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Human Energy Expenditure (EE) is a valuable tool for measuring physical activity and its impact on our
body in an objective way. To accurately measure the EE, there are methods such as doubly labeled water and
direct and indirect calorimetry, but their cost and practical limitations make them suitable only for research
and professional sports. This situation, combined with the proliferation of commercial activity monitors, has
stimulated the research of EE estimation (EEE) using machine learning on multimodal data from wearable
devices. The paper provides an overview of existing work in this evolving field, categorizes it, and makes
publicly available an EEE dataset. Such a dataset is one of the most valuable resources for the development
of the field but is generally not provided by researchers due to the high cost of collection. Finally, the paper
highlights best practices and promising future direction for designing EEE methods.
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1 INTRODUCTION
According to the World Health Organization1, insufficient physical activity increases the risk for
non-communicable diseases such as stroke, diabetes and cancer. Globally, 23% of adults and 81% of
school-going adolescents are not active enough. Lack of free time, sedentary work or absence of
motivation are some of the reasons that reduce the physical activity. Wearable devices are good
companions to motivate the user to move and have a workout and to estimate the energy expended
while doing so. This estimation provides motivational feedback, and helps manage exercise and
diet – both for healthy people and for those with health conditions where exercise and diet are
important (e.g., diabetes, obesity).
Physical activity [6] is defined “as any bodily movement produced by skeletal muscles which

results in energy expenditure (EE) beyond rest energy expenditure (REE)”. REE, which produces
1http://www.who.int/features/factfiles/physical_activity/en/
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Fig. 1. EE composition from doctoral dissertation by Altini [6].

internal heat, is composed of basal metabolic rate (BMR) and diet-induced thermogenesis (about
10% of total EE). The remaining EE is physical activity energy expenditure, which is the most
relevant to quantify, and the subject of this paper. The composition of EE is shown in Fig. 1.

EE is normally estimated in a unit calledMET (Metabolic equivalent of task)[66], which represents
the energy (1 kcal) or volume of oxygen (3.5 ml O2) consumed by a person at rest per kilogram of
body weight per minute. This estimation is variable for each person [27]. One MET is defined as:

1MET =
1kcal
kд ∗ h

=
4.184k J
kд ∗ h

=
3.5ml O2

kд ∗min

That is, the energy expended at rest (sitting quietly) is roughly equivalent to one MET. It is also
defined with the oxygen uptake during rest. MET values range from over 20 during extreme exertion
to 0.9 during sleeping. They can be also useful to infer the intensity of the activity: sedentary from
1.0 to 1.5, light exertion from 1.6 to 2.9 MET, moderate from 3 to 5.9 MET, and vigorous equal or
above 6 MET [1].

The accepted standard to categorize activities is The Compendium of Physical Activities and its
updates [1–3], which provide a coding scheme relating types of physical activity and categories to
their MET values. Currently, there are 821 activities2 organized in 21 types shown in Table 1. The
Compendium uses published sources to provide the correspondence between physical activities
and MET values. It is also used as a lookup table for EE estimation (EEE) methods, as it will be
explained in Section 4. Some authors [70, 71] recommend not using these values directly because
the Compendium uses a fixed BMR equal to 3.5ml O2

kд∗min to denote 1 MET, while BMR actually depends
on the weight, age and gender [56]. Instead, they recommend correcting them with specific BMR
from Harris-Benedict equation [56].
This paper is focused on presenting recent advances in machine learning applied to data from

wearable devices to estimate the EE. Most recent research on EEE uses machine learning, so we
focused on such methods. It is difficult to decide what is machine learning and what is "just"

2https://sites.google.com/site/compendiumofphysicalactivities/home
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Bicycling (01) Lawn & Garden (08) Sports (15)
Conditioning Exercise (02) Miscellaneous (09) Transportation (16)
Dancing (03) Music Playing (10) Walking (17)
Fishing & Hunting (04) Occupation (11) Water Activities (18)
Home Activities (05) Running (12) Winter Activities (19)
Home Repair (06) Self Care (13) Religious Activities (20)
Inactivity (07) Sexual Activity (14) Volunteer Activities (21)

Table 1. Major types of physical activities in the 2011 Compendium [1].

regression, so this criterion is not always easy to apply. We favored work that exploits recognized
activities to improve the EEE and/or uses multiple sensing modalities. There is also an extensive
body of work based on the so-called activity-counts produced by some accelerometer devices,
which we do not survey in depth. We made this decision because, on one hand, the field is mature
with extensive literature, (some of which we cite in our survey), and on the other hand, most recent
research on EEE methods have moved away from activity-counts.
To illustrate state-of-the-art methods, literature research was conducted to include only full-

length studies published in English language research papers from 2006 to January, 2020. Searches
of PubMed and Google Scholar were performed for the terms "machine learning" AND "Energy
Expenditure Estimation". We excluded studies focused only on validation of sensors, only related to
activity recognition, not related to wearable devices or not providing a ground truth measure of EE.
2006 was set as the initial date due to the work by Crouter et al. [35], which proposed an algorithm
that improved the Actigraph accelerometer single linear regression (LR) and paved the way for
machine learning in EEE. Given these constraints, 139 papers were identified, 98 were discarded
and 41 were included in this survey.
It is intended to provide a helpful summary of existing work, and introduce interesting future

research directions. Its key contributions are:
• We review and describe the state-of-the-art of energy expenditure estimation (EEE) in suf-
ficient detail to provide a starting point for any researcher wishing to implement such a
method.

• We make publicly available an EEE dataset, one of the most valuable elements for developing
an EEE method and comparing different approaches.

• We make recommendations and highlight best practices for designing EEE methods.
The rest of this paper is organized as follows. In Section 2, we briefly introduce how EE is

measured and how it is estimated with commercial wearable devices. Experimental setting and
datasets are explained in Section 3, how the EEE process is structured is presented in Section 4,
and the specific approaches and results are outlined in Section 5. Section 6 describes applications
of EEE, while Section 7 contains conclusions, recommendations and best practices.

2 MEASURING AND ESTIMATING EE WITH COMMERCIAL WEARABLE DEVICES
EE can be measured using diverse methods [131], or estimated using indirect sensors and regression.
To provide some context for EEE methods, this section describes reference methods for measuring
EE, as well as commercial wearable devices that estimate EE. These methods and devices are
otherwise not the main subject of the survey.

