
Dynamic Control in Path-Planning with Real-Time Heuristic Search

Heuristic search for planning
ASP, HSP, FF, SHERPA, LDFS

Real-time heuristic search
Constant time per move

Real-time path-planning
1-3 ms for all units in games

Learning Real-time A* (LRTA*)
Constant look-a-head depth
Heuristic w.r.t. a fixed goal

Dynamic selection at each step:
Look-a-head depth and sub-goal

Pattern-database approach
Pre-compute for each state: intractable
Pre-compute for each abstract state

optimal action? No
depth and next goal? Yes

Decision-tree approach
Use local search-space attributes to
predict best look-a-head depth

heuristic estimates
n-step progress
error estimates

Pros of each approach
Pattern-databases: optimal depths
stored and sub-goals.
Decision trees: use on unseen maps

Empirical Evaluation
3 RTS maps x 100 problems each
Dynamic LRTA* vs. LRTA*

Dynamic LRTA* vs. state-of-the-art

Larger maps: even more gains!
Conclusions

State-of-the-art in real-time path-
planning (both with and without
abstractions).

Future work
Integrate with PR-LRTS
Applicability to general planning

Problem Formulation Dynamic LRTA* Results

State Abstraction for Real-time Moving Target Pursuit

We are interested in domains that are:

• a priori un-
known

• adversarial
• real-time
(thinking
time matters)

Examples:

• video games
• robotics

In this research we
study moving target
pursuit in a game-like
environment:

• 2D grid
• initially unknown maps
• target moves in real-time

Standard methods: incremental A*, D*, and D* Lite
compute entire path before the first move can be
made. They can be too slow when the target moves
away in real time.

Technique: Automated map abstraction has proven
effective for speeding search and learning.

Objectives:

• minimize convergence interception travel

Problem Formulation

Unifying architecture for pursuit and target agents:

Pursuit agents have known target locations. They use
following algorithms for action planning:

• eMTS: version of MTS [Ishida, Korf 1991] ex-
tended with lookahead of 10, heuristic weight of
0.1, max of min update rule. About 30x faster.

• PR MTS: eMTS at level 3, A* (level 0)

• A*

• PRA*: Partial-Refinement A*.

Target agents must choose the best location to run
and then potentially do action planning to get there.
We use the following policies:

• randomer - a random move at each time step.

• random - a random direction every 5 steps

• minimax: Use 5-ply minimax search to select lo-
cation for movement.

• DAM: Dynamic Abstract Minimax uses varying
levels of abstract graphs to do minimax planning.

Agent Design

1,000 problems on 10 maps (400 - 1,349 states):

Figure 6: The 10 synthetic maps used in the first and second experiments.

Figure 7: The two maps from commercial games used in the third experiment.

References
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. Journal of Game Development
1(1):7–28.
Bulitko, V., and Lee, G. 2006. Learning in real time search:
A unifying framework. Journal of Artificial Intelligence
Research 25:119 – 157.
Bulitko, V.; Sturtevant, N.; and Kazakevich, M. 2005.
Speeding up learning in real-time search via automatic
state abstraction. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 1349 – 1354.
Bulitko, V. 2004. Learning for adaptive real-time search.
Technical Report http: // arxiv. org / abs / cs.AI / 0407016,
Computer Science Research Repository (CoRR).
Chimura, F., and Tokoro, M. 1994. The Trailblazer search:
A new method for searching and capturing moving targets.
In Proceedings of the National Conference on Artificial In-
telligence, 1347–1352.
Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. In Canadian Conference on AI, 402–
416.

Edelkamp, S. 1998. Updating shortest paths. In Proceed-
ings of the European Conference on Artificial Intelligence,
655–659.
Hernández, C., and Meseguer, P. 2005. LRTA*(k). In
Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI).
Holte, R.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Speeding up problem solving by abstraction:
A graph oriented approach. Artificial Intelligence 85(1-
2):321–361.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hi-
erarchical heuristic search revisited. LNAI 3607, Springer
121–133.
Ishida, T., and Korf, R. 1991. Moving target search. In
Proceedings of the International Joint Conference on Arti-
ficial Intelligence, 204–210.
Ishida, T., and Korf, R. 1995. A realtime search for chang-
ing goals. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 17(6):609–619.
Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of the National Conference on Artificial Intel-
ligence, 525–532.

