorithm. For these we performed the Fisher’s exact test for 
evaluating the statistical significance in terms of the 
probability that our results were not obtained by chance. 
The wrapper method using Naïve Bayes gained the highest 
statistical significance with p < 3 × 10–9, the wrapper 

Figure 6.  Measured parameters and extracted statistical features 
for a hospitalised patient. 
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Figure 5. Measured parameters and extracted features for a non-
hospitalised patient. 

Feature Information 
gain  

Amount of missing values for SO2 (90 days) 0.099 
Amount of low SO2 (30 days) 0.099 
Relative deviation of DIAS_BP (90 days) 0.098 
Trend of BMI (30 days) 0.098 
Amount of missing values for BMI (30 days) 0.071 
Relative deviation of ARR (4 days) 0.066 
The NYHA classification 0.065 
Amount of missing values for BMI (14 days) 0.064 
Trend of BMI (90 days) 0.064 
Trend of diff. beetwen presures (90 d.)  0.060 
Trend of SYS_BP (90 days) 0.053 
Amount of missing values for HR (90 days) 0.052 
Amount of ARR (4 days) 0.051 
Trend of SYS_BP (30 days) 0.044 
Trend of DIAS_BP (30 days) 0.038 
Average value of SO2  (30 days) 0.031 
Table 3. The top-rated features according to the information gain. 
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method using SVM gained p < 8 × 10–9 and the correlation-
based feature subset selection gained p < 1.5 × 10–8.  

Since the Naïve Bayes achieved the highest f-measure 
and statistical significance, we will give it more attention in 
the rest of the paper. This method selects the features using 
an internal cross-validation. The following features were 
selected: 
- Average heart rate in the last 4 days 
- Average of the difference between systolic blood 

pressure and diastolic blood pressure in the last 4 days 
- Absence of measurements for diastolic blood pressure, 

oxygen saturation and BMI in the last 90 days 
- Systolic blood pressure trend in the last 90 days 
- Trend of the difference between systolic blood pressure 

and diastolic blood pressure in the last 90 days 
- BMI trend in the last 30 days 
- Systolic blood pressure trend in the last 30 days 
 To better see how the best the classifier predicted 
hospitalisations, we show its confusion matrix in Table 5. 

The classifier successfully predicted 7 hospitalisations out 
of 9, and raised a false alarm in 1 instance out of 117. 

Table 5. Confusion matrix of the classifier built with the wrapper-
based feature selection and Naive Bayes algorithm. 

 Figure 7 shows the ROC curve of the best classifier. The 
classifier’s output is the probability that an instance belongs 
to the hospitalisation class, and the curve display the false 
and true positive rate for every threshold that can be applied 
to this probability to transform it into a crisp 
hospitalisation/non-hospitalisation output. The false positive 
 rate is the fraction of instances mistakenly classified as 
hospitalisation out of all non-hospitalisations, and the true 
positive rate is the fraction of hospitalisation instances 
classified as such (the same as recall). The closer the curve 
is to the upper left corner, the better the classifier. One can 
use the curve to select a trade-off between the false and true 
positive rate suitable for his/her application. 
 Finally, the best classifier is visualised as a nomogram in 
Figure 8. A nomogram shows how many “points” each 

feature contributes to the hospitalisation class – this is 
shown by the position of feature values on the line next to 
each feature, relatively to the scale on the top of the figure 
(e.g., a heart rate between 100 and infinity contributes –59 
points). On the bottom of the figure one can see how the 
points translate into the probability of hospitalisation (e.g., 0 
points correspond to the probability of 0.075 and 23 points 
to the probability of 0.5).  

To better understand a nomogram, we present an example 
of a patient who was hospitalised. Table 6 presents the 
features, their values and the number of points they 
contribute to the hospitalisation classification. In the 
example, the sum of the points is 38, which indicates that 
the patient will be hospitalised with the probability of 87%.  

Predicted 
True 

Hospitalisation Non-hospital. 