2.1 Measuring EE
EE can be obtained in different ways:

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:4 Juan A. Álvarez-García, Božidara Cvetković, and Mitja Luštrek

Fig. 2. Direct calorimeter chamber from http://www.directindustry.com/prod/ineltec-france/product-123381-
1399577.html

Direct calorimetry Measuring the actual heat emitted by the human body during activity or rest,
in a special room (room calorimeter) is the gold standard [68]. Several direct calorimeters have
been built since the beginning of twentieth century based on (1) measuring the temperature
gradient across the walls of the room (gradient layers calorimeter) and (2) assessing the rate
at which heat must be evacuated from the room in order to avoid heat loss through the
insulated walls (heat sink calorimeter). It is the most expensive and least practical way of
measuring EE, since complex and not widely accessible equipment is required [72] (Fig. 2).

Indirect calorimetry This method measures the concentration of inhaled and exhaled gases [49].
The consumption of oxygen (O2) and the production of carbon dioxide (CO2) can be converted
to EE followingWeir’s equation [129]. Indirect calorimetry is one of the most used techniques
due to the existence of portable indirect calorimeters (see Fig. 3). These devices have a battery
life of 2 or 3 hours and cost thousands or tens of thousands of EUR or USD. Oxycom Mobile
or Cosmed K4b2 Portable Metabolic System are some of the most validated and used indirect
calorimetry systems [87, 112]. The quality of the EE collected data from these devices depends
on several factors such as the proper attachment of the face mask and the calibration of the
equipment before the data collection.

Doubly labeled water (DLW) In this method [110, 111], the participants ingest a dose of labeled
water. To obtain this water, the hydrogen and oxygen from water are – for tracing purposes
– replaced with deuterium and oxygen-18, isotopes of these elements. These isotopes are
eliminated only via urine, sweat and CO2 (Deuterium only via urine and sweat). Since the
ratio between both isotopes and the respiration ratio (CO2 loss andO2 correlation) are known,
it is possible to calculate how muchCO2 was used by the metabolism and EE can be estimated.
The error of DLW ranges from 3 to 10% of the mean total EE over longer periods, which is
quite accurate, but it cannot provide minute-by-minute information like indirect calorimetry.
Therefore researchers cannot use DLW to determine the EE of specific activities, although it
can serve as a gold standard for measurements over periods of 7 to 14 days. An additional
limitation is also that each dose is very expensive3.

3https://www.sigmaaldrich.com/catalog/product/aldrich/608572
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Fig. 3. Cosmed K5 portable indirect calorimeter from http://www.cosmed.com/en/products/cardio-pulmonary-
exercise-testing/k5.

Given the practical limitations of room calorimeters, the cost of portable indirect calorimeters
and the impossibility of DLW to provide EE of specific activities, several solutions have been
developed to estimate the EE using wearable sensors.

2.2 EEE using accelerometers
Activity-induced EE can be estimated from body movement. To analyze it, pedometers and ac-
celerometers are some of the most used wearable sensors. Pedometers evolved from mechanical to
microelectromechanical devices that count each step a person takes. Steps are normally detected
when the acceleration during the gait cycle exceeds a threshold, which limits the validity for EE
because the same number of steps can be achieved during several activities with different EE such
as walking, running or walking up stairs. Furthermore, steps do not accurately describe certain
physical activities such as cycling, swimming, or carrying objects [120].

Accelerometers can provide information about the frequency, the intensity, the total amount and
the duration of the body movement. The sampling frequency of commercial accelerometers can be
adjusted up to 100 Hz in some devices such as Actigraph or GENEActiv, and even up to 400 Hz
in some cases (Axivity), depending on the type of activity that is to be measured and the battery
life desired. Normally commercial accelerometers directly export the raw data: timestamp, and
acceleration in x, y and z-axis, but there are devices that can also export the data in a processed
way. For example, Actigraph or Actical allow the use of several equations to obtain EE [42, 84].
These equations are applied after filtering the signal, rectifying and integrating it to provide
a generic measure of activity intensity called ’counts’. The conversion of the raw acceleration
signal to counts varies by brand and model, based on the set of technical specifications (e.g. A/D
conversion scale, number of axes sensitive to acceleration, frequency filtering range, etc.) distinctive
for each monitor, and therefore, results are not directly comparable [84, 120]. These commercial
accelerometers use regression equations that define a linear or non-linear relationship between
counts and EE. Lyden et al. [84] evaluated eleven equations for three models of accelerometers all
of them consistently underestimated EE. Activity-count thresholds or ‘cut-points’ signaling the
border between light/moderate and moderate/vigorous physical activity are classically used to
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determine the time in these zones (light, moderate or vigorous). Trost et al. [121] analyzed five
equations for ActiGraph GT1M accelerometer, recommending the equation by Evenson et al. [45]
to estimate the time spent in different intensity zones for children and adolescents.

The problem of activity count thresholds is that they cannot determine the current activity the
user is carrying out, a key point for EEE [90], and that their relationship with EE varies considerably
across studies [122].

Another drawback is the inability to consider the increased energy cost associated with several
activities such as walking up stairs or an incline or accurately estimate EE during activities such as
cycling, lifting or carrying objects [120, 122].
Notwithstanding these limitations, accelerometer-based activity monitors that estimate the EE

of users using acceleration counts are mature and widely used. Plasqui et al. [101, 102] analyzed
several works that compare commercial accelerometers in their ability to assess EEE using Doubly
Label Water as the reference technique. Their conclusion was that their validity for assessing
daily physical activity had great variability and an important improvement would be the activity
recognition.

Given the wide literature available, and the maturity of the research on count-based EEE, a shift
to activity recognition (AR) and EEE based on features extracted from raw acceleration signals
was suggested [119] in 2014. Therefore most research into new methods for EEE is focused on
recognizing activities and taking advantage of that to improve the EEE. Last survey related to EEE
using accelerometers [47] suggest that using raw accelerometers at the range of 20 to 30 Hz with a
window size of 5 to 15 seconds are typical approaches both for AR and EEE.