Learning agents

target/pursuer eMTS PR MTS Speed-up

randomer 701 110 527%

random 380 268 42%

minimax 241 214 13%

DAM - 1,148 -

Search agents

target/pursuer A* PRA* Speed-up

randomer 107 102 5%

random 217 193 12%

minimax 329 355 -7%

DAM 474 649 -27%

Effects of State Abstraction

Vadim Bulitko Nathan Sturtevant
http://ircl.cs.ualberta.ca/games

Target

Selection

Action

Planning

Action

Execution

 • Known Target

 • Minimax

 • Random

 • PRA*/A*

 • LRTS

 • Random

 • Full Execution

 • Partial Exec.

A B

KC

J

H

E

F

G

D

I

Group 1 Group 2

Group 4

1

4

2

3

Group 3

Figure 3: The process of abstracting a graph.

of the map as if they were single entities. Thus, the primary
contribution of this paper is extension of learning real-time
heuristic search with a state abstraction mechanism.

Building a State Abstraction
State abstraction has been studied extensively in reinforce-
ment learning (Barto & Mahadevan 2003). While our
approach is fully automatic, many algorithms, such as
MAXQ (Dietterich 1998), rely on manually engineered hi-
erarchical representation of the space.

Automatic state abstraction has precedents in heuris-
tic search and path-finding. For instance, Hierarchical
A* (Holte et al. 1995) and AltO (Holte et al. 1996) used
abstraction to speed up classical search algorithms. Our ap-
proach to automatically building abstractions from the un-
derlying state representation is similar to Hierarchical A*.

We demonstrate the abstraction procedure on a hand-
traceable micro-example in Figure 3. Shown on the left is
the original graph of 11 states. In general, we can use a
variety of techniques to abstract the map, and we can also
process the states in any order. Some methods and orderings
may, however, work better in specific domains. In this paper,
we look for cliques in the graph.

For this example, we begin with the state labeled A,
adding it and its neighbors, B and C, to abstract group 1,
because they are fully connected. Their group becomes a
single state in the abstract graph. Next we consider state D,
adding its neighbor, E, to group 2. We do not add H because
it is not connected to D. We continue to state F, adding its
neighbor, G, to group 3. States H, I, and J are fully con-
nected, so they become group 4. Because state K can only
be reached via state H, we add it to group 4 with H. If all
neighbors of a state have already been abstracted, that state
will become a single state in the abstract graph. As states
are abstracted, we add edges between existing groups. Since

Figure 4: Abstraction levels 0, 1, and 2 of a toy map. The number
of states is 206, 57, and 23 correspondingly.

there is an edge between B and E, and they are in different
groups, we add an edge between groups 1 and 2 in the ab-
stract graph. We proceed similarly for the remaining inter-
group edges. The resulting abstracted graph of 4 states is
shown in the right portion of the figure.

We repeat the process iteratively, building an abstraction
hierarchy until there are no edges left in the graph. If the
original graph is connected, we will end up with a single
state at the highest abstraction level, otherwise we will have
multiple disconnected states. Assuming a sparse graph of V
vertices, the size of all abstractions is at most O(V), because
we are reducing the size of each abstraction level by at least a
factor of two. The cost of building the abstractions is O(V).
Figure 4 shows a micro example.

Because the graph is sparse, we represent it with a list of
states and edges as opposed to an adjacency matrix. When
abstracting an entire map, we first build its connectivity
graph and then abstract this graph in two passes. Our ab-
stractions are most uniform if we remove 4-cliques in a first
pass, and then abstract the remaining states in a second pass.