Hospitalisation 7 2 
Non-hospital. 1 116 

Figure 7. Receiver operating characteristic (ROC) curve of the 
classifier built with the wrapper-based feature selection and 
Naive Bayes algorithm. 
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False positive rate 

Information Gain 
Algorithm J48 RF SVM NB 
Recall 0.78 0.00 0.56 0.44 
Precision 0.58 NA 0.50 0.57 
F-measure 0.67 NA 0.53 0.50 
AUC 0.86 0.95 0.91 0.87 

ReliefF 
Algorithm J48 RF SVM NB 
Recall 0.22 0.00 0.11 0.22 
Precision 0.29 NA 1.00 0.22 
F-measure 0.25 NA 0.20 0.22 
AUC 0.69 0.75 0.75 0.42 

Correlation-based Feature Subset Selection 
Algorithm J48 RF SVM NB 
Recall 0.56 0.33 0.78 0.78 
Precision 0.50 0.75 0.78 0.64 
F-measure 0.53 0.46 0.78 0.70 
AUC 0.73 0.96 0.95 0.94 

Wrapper 
Algorithm J48 RF SVM NB 
Recall 0.33 0.22 0.89 0.78 
Precision 0.60 0.67 0.62 0.88 
F-measure 0.43 0.33 0.73 0.82 
AUC 0.71 0.58 0.94 0.98 

Chi-squared correlation test 
Algorithm J48 RF SVM NB 
Recall 0.77 0.22 0.56 0.44 
Precision 0.64 1.00 0.50 0.57 
F-measure 0.70 0.36 0.53 0.50 
AUC 0.87 0.94 0.90 0.87 

Table 4. The results of hospitalisation prediction for features 
selected with various feature-selection methods, and various 
machine-learning algorithms. The best results for each metric is 
shown in bold. 



Table 6. The number of points each feature contributes to the 
hospitalisation classification. 

According to the nomogram, a high heart rate is a strong 
indicator that a hospitalisation will not occur, which is 
unusual since a high heart rate is considered a bad sign in 
CHF patients. A low difference between the diastolic and 
systolic blood pressure is a strong indicator of 
hospitalisation, which is normal, since it also indicates a 
poor cardiac function. The presence of missing values in the 
data has a somewhat inconsistent meaning, but it seems to 
indicate hospitalisation more strongly than non-
hospitalisation, which can be explained by missing values 
being caused by omitted measurements due to poor health. 
An upward trend of the systolic blood pressure is a strong 
indicator that a hospitalisation (because of CHF) will not 
occur, which is reasonable. However, a downward trend of 
the difference between the diastolic and systolic blood 
pressure indicates the same, which seems unusual. A change 
in the BMI in any direction is a strong indicator of 
hospitalisation – increasing BMI signals fluid retention (a 
common problem of CHF patients), while decreasing BMI 
probably signals generally poor health. Finally, a stable 
systolic blood pressure indicates that a hospitalisation will 
not occur. In summary, the classifier contains some relations 
consistent with the current medical knowledge about CHF, 
and some unexpected relations that are probably wrong 
because of too little hospitalisation data. However, some of 
the unexpected relations may also be correct and may 
represent novel findings about CHF that can only be 
obtained through the analysis of telemonitoring data – 
which is still relatively novel. 

5 Conclusion 
In this paper we analysed the data from a telemonitoring 
trial of CHF patients with machine-learning methods. Our 
goal was to build a classifier that can predict hospitalisations 
from daily measurements of patients’ vital signs. Such a 
classifier can be used to warn of an upcoming 
hospitalisation, so that clinicians can make a timely 
intervention to prevent the hospitalisation or reduce its 
duration. The best classifier was Naïve Bayes which 
successfully predicted 7 hospitalisations out of 9, and raised 

a false alarm in 1 instance out of 117, which we consider 
very successful.  

In the future we plan to more rigorously check whether it 
is possible that our classifiers overfit the data and would 
consequently not be so successful in real life. Furthermore, 
we will test how far in advance can the hospitalisations be 
predicted, since an earlier prediction is clearly more 
valuable than a later one. Finally, we will investigate the 
possibility of deploying the classifier live in telemonitoring 
activities of the General Hospital Slovenj Gradec. 
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Feature Feature 
value 

Points 

Average HR (4 days) 60–100 0 
Average diff. between pressures (4 d.) 0–30 20 
Missing values for BMI (90 days) 10 8 
Missing values for DIAS_BP (90 days) 9 8 
Missing values for SO2 (90 days) 8 –11 
Missing values for HR (90 days) 9 1 
Trend of SYS_BP (90 days) –1 –1 
Trend of diff. between pressures (90 d.) 0 10 
Trend of BMI (30 days) 0 –3 
Trend of SYS_BP (30 days) –1 6 
Sum  38 

Figure 8. The classifier built with the wrapper-based feature 
selection and Naive Bayes algorithm visualised as a nomogram. 
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