2.3 EEE with multi-sensor wearable devices
Hardware miniaturization and memory improvements have made possible the latest generation of
activity monitors that include multiple sensors (accelerometers, gyroscopes, galvanic skin response
(GSR), heart rate (HR), breath rate (BR), electrocardiogram (ECG), sensors based on photoplethys-
mography (PPG), near-body temperature sensors, skin temperature (ST), etc.). There are several
studies [34, 42, 46, 62, 91, 104] that compare devices belonging to different brands (Microsoft,
Apple, Fitbit, Jawbone, Garmin, Misfit, Omron, Withings, BodyMedia, Actigraph, Actiheart, etc.)
with reference methods shown in Section 2.1. Most of them are consumer devices, while some
(BodyMedia [126], Actiheart4) are more research-oriented.

The comparative studies show that the EEE algorithms in these devices still have room for
improvement. According to one of the latest studies [34], the consumer devices come close to
research-oriented devices in some settings, but underestimated free-living EE. Furthermore, the
accuracy of different brands varies significantly, although this is also true (to a lesser degree) for
research-oriented devices.
Moreover, market competition promotes the death of some interesting products. The case of

Bodymedia is worth mentioning. Bodymedia developed some of the most validated products
for EEE such as SenseWear Armband [62, 75, 80, 137] or BodyMedia Fit armband (an evolution
of SenseWear) [33]. The device monitors several sensor parameters including acceleration, ST,
near-body temperature, heat flux and GSR, and also takes into account the user’s demographic
characteristics. It must be worn on the right upper arm over the triceps muscle. All the data is
used for EEE utilizing a proprietary algorithm [126]. Jawbone (Aliphcom, Inc.) bought Bodymedia5
in 2013 and three years later officially stopped making BodyMedia data available to users and

4https://web.archive.org/web/20180208041119/ttps://www.camntech.com/products/actiheart/actiheart-overview
5https://techcrunch.com/2013/04/30/jawbone-will-acquire-bodymedia-for-over-100-million-to-give-it-an-edge-in-
wearable-health-tracking/
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shut down the BodyMedia website6. Jawbone had access to 87 patents from Bodymedia such
as the one describing Bodymedia star product [118]. Despite this, Fitbit, Inc., sued Jawbone for
the infringement of U.S. Patent7. Although they eventually settled their dispute8, this may have
led to the end of Jawbone9. Apple is also selling millions of smartwatches10 and protecting his
knowledge using patents [116]. To win the commercial battle, current leaders (Fitbit and Apple
Watch) are trying to seek US Food and Drug Administration (FDA) approval for their products11 12.
In November 2019, Google signed an agreement to acquire Fitbit with more than 28 million active
users around the globe for $2.1 billion.
An interesting question is also how the commercial devices compare to the state-of-the-art

methods discussed in Sections 4 and 5. The algorithms in consumer devices are generally proprietary
and not published, whereas the algorithms in the research-oriented devices are often published,
albeit not always with full details [126]. We are aware of no unbiased performance comparisons
between commercial devices and the latest research methods. While some researchers do include
results for commercial devices in their papers [41], the experimental setting is likely to be favorable
to their own methods, simply because the methods were developed in a setting similar to the one
used for testing. Unbiased validation studies like the ones done for commercial devices alone are
difficult because it is hard for third parties to re-implement research methods.

3 EXPERIMENTAL SETTING AND DATASETS
In order to conveniently compare different studies about the EEE of several subjects, the experiments
must follow a protocol. There is no standardization, but at least the next variables need to be taken
into consideration:

• Subjects. Datasets include information about the number of women/men, age, height, weight
and BMI. To establish an unbiased metabolic rate, volunteers refrain from drinking (only
water is allowed) and eating in the 12 h prior to the experimentation.

• Activities. Participants are requested to perform a sequence of pre-defined sedentary and
ambulatory actions. The times, rest-times between the activities, order of activities (normally
ordered by intensity), environment where the collection is conducted, etc. also need to be
specified. A good practice is to record all the activities without cropping any data as explained
in Section 5.

• Estimation methods. There are several methods that will be covered in Subsection 4.3 differing
in the use of AR and the number of regression models used.

• Evaluation setting and metrics. Although the ideal situation for model evaluation is to use an
independent sample of subjects in a different setting as validation set, the habitual case is a
leave-one-subject-out validation. This means that training of model(s) and testing is iterated
over all the subjects. In each iteration, one subject’s data is used for testing and the remaining
subjects’ data for training. The average error across all iterations is finally reported. The
accuracy is measured using mean absolute error (MAE), mean absolute percentage error

6http://www.mobihealthnews.com/content/jawbone-finally-kills-support-bodymedia-devices
7http://www.patentdocs.org/2017/02/fitbit-inc-v-aliphcom-nd-cal-2017.html
8https://www.bloomberg.com/press-releases/2017-12-08/fitbit-and-jawbone-announce-resolution-of-all-outstanding-
civil-litigation
9https://eu.usatoday.com/story/tech/talkingtech/2017/07/10/jawbone-out-business-leaves-customers-hanging/
461159001/
10http://www.businessinsider.com/apple-watch-sells-more-than-swiss-watches-charts-2018-2
11https://www.wired.com/story/when-your-activity-tracker-becomes-a-personal-medical-device/
12https://www.cnbc.com/2017/11/30/apple-watch-ekg-monitor-approved-by-the-fda.html
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(MAPE) and/or root mean squared error (RMSE) with respect to the reference method (direct
or indirect calorimetry or DLW).

An analysis of existing studies using proprietary datasets is shown in the next section. Also as
a part of this paper, we publish the dataset used in two papers by Cvetković et al. [39, 40] and in
Gjoreski et al. [53]. The dataset is available in the Jožef Stefan Institute’s AmI repository13 and
described in Section 3.2.