Repairing Abstraction During Exploration
A new map is initially unknown to the agent. Under the free
space assumption, the unknown areas are assumed empty
and connected. As the map is explored, obstacles are found
and the initial abstraction hierarchy needs to be repaired to
reflect these changes. This is done with four operations:
remove-state, remove-edge, add-state, and add-edge. We
describe the first two in detail here.

In the abstraction, each edge either abstracts into another
edge in the parent graph, or becomes internal to a state in
the parent graph. Thus, each abstract edge must maintain
a count of how many edges it is abstracting from the lower
level. When remove-edge removes an edge, it decrements
the count of edges abstracted by the parent edge, and recur-
sively removes the parent if the count falls to zero. If an
edge is abstracted into a state in the parent graph, we add
that state to a repair queue to be handled later. The remove-
state operation is similar. It decrements the number of states
abstracted by the parent, removing the parent recursively if
needed, and then adds the parent state to a repair queue. This
operation also removes any edges incident to the state.

When updating larger areas of the map in one pass, us-
ing a repair queue allows us to share the cost of the addi-
tional steps required to perform further repairs in the graph.
Namely, there is no need to completely repair the abstraction
if we know we are going to make other changes. The repair
queue is sorted by abstraction level in the graph to ensure
that repairs do not conflict.

In a graph with n states, the remove-state and remove-
edge operations can, in the worst case, take O(log n) time.
However, their time is directly linked to how many states
are affected by the operation. If there is one edge that cuts
the entire graph, then removing it will take O(log n) time.
However, in practice, most removal operations have a local
influence and take time O(1). Handling states in the repair
queue is an O(log n) time operation in the worst case, but
again, we only pay this cost when we are making changes
that affect the connectivity of the entire map. In practice,

!""#$%&$'()$*%"+",-(./(0&$+12.3&()$*%14./'./,
5$'.3(67+.*#" (bulitko@ualberta.ca)

8/.9&:;.*-("<(=+>&:*$?(@&A$:*3&/*("<(B"3A7*./,(CD.&/D&?(E'3"/*"/?(=+>&:*$?(B$/$'$

F.*G$(!7H*:&# (mitja.lustrek@ijs.si)
I"J&<(C*&<$/(K/;*.*7*&?(@&A$:*3&/*("<(K/*&++.,&/*(C-;*&3;?(!G7>+G$/$?(C+"9&/.$

K/*:"'7D*."/
L 0&$+1*.3&(A$*%1<./'./,(!

! ./D"3A+&*& ;&$:D%(3&*%"';(!

! ;7>"A*.3$+($D*."/;

L @&&A&:(+""#$%&$'(>&+.&9&'(*"(A:"'7D&(>&**&:($D*."/;

L C"3&*.3&;(*%&("AA";.*&(.;(*:7&M(A$*%"+",-

C&**./,
L)$*%1<./'./,(./(,:.'(N":+'

L =+,":.*%3M(!02C O67+.*#"(P(!&&(QRS

L 2N"(*-A&;("<(&TA&:.3&/*;M

L U/1A"+.D-M(;*$:*(;*$*&(! ,"$+(;*$*&?(%&7:.;*.D(7A'$*&'

L U<<1A"+.D-M(:$/'"3+-(;&+&D*&'(;*$*&;?("/&(3"9&?(%&7:.;*.D(

/"*(7A'$*&'

L @&,:&&("<(A$*%"+",-M(/73>&:("<(+""#$%&$'('&A*%;(N%&:&(

&::":(.;(+$:,&:(*%$/($*(*%&(A:&9."7;('&A*%

L V?QQQ(A:">+&3;(W3$A?(;*$:*(;*$*&?(,"$+(;*$*&X

)$*%"+",-(U>;&:9&'

@&,:&&("<(A$*%"+",- Q V Y Z [" \

U/1A"+.D-(WA:">+&3;(]X Z^_\ V_V YQ_Z V`_Q `_R V_\

C&D"/'(ETA+$/$*."/
L C3$++&:(+""#$%&$'('&A*%;(>&/&<.*(3":&(<:"3(*%&(7A'$*&;(*"(*%&(%&7:.;*.D(!

! '&A*%;(D+";&:(! +$:,&:(3":&(+.#&+-(N":;&(*%$/(;3$++&:

L 4.:;*(*&;*M("/1A"+.D-?(.,/":&(7A'$*&;(N%&/(3&$;7:./,(&::":(!

! +&;;(A$*%"+",-

L C&D"/'(*&;*M(">;&:9&(9"+73&("<(7A'$*&;(*"(*%&(%&7:.;*.D(!

! ;3$++&:(9"+73&($*(;3$++&:('&A*%;

@&,:&&("<(A$*%"+",- Q V Y Z [" \

a"(7A'$*&;(WA:">+&3;(]X `b_^ V[_Y [_\ V_Y Q_Z Q_Q

Q

Q_\

V

V_\

Y

Y_\

Z

Z_\

[

[_\

V Y Z [\ R ` ^ b VQ

Depth

U
p

d
a

te
 v

o
lu

m
e

 /
 g

e
n

e
ra

te
d

U/1A"+.D- U<<1A"+.D-

2%.:'(ETA+$/$*."/
L 4&N&:(;&$:D%&;(A&:<":3&'($*(+$:,&:(+""#$%&$'('&A*%; !

! '&A*%;(D+";&:(! +$:,&:(3":&(+.#&+-(N":;&(*%$/(;3$++&:

L 4.:;*(*&;*M("/1A"+.D-(&TA&:.3&/*?(;&$:D%(&9&:-(3"9&(!

! +&;;(A$*%"+",-

L C&D"/'(*&;*M(">;&:9&(/73>&:("<(;*$*&;(,&/&:$*&'(A&:(3"9&(N%&/(

;&$:D%./,(&9&:-(3"9&(!

! ;*&&A&:(./D:&$;&(*%$/(/":3$++-

@&,:&&("<(A$*%"+",- Q V Y Z [" \

E9&:-(3"9&(WA:">+&3;(]X ^R_b b_Q Z_Z Q_R Q_Y Q_Q

Q

YQQ

[QQ

RQQ

^QQ

VQQQ

VYQQ

V[QQ

VRQQ

V^QQ

V Y Z [\ R ` ^ b VQ

Depth

G
e

n
e

ra
te

d
 /

 m
o

v
e

U/1A"+.D- U/1A"+.D-(&9&:-(3"9& U<<1A"+.D-

2"N$:';($(0&3&'-
L ='$A*.9&(+""#$%&$'("/($/(&T$3A+&(3$AM

L "A*.3$+('&A*%(A&:(;*$:*(;*$*&M

[^](+&;;(*:$9&+(*%$/(>&;*(<.T&'('&A*%

L "A*.3$+('&A*%(A&:(3"9&M

$''.*."/$+(:&'7D*."/

L V[](./(*:$9&+

L [Z](./(D"3A7*$*."/(A&:(3"9&

L a&&'(*"(#/"N("A*.3$+('&A*%;c

L ETA&/;.9&(*"(A:&1D"3A7*&(<":(&9&:-(;*$*&(A$.:(

W`_R(d VQR A$.:;X

L C*$*&($>;*:$D*."/ O67+.*#"(&*($+_(Q\S(M

L Q_QQ[](;*$*&(A$.:;(A:&1D"3A7*&'

L ZZ](+&;;(*:$9&+(*%$/(>&;*(<.T&'('&A*%

Current
state

Goal state

Lookahead area

Lookahead
depth

Next
state

Updated
state

Current
lookahead

area

Search every move

4.:;*(ETA+$/$*."/

L F$/-(A$*%"+",.D$+(;*$*&;

L 4.:;*(&TA+$/$*."/(AA:&/*+-(/"*(D"::&D*

L e%-(*%&(+$:,&('.<<&:&/D&(>&*N&&/("/1A"+.D-($/'("<<1A"+.D-f

@&,:&&("<(A$*%"+",- Q V Y Z [" \

U<<1A"+.D-(WA:">+&3;(]X b_` Z_` Q_R Q_Q Q_Q Q_Q

agent, i.e., (3) looks at the states the agent was in during the
last n steps, and counts the number of reoccurring states.