3.1 Overview of datasets
Gathering a good dataset for EEE is a very difficult process. First of all, a reference method is
needed provide the ground truth for training and testing models. This is normally one of the three
presented in Section 2.1, usually indirect calorimetry.
In Table 2, we include only the works where a dataset of at least 10 subjects was used for

validation, at least 10 activities were performed during the validation process, machine learning
techniques were used and a ground truth measure of EE is given. It shows chronologically the
number of subjects that participated in the experiment, the number of activities performed during
the protocol and the wearable sensors used and their locations.
As can be seen, the subject number varies from 10 (the minimum considered number) to a

hundred. The age range is also diverse, normally adults from 25 to 45 years old, but there are
several papers related to EEE in children [16, 45, 48, 75, 80, 94, 109, 120, 123] and in older adults
[28, 41, 113], interesting because their EE can differ from that of young adults. Obese individuals’
EE was also studied [20, 97, 128] although the number of activities that they had to perform in
the validation process was normally very reduced. Not all of the datasets include a health and
functional screening evaluation, but normally all the subjects were supposed to be free of major
chronic conditions. There are, however, some studies related to special groups such as pregnant
women [124], wheelchair users [57], Duchenne muscular dystrophy patients [94, 136] or chronic
obstructive pulmonary disease patients [30, 99, 125].
As it can be seen, a wide spread of wearable devices was used for EEE. Initially uni-axial

[35, 115, 121, 123] or tri-axial [7, 22, 79] accelerometers were used. As commented in Subsection
2.2, these accelerometers have some drawbacks (inability to estimate the EE of some activities and
difficult to use for AR) so devices enabling the processing of raw signals from tri-axial accelerometers
(acc.) started to be used more [22, 79, 90]. Physiological sensors (ECG, HR, BR, ST and GSR) were
added to capture new information related to EE. Munguia-Tapia [90] was the first to combine and
fuse multiple wearable sensors, then multi-sensors devices appeared: ECG Necklace (a device that
combines tri-axial raw acc. and an ECG sensor that also measures HR) used in [10, 12, 14, 32],
Zephyr BioHarness (HR, BR and ST), BodyMedia Fit (acc., ST, GSR and heat flux) used in [39, 40, 53]
and Hexoskin smart shirt (ECG, HR, HR variability, BR, breathing volume, actigraphy, step counting
and cadence) used in [19] but not included in the table due it collects less than 10 activities. It
is clear that more sensors means more data but not necessarily better accuracy [85]. Normally,
accelerometry and HR are the most important measures. It is important also to point out that HR
tracks well with EE at the individual level, but then physiology and HR during exercise depend on
issues other than EE (e.g. fitness). This will be explained in Section 5.
Sensor location is strongly affected by the set of activities to be performed, and by how many

different locations the users can tolerate. If only one location is allowed, hip, lower back, chest,
upper arm, non-dominant wrist, ankle, thigh or even ear are candidates:
(1) Hip or lower back due the proximity to the body’s center of mass; particularly feasible in

controlled environments.
13https://dis.ijs.si/ami-repository
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(2) Chest due the possibility to include an ECG using a chest strap. Altini et al. [6, 9] obtained
some of the best results this way.

(3) Dominant upper arm was used by Munguia-Tapia [90] and is the position to place BodyMedia
Fit sensor [126].

(4) Non-dominant wrist is the most accepted location for mass market but not the best position to
recognize activities and support EEE. Although wrist PPG sensors are susceptible to motion
artifacts, they are being included in smart watches and obtain HR results close to those of
chest straps [21].

(5) Ankle: Mannini et al. [86] use a SVM and check that ankle worn accelerometer outperforms
the wrist location by 10.3% for AR.

(6) Thigh location capture lower body motion and posture as it can be shown in [4].
(7) EEE using a miniaturized ear-Worn sensor is an original proposal by Bouarfa et al. [23] but

it is not included in the table because it was only validated with 6 subjects in a free-living
environment.

If more locations are allowed, dominant wrist and dominant thigh was found to be the best
combination with two locations, and hip, dominant wrist and dominant foot the best with three
locations [90].
One of the issues observed across all the datasets is the number of activities that are evaluated.

This is critical because a study with few activities can be very accurate compared to one with a
large number of them. The ones that include the most activities are by Munguia-Tapia with 52 [90],
Chen et al. with 41 [32] and Altini with 37 [10] and 32 [14]. Although a high number is a good
sign, a smaller number could be enough if the activities include lower-body and upper-body (e.g.
bicep curls) activities. Specifically cycling is an interesting one due to its difficulty to be recognized
if only a wearable sensor is used [44, 107]. Some studies focused only on treadmill activities, so
their usefulness to real situations is limited. The second and major issue is the availability of these
datasets: all of them except the one by Schuldhaus14 with only treadmill activities and Jožef Stefan
Institute (JSI)15 are not publicly available.
This makes it difficult to compare the results using different techniques and sensors. As can

be seen, Crouter, Staudenmayer et al. worked collaboratively [36, 36, 115] using the same dataset,
improving their methods for estimating EE. Having a publicly available dataset, several researchers
can have a reference to compare each other and advance the research area.

14https://www.mad.tf.fau.de/research/activitynet/enex-energy-expenditure/
15https://dis.ijs.si/ami-repository/index.php?d=16
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Paper Subjects (Sex; Age; Height;
Weight; BMI)

Activ. Sensors and location

[35, 36,
115]

48 (24 w, 24 m; 35±11.4 yr; 172.72 cm;
73.1; 24.2 kg/m2)

18 Actigraph 7164 uni-axial acc. (waist)

[108] 102 (56 w, 46 m; 38.6±13.1 yr;171±9
cm ; 75.7±16.4 kg; 26±5.3 kg/m2)

12 bi-axial acc. (hip)

[90] 16 (9 w, 7 m; 27.88±6.3 yr; 175±12
cm; 77.54±13.03 kg; -)

52 7 raw acc. (feet, wrists, non-dominant hip,
dominant arm and thigh), HR (chest), 2 Acti-
graph (dominant wrist and side of the hip),
pedometer (hip)

[123] 100 (- w, - m; 11.0±2.7 yr; -, -, -) 12 ActiGraph GT1M uni-axial acc. (right waist)
[79] 50 (31 w, 19m; 32.6±9.9 yr; 171.2±8.6

cm; 67.7±12.3 kg; 23.2±4.6 kg/m2)
13 2 raw acc. (dominant hip and wrist), ventila-

tion sensor (abdomen)
[32] 10 (-; -; -; -; -) 41 Necklace (chest)
[10] 25 (6 w, 19 m; 30.7±5.6 yr; 72.7±12.7

kg; 176.8±9.4 cm; 23.1±2.7 kg/m2)
37 Necklace (chest)

[39] 10 (2 w, 8 m; -; -; -; [20-28.9] kg/m2) 12 Three options: (1) 2 raw acc. (chest, right
thigh), HR + acc. (chest) (2) Zephyr BioHar-
ness (chest), smartphone (3) smartphone

[13] 36 (9 w; 27 m; 31.2±5.7 yr; 176.6±9.1
cm; 73.3±11.2 kg; 23.4±2.4 kg/m2)

25 Necklace (chest)

[53] 10 (-; 27.2±3.1 yr; -; 78.2±10.9 kg;
24.1±2.3 kg/m2)

15 2 acc. (chest, right thigh), Zephyr BioHarness
(chest), BodyMedia Fit (left arm).