The classifier predicts the optimal search depth for the
current state. To avoid pre-computing true optimal actions,
we assume that deeper search usually yields a better ac-
tion. In the training phase, the agent first conducts a dmax-
ply search to derive the “optimal” action. Then a series of
progressively shallower searches are performed to determine
the shallowest search depth, ds, that still returns the “opti-
mal” action. During this process, if at any given depth, an
action is returned that differs from the optimal action, the
progression is stopped. This enforces all depths from ds to
dmax to agree on the best action. This is important for im-
proving the overall robustness of the classification, as the
classifier must generalize over a large set of states. The
depth ds is set as the class label for the vector of features
describing the current state

Once a decision-tree classifier is built, the overhead of us-
ing it is negligible. The real-time response is ensured by
fixing the maximum length that a decision-tree branch can
grow to, as well as the length of the recent history from
which we collect input features. This maximum is indepen-
dent of the problem (map) size. Indeed, the four input fea-
tures for the classifier are all efficiently computed in small
constant time, and the classifier itself is only a handful of
shallowly nested conditional statements. Thus, the execu-
tion time is dominated by LRTA*’s lookahead search. The
process of gathering training data and building the classifier
is carried out off-line. Although the classifier appears sim-
plistic, with minimal knowledge about the domain, as shown
later it performs surprisingly well.

Pattern Database Approach
We start with a naı̈ve approach as follows. For each
(sstart, sgoal) state pair, the true optimal action a∗(sstart, sgoal)
is to take an edge that lies on an optimal path from sstart
to sgoal. Once a∗(sstart, sgoal) is known, we can run a series
of progressively deeper searches from state sstart. The shal-
lowest search depth that yields a∗(sstart, sgoal) is the optimal
search depth d∗(sstart, sgoal).

There are two problems with the naı̈ve approach. First,
d∗(sstart, sgoal) is not a priori upper-bounded, thereby for-
feiting LRTA*’s real-time property. Second, pre-computing
d∗(sstart, sgoal) or a∗(sstart, sgoal) for all pairs of (sstart, sgoal)
states on even a 512 × 512 cell video-game map has pro-
hibitive time and space complexity. We solve the first prob-
lem by capping d∗(sstart, sgoal) at a fixed constant c ≥ 1
(henceforth called cap). We solve the second problem by us-
ing an automatically built abstraction of the original search
space. The entire map is partitioned into regions (or abstract
states) and a single search depth value is pre-computed for
each pair of abstract current and goal states. The resulting
data are a pattern database (Culberson & Schaeffer 1998).

This approach speeds up pre-computation and reduces
memory overhead (both important considerations for com-
mercial video games). To illustrate, in typical grid world
video-game maps, a single application of clique abstrac-
tion (Sturtevant & Buro 2005) reduces the number of states
by a factor of 2 to 3. At the abstraction level of five, each re-

A
G

A

G

1 2

34

Figure 2: Goal is shown as G, agent as A. Diamonds denote rep-
resentative states for each tile. Left: Optimal actions are shown for
each representative of an abstract tile; applying the action of the
agent’s tile in the agent’s current location leads into a wall. Right:
The dashed line denotes the optimal path.

gion contains about one hundred ground-level states. Thus,
a single search depth value is shared among about ten thou-
sand state pairs. As a result, five-level clique abstraction
yields a four orders of magnitude reduction in memory and
about two orders of magnitude reduction in pre-computation
time (as analyzed later in the section).

Two alternatives to storing the optimal search depth are to
store an optimal action or the optimal heuristic value. The
use of abstraction excludes both of them. Indeed, sharing
an optimal action computed for a single ground-level repre-
sentative of an abstract region among all states in the region
may cause the agent to run into a wall (Figure 2, left). Like-
wise, sharing a single heuristic value among all states in a
region leaves the agent without a sense of direction as all
states in its vicinity would look equally close to goal. Such
agents are not guaranteed to reach a goal, let alone mini-
mize travel. In contrast, sharing the search depth among any
number of ground-level states is safe as LRTA* is complete
for any search depth. Additionally, optimal search depth is
more robust with respect to map changes (e.g., a bridge be-
ing destroyed in a video-game).

We compute a single pattern database per map off-line
(Figure 3). In line 1 the state space is abstracted ! times.
In this paper we use clique abstraction that merges fully
connected states. This respects topology of a map but re-
quires storing the abstraction links explicitly. An alterna-
tive is to use regular rectangular tiles of Botea, Müller, &
Schaeffer (2004). Lines 2 through 7 iterate through all pairs
of abstract states. For each pair (s′start, s

′
goal), representative

ground-level states sstart and sgoal (e.g., centroids of the re-
gions) are picked and the optimal search depth value d is
calculated for them. To do this, Dijkstra’s algorithmis run
over the ground-level search space (V,E) to compute true
minimal distances from any state to sgoal. Once the dis-
tances are known for all successors of sstart, an optimal ac-
tion a∗(sstart, sgoal) can be computed trivially. Then the op-
timal search depth d∗(sstart, sgoal) is computed as described
above and capped at c (line 5). The resulting value d is stored
for the pair of abstract states (s′start, s

′
goal) in line 6.

During run-time, an LRTA* agent located in state sstart
and with the goal state sgoal sets the search depth as the pat-
tern database value for pair (s′start, s

′
goal), where s′start and s′goal

are images of sstart and sgoal under an !-level abstraction. The
run-time complexity is minimal as s′start, s

′
goal, d(s′start, s

′
goal)

Vadim Bulitko Yngvi Björnsson Mitja Luštrek Jonathan Schaeffer Sverrir Sigmundarson

0 50 100 150 200 250 300 350 400 450
1

1.5

2

2.5

3

3.5

 5

 7

 10

 14

 0
 1 2

 3

 4

 5

 5

 7

 10

 15

 20

 5

 7

 10

 15

 20

Mean number of nodes expanded per action

S
u
b
o
p
ti
m

a
lit

y
 (

ti
m

e
s
)

Pattern db. (G)

Decision tree (G)

Oracle (G)

Fixed depth (G)

0 50 100 150 200 250 300 350 400 450
1

1.5

2

2.5

3

3.5

 5

 7

 10

 14

 0
 1 2

 3

 4

 5

 5

 7

 10

 15

 20

 5

 7

 10

 15

 20

Mean number of nodes expanded per action

S
u
b
o
p
ti
m

a
lit

y
 (

ti
m

e
s
)

Pattern db. (G)

Decision tree (G)

Oracle (G)

Fixed depth (G)

Figure 5: Margins for improvement over fixed-depth LRTA*.

other words, in addition to selecting the search depth per
state, the goal is also selected dynamically, per action.

Finally, one can imagine always using intermediate goals
(until the agent enters the abstract state containing sgoal).
This gives us three approaches to selecting goal states in
LRTA*: always global goal (G); intermediate goal if the
global goal requires excessive search depth (G+I); always
intermediate goal unless the agent is in the goal region (I).

Empirical Evaluation
This section presents results of an empirical evaluation of
LRTA* agents with dynamic control of search depth and
goal selection. All algorithms except Koenig’s LRTA* use
breadth-first search for planning and avoid re-expanding
states via a transposition table. We report sub-optimality in
the solution found and the average amount of computation
per action, expressed in the number of states expanded and
actual timings on a 3 GHz Pentium IV computer.

We use grid world maps from a popular real-time strategy
game as our testbed. Such maps provide a realistic and chal-
lenging environment for real-time search (Sigmundarson &
Björnsson 2006). The agents were first tested on three dif-
ferent maps (sized 161×161 to 193×193 cells), performing
100 searches on each map. The heuristic function used is oc-
tile distance – a natural extension of the Manhattan distance
for maps with diagonal actions. The start and goal locations
were chosen randomly, although constrained such that op-
timal solution paths cost between 90 and 100. Each data
point in the plots below is an average of 300 problems (3
maps ×100 runs each). All algorithms were implemented
in the HOG framework (Sturtevant 2005), and use a shared
code-base for algorithmic independent features. This has
the benefit of minimizing performance differences caused
by different implementation details (e.g. all algorithms are
using the same tie-breaking mechanism for node selection).