[14] 15 (4 w, 11 m; 29.8±5.2 yr; 71.8±15.9
kg; 175±10 cm; 23.2±3.0 kg/m2)

32 5 acc. (chest, thigh, ankle, wrist and waist)

[40] 10 (2 w, 8 m; 27.2±3.1 yr; -; 78.2±10.9
kg; 24.1±2.3 kg/m2)

15 Two enclosure options: (1) 1 acc. (chest), (2)
2 acc. (chest, thigh). Both options with ad-
dtional physiological sensors: Zephyr Bio-
Harness (chest), BodyMedia Fit (right arm).

[39, 41] 10 (4 w, 6 m; 59±4.6 yr; -; -; 25.8±2.3
kg/m2)

18 smartphone (trousers, jacket, bag), HR + IMU
(wrist)

Table 2. Datasets. IMU stands for inertial measurement unit that gathers tri-axial acceleration, angular
velocity (via gyroscope) and sometimes magnetic force. If not specified, acc. means tri-axial accelerometer.
Necklace includes ECG and acc. sensors; Zephyr BioHarness HR, BR and ST; BodyMedia Fit acc., ST, GSR
and heat flux.

3.2 JSI Dataset
JSI dataset contains data of ten healthy subjects, two female and eight male. The age range is from
24 to 33 (27.2±3.1 yr) and body mass index from 20 to 28.9 (24.1±2.3 kg/m2). The subjects were
equipped with four Shimmer accelerometers16, Zephyr BioHarness chest strap17, BodyMedia FIT
armband18 [126] and Cosmed K4b2 indirect calorimeter. Shimmer accelerometers were attached
to the subjects’ ankle, thigh, chest and wrist and were sensing the acceleration in three axes. The
Zephyr BioHarness was sensing the subjects’ HR, BR, ST and R-R interval. The BodyMedia FIT
armband was sensing the near-body temperature, arm ST and GSR, and was estimating the burned
calories and expended human energy in MET. The indirect calorimeter was used to measure the

16http://www.shimmersensing.com/products/individual-sensors/
17https://web.archive.org/web/20180424214914/https://www.zephyranywhere.com/online-store
18https://web.archive.org/web/20191025110756/https://www.bestfitnesstrackerreviews.com/bodymedia-fit-review.html
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Fig. 4. Location and sensors used in JSI Dataset.

reference EE, which is used as the label in training and evaluation of machine learning models.
Figure 4 shows the location and sensors used in the dataset.

The subjects performed a predefined set of activities composing 13 scenarios presented in Table
3. The scenarios were designed to include everyday activities at home, at work and outdoors, as
well as common types of exercise. The activities were ordered from low to high EE: from resting at
the beginning to running at the end, to avoid the impact of more intense activities on physiological
processes during the less intense ones.

We included five-minute breaks between the scenarios with more intense activities for the same
reason. The activities were performed in a controlled laboratory environment with a treadmill, a
cycloergometer, and furniture such as a bed and a counter that was used for kitchen activities. The
intensity of ambulatory activities was defined by the speed and inclination in the case of treadmill,
and the power in Watt (W) in the case of cycloergometry.
The dataset is freely available at the JSI repository19 and some general notebooks to analyze it

can be found in bitbucket20.
The dataset is composed of ten csv files, one for each subject (on average 1 hour and 51 minutes

of data per subject). Each row starts with the ID of the device from which the data was retrieved,
followed by the date and time, subject ID and scenario. The content of the rest of the row depends
on the DeviceID. The structure of each row is presented in Table 4. The row contains only those
column values that belong to the device, all other columns are set to O. The values of the Cosmed
device can be missing (NaN) in case of data loss. Zephyr Bioharness has two device identifiers,
ZephyrG corresponds to the data received from the general data package and ZephyrB from the
specific data package.
19https://dis.ijs.si/ami-repository/datasets/chiron.rar
20https://bitbucket.org/boza_c/eee-dataset/src
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Scenario Labeled activities Approx.
dura-
tion

Average
MET

Resting lying back 15 min 1.2
Basic postures 1 walking, transition down, sitting, transition up, standing 13 min 1.3
Additional pos-
tures 1

kneeling, all fours still, all fours moving, all fours, standing
leaning still, standing leaning moving

17 min 2.0

Office work sitting 6 min 1.3
Lying exercis-
ing

lying exercising 6 min 2.3

Kitchen chores standing, walking 6 min 2.1
Scrubbing the
floor

standing, walking, kneeling, all fours 6 min 2.7

Shoveling snow standing, walking 6 min 3.3
Basic postures 2 walking, transition down, sitting, transition up, standing 2 min 2.1
Additional pos-
tures 2

kneeling, all fours still, all fours moving, all fours, standing
leaning still, standing leaning moving

7 min 2.8

Walking walking 12 min 4.3
Cycling cycling 12 min 6.1
Running running 6 min 7.8

Table 3. Data collection scenario containing everyday and sports activities.

4 EEE PROCESS
The EEE process is typically composed of three steps: (1) data fusion, in which data from multiple
sensors is synchronized and combined into a single data structure, (2) feature extraction and feature
selection, in which the features are extracted and evaluated for their predictive power, and (3) EE
method, in which a single or multiple regression models are used to output the EE estimate.

4.1 Data Fusion
Data fusion is essential in case multiple sensors need to be synchronized and combined into a single
data structure, sometimes called a snapshot, ready for further processing and reasoning. One of the
important parameters of synchronization, typically predefined, is the length of the overlapping
or non-overlapping window forming the raw snapshot containing the synchronized raw data.
Practically all researchers show that longer windows decrease the activity recognition and EEE
error, but the need to have feedback in real time dictates shorter windows. For quasi-real-time
applications, common lengths are between 4 and 10 seconds [6, 10, 40, 41, 52, 76, 90, 95, 135]. For
Exercise sciences, longer windows close to one minute are used [5, 83, 85, 88, 123].
The sensors of different typologies (HR, GSR, acc., etc.) usually provide data with different

frequencies even if they are embedded in a single device (e.g., a smartwatch accelerometer with 50
Hz and HR monitor with 1 Hz). The data fusion needs to tackle this by a pre-processing procedure
that optimizes the amount of data used in a construction of a single snapshot. In real life it often
occurs that data frequency is not consistent (the frequency of the same sensor can vary), so a
technique that overcomes the problem of missing data needs to be used. The technique found
in the EEE literature is the imputation of missing values with duplication or interpolation when
needed [40, 41]. The resulting raw snapshot is fed into the feature extraction procedure.
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Device Header title Type Description
All DeviceID String The value identifies the device to which the row belongs.

Possible values are: Shimmer, ZephyrG, ZephyrB, Body-
media, Cosmed, Android

Time Date Date and time when the row was collected. Format: YYYY-
MM-DD HH:mm:SS.zzz

PersonID String Person identifier
Scenario String Scenario identifier

Shimmer Placement String Identifies the Shimmer the row belongs to. Possible values
are Ankle, Chest, Wrist and Thigh.

AccX Numeric X-axis accelerometer value
AccY Numeric Y-axis accelerometer value
AccZ Numeric Z-axis accelerometer value

ZephyrG ZephyrHR Numeric HR
ZephyrBR Numeric BR
ZephyrST Numeric ST

ZephyrB ZephyrRR Numeric R-R interval
BodyMedia BodyNBT Numeric Near body temperature

BodyST Numeric ST
BodyGSR Numeric Galvanic skin response
BodyCal Numeric Estimated calories per hour
BodyMET Numeric Estimated EE in MET

Cosmed COSMED Numeric Measured EE in MET
Android Android Vector The accelerometer data in tri-axis, the smartphone was

placed in the trousers pocket.
Table 4. Description of a dataset row content.

4.2 Feature extraction and selection
The feature extraction procedure first transforms raw snapshots of data into feature vectors.
These are then fed into machine learning models. The feature selection procedure evaluates the
contribution of each extracted feature to the final result, and selects the informative ones and omits
the redundant and non-informative features.

4.2.1 Feature extraction. Feature extraction is performed on the raw snapshot constructed during
data fusion. The goal of the feature extraction is to obtain meaningful information from raw sensor
signals. As a general rule, the more the better, given that the next step is feature selection. For
instance, in [41] 192 features have been extracted. Here we list the features that the literature
reports as important for EEE.

Accelerometer features
Initially activity counts was the first feature extracted from the raw signals of commercial

accelerometers, then other features were derived from them such as temporal dynamics of counts
(lag-one autocorrelation[25]) and distribution of counts (10th, 25th, 50th, 75th, and 90th percentiles
of a minute’s second-by-second counts) [115]. Once raw accelerometer data are used, the signal is
often pre-processed [6]:

• band-pass filtered between 0.1 and 10 Hz, to isolate the dynamic component caused by body
motion and

• low-pass filtered at 1 Hz, to isolate the static component due to gravity

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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The raw signal, the low-passed signal and the band-passed signal can be individually processed
into features that can provide additional information for the task.

According to Munguia-Tapia [90], acceleration features, used normally in AR, can be grouped in
the following clusters:

• Body posture. Common features are mean acceleration signal value over the data window
per axis and sum of all axes, area under the signal per axis and sum of all axes, and mean
distance between all axes.

• Motion shape. Next features use absolute value of the signal to gather information about the
motion: Mean absolute acceleration signal value per axis, area under the absolute value per
axis, area under the absolute sum of axis values, mean value of magnitudes, entropy of signal
per axis, skewness of signal per axis, kurtosis of signal per axis, quartiles of signal per axis
and quartiles of the magnitudes.

• Motion variation. Features to describe the change of motion: Variance of the acceleration
signals per axis, coefficient of variation over the absolute value of the signal per axis, inter-
quartile range of the signal per axis, inter-quartile range of the magnitudes, signal amplitude
per axis and amplitude of magnitudes.

• Motion similarity across body. Next features characterize how similar is the simultaneous
motion of limbs: Pearson correlation coefficient between each pair of acceleration axes of a
single accelerometer, and correlations between accelerometers if more than one is used.

• Motion energy. FFT coefficient magnitude per acceleration axis is normally used to distinguish
between similar activities with different intensity.

• Motion spectral content of the acceleration signal. Most of the initial literature focused on
EEE omitted the FFT features due to high computational complexity, but the technological
advances nowadays allow the inclusion of FFT coefficient of the accelerometer signal per
acceleration axis, FFT peaks per acceleration axis and fast wavelet transform coefficients per
acceleration axis. These frequency-domain features help to discriminate between different
activities.

• Body periodicity. Repeated movements can be obtained using mean crossing rate of the
acceleration signal per axis, mean crossing rate of the magnitudes and the dominant frequency
per axis.

Single-axis signal: Physiological sensors, barometer
Features extracted from physiological sensors (or barometer in the case of Pande et al. [94])

are usually statistical features such as the mean value, maximal value, minimal value, standard
deviation and normalized value [13, 14, 40, 41, 90] since the frequency of the sensor data stream is
too low to calculate more complex features.

Anthropometric features
Anthropometric characteristics describe body composition of a person. These are body mass,

height, body fat and similar. Munguia-Tapia [90] proposed the extraction of features that measure
force per body segment by multiplying the absolute area under the curve of an accelerometer with
the mass of the body part to which it is attached (for example, if the accelerometer is attached to
the hip, the absolute area is multiplied by the mass of the trunk, and if it is on the wrist then it
is multiplied by the mass of the arm). Since measuring masses of body parts is not convenient,
the entire body mass can be used to calculate total kinetic energy, kinetic energy per axis, mean
power of total kinetic energy as well as the velocity per axis as suggested by Bouten et al. [24]
and successfully used by Cvetković et al. [40, 41]. Anthropometric features are in some cases used
as a raw values [14, 79, 96] and in some cases for calculating person-specific parameters such as
BMR [13].
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Activity recognition (AR) and other contextual features
Newer research in the domain of EEE uses contextual features to select an appropriate EEE model

out of several. The most common contextual feature is the recognized activity, and the methods that
use it are called activity-specific EEE methods. The AR is usually performed by a classifier trained
with machine learning. The recognized activities are typically sedentary activities (e.g., lying, sitting,
standing), ambulatory activities (e.g., walking, running) and sometimes other types of exercise
(e.g., cycling, sports). The activity is recognized using either clustering [12, 14] or classification
[22, 40, 41, 53] machine learning techniques. Gjoreski et al. [53] discretized physiological sensor
values into context groups (e.g., high, medium or low HR) and used them in addition to the
recognized activity for the selection of the appropriate EEE model.