For building the classifiers, we used the J48 decision tree
algorithm in the WEKA library (Witten & Frank 2005).
The training features were collected from a history trace of
n = 20 steps. The game maps were used for training and
10-fold cross-validation was used to avoid over-fitting the
data. The pruning factor and minimum number of data items
per leaf parameters of the decision tree algorithm were set

0 50 100 150 200 250 300 350 400 450
1

1.5

2

2.5

3

3.5

Mean number of nodes expanded per action

S
u
b
o
p
ti
m

a
lit

y
 (

ti
m

e
s
)

Pattern db. (G)

Pattern db. (G+I)

Pattern db. (I)

Fixed depth (G)

Figure 6: Effects of dynamic goal selection.

to 0.05 and 200, respectively. For the reference, at depth
dmax = 20 there were approximately 140 thousand train-
ing samples recorded on the problems. Collecting the data
and building the classifier took about an hour. Of these two
tasks, collecting the training data is by far the more time
consuming — building the decision trees using the WEKA
library takes only a matter of minutes. On the other hand, the
decision-tree building process requires more memory. For
example, during the large map experiments described in a
later subsection, we collected several hundred of thousand
training samples (taking several hours to collect) and this
required and order of 1GB of memory for WEKA to pro-
cess. As this calculation is done offline, we are not overly
concerned with efficiency. As described earlier, once the
decision-tree classifiers have been build they have negligi-
ble time and memory footprint.

Margins for Improvement. The result of running the dif-
ferent LRTA* agents is shown in Figure 5. Search depth for
all versions of LRTA* was capped at 20. The x-axis repre-
sents the amount of work done in terms of the mean number
of states (nodes) expanded per action, whereas the y-axis
shows the quality of the solutions found (as a multiple of the
length of the optimal path). The standard LRTA* provides a
baseline trade-off curve. We say that a generalized version
of LRTA* outperforms the baseline for some values of con-
trol parameters if it is better along both axes (i.e., appears
below a segment of the baseline curve on the graph).

The topmost line in the figure shows the performance of
LRTA* using fixed search depths in the range [4, 14]. The
classifier approach, shown as the triangle-labeled line, out-
performs the baseline for all but the largest depth (20). As
seen in the figure, the standard LRTA* must expand as many
as twice the number of states to achieve a comparable so-
lution quality. The solid triangles show the scope for im-
provement if we had a perfect classifier (oracle) returning
the “optimal” search depth for each state (as defined for the
classifier approach). For the shallower searches, the classi-
fier performs close to the corresponding oracle, but as the
search depth increases, the gap between them widens. This
is consistent with classification accuracy: the ratio of cor-
rectly classified instances dropped as the depth increased
(from 72% at depth 5 to 44% at depth 20). More descrip-

0 50 100 150 200 250 300

2

4

6

8

10

12

14

16

18

20

Mean number of nodes expanded per move

S
u
b
o
p
ti
m

a
lit

y
 (

ti
m

e
s
)

Scenario file: mitja300.512.txt maxENcutOff: 1000

Fixed depth

Pattern db. (I)

Decision tree

PR LRTS

Koenig’s LRTA*

Prioritized LRTA*

0 10 20
1

1.5

2

2.5

3

3.5

S
u

b
o

p
ti
m

a
lit

y
 (

ti
m

e
s
)

Mean number of nodes expanded per move

Scenario file: mitja300.512.txt maxENcutOff: 1000

Figure 8: Dynamic-control LRTA* versus state-of-the-art algorithms. The zoomed-in part highlights the abstraction-based methods, PR
LRTS and intermediate-goal PDB; both methods use abstraction level 4; PR LRTS uses γ=1.0 and depths 1, 3, and 5 (from top to bottom).

the worst-case number of nodes expanded per move does not
exceed 1000 nodes – approximately the number of nodes
that an optimized implementation of these algorithms can
expand in the amount of time available for planning each
action in video games. All parameter settings that violate
this constraint were excluded from the figure.