As can be seen in Table 5, best results require an AR algorithm to estimate the activities performed
by the subject. Once recognized, an EEE model or an ensemble of them, adapted to this activity,
generate the final estimate. State-of-the-art of AR is out of the scope of this paper, but it is more
advanced than EEE because there are several open datasets [31, 73, 138], competitions [15, 54],
tutorials [26] and surveys [74, 127]. Different approaches have been developed and accuracy is
normally in the range [80-95]% when the number of activities to recognize is less than 15 [127]
depending also on the modality and number of sensors.

4.2.2 Feature selection. The goal of feature selection is to remove misleading, irrelevant and redun-
dant features in order to increase the accuracy of the EEE model and decrease the computational
complexity. Decreasing computational complexity is important in case the feature calculation
is performed directly on a sensing device or on devices with limited battery capacity (e.g., a
smartphone).

Munguia-Tapia [90] evaluated the correlation coefficient of each acceleration and HR feature with
the ground-truth EE value and ranked them accordingly. Additionally he evaluated the RMSE of the
models trained on a single feature, evaluated them according to their computational requirements
and hand picked a subset of the five best performing with low requirements to be used in the
final set. These were four accelerometer features (invariant to the acceleration magnitude) and
the best-performing HR (scaledHR). The invariant accelerometer ones were selected due to their
insensitivity to the orientation and position of the sensor. The research by Munguia-Tapia was not
focused on sensors whose orientation and location can vary.
Altini et al. [12, 14] evaluated the acceleration features according to the variation in EE within

activity cluster using linear forward selection in which they gradually included the ones that return
the lowest estimation error and stop once a predefined stopping criteria is met. Theymanually added
some features that were perceived as important after the automatic selection. The physiological
ones were selected according to the correlation with the EE. The feature selection was performed
for each activity-specific regression model.
In 2013, Cvetković et al. [39] used one of the simplest approaches to feature selection. They

evaluated the extracted features with the ReliefF algorithm [105], included the features that were
rated positively in their feature set and discarded those that were rated negatively. In their later
research [40, 41], they upgraded their procedure, first ranking the ones according to the correlation
coefficient with the ground truth EE, and then gradually including more in the ranked order,
evaluating the estimation error after each one. In case the error decreased, the feature was kept in
the feature set, and in case the error increased, it was discarded. A novel approachwas followedwhen
orientation and location of sensors can vary [38, 41], adding orientation and location dependent
features (e.g. trousers pocket, torso pocket, etc.).

Pande et al [94] used the correlation feature selection method that identifies a subset of features
with the highest predictive power that is further used as the final feature set.
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4.3 EEE methods
Once features are selected, authors use different methods to train single or multiple regression
models or rules for EEE. In order to compare these methods, a categorization is proposed and
shown in Figure 5 as a hierarchy and in Figure 6 as diagrams showing their basic operation. We
can identify three main approaches to EEE:
Single methods Single methods pioneered the area of EEE using wearable devices. The aim of

these methods is to fit a regression model to the extracted features and describe the relation
between motion intensity and EE. We distinguish between single methods that have no
knowledge about the performed activity (methods without AR) and methods that use the
recognized activity as a feature (Methods using AR).

(1) Methods without AR – train a single regression model from extracted acceleration features
[39, 139] to be used during all activities. The source of error or the shortcoming of this
approach is that the regression model is trained to fit all activities, however, the shape of
the regression model changes per activity, which results in inaccurate EEE.

(2) Methods using AR – To overcome the problem of previous methods, Janko et al.[64] used
AR to recognize the performed activity and include it as a feature for training the EEE
regression model.

Activity-specific methods These methods are composed of two levels. The first level is the AR
using counts or a supervised/unsupervised machine learning method. The second level is
the EEE for each recognized activity or a group of them with either a MET Lookup method,
activity count method, a trained regression model, or a hybrid of the three.

(1) MET Lookup methods – adopt a standardized MET value from the Compendium of physical
activities [1] for the recognized activity. The general approach is to use a single value per
recognized activity or aggregate the values for a group of them [14, 22, 90].

(2) Activity count methods – Crouter et al. [35] proposed an approach to distinguish between
different intensities of activities using a metric called activity count (essentially pedometer).
This can often result in either underestimated or overestimated EE. To overcome this
problem the research focused on using AR instead of activity counts.

(3) Regression methods – train two or more regression models for the estimation of the EE.
Essentially we can distinguish between two methodologies. The first methodology uses
AR to distinguish between as many activities as possible and train a regression model per
each recognized activity [4, 90], and the second methodology groups similar activities into
groups and train per-group regression models for EEE [13, 39, 40].

(4) Hybrid methods – combine the best practices from the activity-specific methods. [9, 14, 36]
are examples of them.

Context-specific methods These methods utilize multiple contexts for the selection of the re-
gression model. A fundamental context is the recognized activity, which is included in all
context-specific methods. Additionally proposed ones are physiological data structured in a
hierarchy [126] or discrete intervals (e.g., HR, BR, ST is discretized into low, medium and
high) [29, 52, 53]. The estimations of all context regression models are aggregated into the
final result. Other research defines multiple contexts but uses a single regression model per
each one. Example of this is the state of the device in addition to the recognized activity: the
regression model is selected according to the placement of the device (smartphone can be
placed either in trousers pockets, torso pocket, backpack or any other bag) and the recognized
activity [38, 41].

Once the EEE method is selected, the model or models are trained using the best-performing
regression algorithm. As can be seen in Table 5, various algorithms are used in the literature.
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Fig. 5. Categorization of EEE methods.

Fig. 6. Type of EEE methods. (a) Single methods, (b) Activity-specific methods and (c) Context-based methods.

5 SPECIFIC APPROACHES AND RESULTS
There are several issues when comparing results from different works in EEE:
Non-public datasets As has been stated previously, practically all the datasets used to validate the

algorithms for EEE are non-public. This is a big issue when comparing different approaches.
There are only a few direct comparisons of different methods in the literature, which were
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Fig. 7. Data collected by Munguia-Tapia [90] from a subject. (a) Includes all the data, (b) non steady-state
data is removed.

achieved by the authors re-implementing methods of other authors such as Cvetković et al.
[40] who reimplemented the one from Altini et al. [14], or using the same dataset such as
Catal et al. [29] and Gjoreski et al. [53].