Of the surviving algorithms, two clearly dominate the oth-
ers: our new pattern-database approach with intermediate
goals and PR LRTS (both use state abstraction). At their best
parameter settings, PR LRTS with the abstraction level of 4,
depth 5, and γ=1.0, and the pattern-database approach with
the abstraction level of 4 yield comparable performance and
neither algorithm dominates the other. PR LRTS searches
slightly fewer nodes but the pattern-database approach re-
turns slightly better solutions, as shown in the zoomed-in
part in the figure. Thus, the pattern-database approach is
a new competitive addition to the family of state-of-the-art
real-time search algorithms. Furthermore, as PR LRTS runs
LRTA* in an abstract state space, it can be equipped with
our dynamic control scheme and is likely to achieve even
better performance; this is the subject of ongoing work.

Previous Research
Most algorithms in single-agent real-time heuristic search
use fixed search depth, with a few notable exceptions. Rus-
sell & Wefald (1991) proposed to estimate the value of
search off-line/on-line. They estimated how likely an ad-
ditional search is to change an action’s estimated value. In-
accuracies in such estimates and the overhead of meta-level
control led to small benefits in combinatorial puzzles.

Ishida (1992) observed that LRTA*-style algorithms tend
to get trapped in local minima of their heuristic function,
termed “heuristic depressions”. The proposed remedy was
to switch to a limited A* search when a heuristic depres-
sion is detected and then use the results of the A* search to
correct the depression at once. A generalized definition of
heuristic depressions was used by Bulitko (2004) who ar-
gued for extending search horizon incrementally until the
search finds a way out of the depression. After that all ac-
tions leading to the found frontier state are executed. A cap
on the search horizon depth is set by the user. In our ap-

proach, we execute only a single action toward the fron-
tier and do not use backtracking — two feature that have
been shown to improve robustness of real-time search (Sig-
mundarson & Björnsson 2006; Luštrek & Bulitko 2006).
Additionally, in the pattern-database approach we switch to
intermediate goals when the agent discovers itself in a deep
heuristic depression. The idea of pre-computing a pattern
database of heuristic values for real-time path-planning was
recently suggested by Luštrek & Bulitko (2006). This paper
extends their work in several directions: (i) we introduce the
idea of intermediate goals, (ii) we propose an alternative ap-
proach that does not require map-specific pre-computation,
and (iii) we demonstrate superiority over fixed-ply search on
large-scale computer game maps.

There is a long tradition for search control in two-player
search. The problem of semi-dynamically allotting time to
each action decision in two-player search is somewhat anal-
ogous to the depth selection investigated here.

Applicability to General Planning
So far we have evaluated our approach empirically only on
path-planning. However, it may also offer benefits to a wider
range of planning problems. The core heuristic search al-
gorithm extended in this paper (LRTA*) was previously ap-
plied to general planning (Bonet, Loerincs, & Geffner 1997).
The extensions we introduced may have a beneficial effect
in a similar way to how the B-LRTA* extensions improved
the performance of ASP planner. Subgoal selection has
been long studied in planning and is a central part of our
intermediate-goal pattern-database approach. Decision trees
for search depth selection are induced from sample trajecto-
ries through the space and appear scalable to general plan-
ning problems. The only part of our approach that requires
solving numerous ground-level problems is pre-computation
of optimal search depth in the pattern databases approach.
We conjecture that the approach will still be effective if, in-
stead of computing the optimal search depth based on an op-
timal action a∗, one were to solve a relaxed planning prob-
lem and use the resulting action in place of a∗. Deriving
heuristic guidance from solving relaxed problems is com-
mon to both planning and the heuristic search community.

8

2 4

Lookahead depth?