Variety of activities It is hard to compare a piece of EEE research with few activities to one with
a large number of them. For instance, some researchers [44, 107] found stationary cycling to
be very difficult to recognize, particularly from a wrist accelerometer, so they excluded it
from their results. In this case is not fair to compare their results with others that include a
cycloergometer such as Altini et al. [13].

Unrealistic activities Some of the algorithms are frequently trained only with data gathered from
a treadmill that does not show real-life variability. Additionally, a dataset that includes only
activities that are easily dealt with naturally improves the results.
In other cases, some activities were not included in the dataset due to the difficulty of
identifying them with the AR algorithm [44]. So the more activities tested and the more
real-life variability, the better.

Units and error Not all the results are expressed in the same terms. Mean absolute error (MAE),
root mean squared error (RMSE) and mean absolute percentage error (MAPE) with respect to
the reference method (indirect calorimetry) are the most commonmeasures, but in some cases
researchers apply this error to METs, Kcal/min or Kcal. In this section, METs are selected
because they are most common, but kcal/min can be a more accurate measure since they do
not depend on a specific BMR.

EE steady state and cropping data Steady-state EE conditions are usually assumed for training
regression models. In this case, intervals where EE is not in steady state are removed by
researchers before training and testing. To remove non-steady state data, some researchers
ignore initial and ending parts (from 30 to 40%) of each activity. In real conditions EE might
not reach steady-state so this approach is not a good research practice. Figure 7 shows the
difference between all data and only steady-state data, normally concatenated generating a
step-shape graph.

Table 5 presents all the 41 surveyed work where the method used to estimate the EE is explained;
there are several studies that use a proprietary method of a specific device, and they are not
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included. The table contains the following columns: Paper, technique used (described in Section
4.3), Regression algorithm used, number of sensor positions and locations, atomic activities (and
groups of them in brackets) that the subjects have completed during the study, and errors measured
in MAE, MAPE and RMSE.
In order to compare the different approaches, two cluster of disciplines has been used, in that

way it can be possible to see the evolution of the works of each one.
Health, Kinesiology, Nutrition and Exercise Sciences. Focused on measurement of physical

activity, sedentary behaviour, energy expenditure, promote physical activity and prevent obesity
in children and adults. In this case real-time analysis is not crucial, so time windows close to one
minute in duration are used.

In 2006, Crouter et al. [35] proposed an algorithm that improves the Actigraph single LR. First, it
classifies the performed activity into one of the three categories: the sedentary activity, lifestyle
or ambulatory activity. The classification is performed using a threshold over the acceleration
counts. Low activity counts are classified into sedentary activity, which is assigned a static MET
value of 1. Ambulatory or lifestyle activities use a linear, and an exponential regression model,
respectively. Himself and his team refined their method [36], using a cubic and an exponential
regression equation to predict METs every 10 s for intermittent lifestyle and ambulatory activities.
Rothney et al. [108] developed the first Artificial Neural Network (ANN) model for EEE with a

hidden layer in 2007. Five personal features (sex, age, height, body mass and ethnic) and 11 from
the bi-axial accelerometer were included as inputs. In 2009, Staudenmayer et al. [115] used the
Rothney’s ANN model and also included an ANN for activity recognition to recognize four types of
activities (low-level activities, locomotion, vigorous sports, and household activities). Both ANNs
were fed with the same features, so the physical activity predicted were not used for EEE. In 2011 the
ANN was validated by Fredson et al. [50]. In 2012 Trost et al. [123] validated the ANN with children
from 5 to 15 years old. They experimented with the windows size from 10 to 60 seconds, finding
that EEE results are better with longer sizes. They also found that results using an ANN were from
30 to 40 percent better than regression-based approaches. Finally, Lyden et al. [83] compared the
ANN method from Staudenmayer with two variations. The best one, called soj-3x, was based on
the counts per minute of hip-mounted Actigraph. An ANN was used to determine if the user was
sitting or standing, then non-physical activity MET values were based on the Compendium [1] and
finally physical activity MET values were obtained using Staudenmayer’s ANN.

Computer, Biomedical and Electrical Engineering and Human Energetics: Focused on
quasi-real-time EEE.
In 2004, Intille and his team [17, 61] gathered a big dataset with 20 activities using wireless

biaxial accelerometers and evaluated activity recognition algorithms (C4.5 decision tree was the
best) and the minimum number of accelerometers (two located at the dominant wrist and thigh) to
recognize the 20 activities with enough accuracy (approximately 81%).
In 2008, Munguia-Tapia [90] gathered a 52 activities dataset described in Table 2, advancing

the state-of-the-art of activity recognition and used it to EEE. He showed that if the activity is
recognized accurately, it is sufficient to use one non-linear regression model per class (recognized
activity) to EEE. His dissertation includes several comparisons: using from 1 to 7 accelerometers
in several positions, including or excluding HR features, using the less consuming features, using
the MET lookup or one LR for each class. The reported results show low errors compared to the
methods without AR. Interestingly, low error was also achieved using a method that first recognizes
the performed activity and second uses a MET lookup table to estimate the EE, however, this
highly relies on correctly recognized activity. The best results were obtained when the person was
equipped with three accelerometers attached to the dominant wrist, hip and non-dominant foot.
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Bonomi et al. [22] repeated the use of MET lookup table of the Compendium [3] as an EEE
method in 2009. They placed an accelerometer at the lower back and used a decision tree model for
the recognition of the six most common activities. The EE was estimated on a daily basis using the
DLW method as ground truth and compared to the EE using a MET lookup table.
In 2010, Albinali et al. [4], continued with Munguia-Tapia approach using a C4.5 classifier and

compared the two methods, a LR for each activity or use the MET lookup table. Although their
best result comes from the LR option, they commented that it is impractical because it requires
subject-specific VO2 measurements, given their regression coefficients are estimated using subject-
specific data. To avoid MET lookup table deviations, they proposed personalization: customizing
MET values that needs EE measurements from a subsample of individuals including their age,
height, weight and resting HR.

In 2012, Luštrek et al. [81] proposed a composite classifier, which consisted of two activity-specific
classifiers used to EEE for running (MLP) and cycling (SVR) and the general classifier for all the
other activities using the MLP again.
The same year, Altini et al. [9] proposed a method using the ECG Necklace [100] that includes

an ECG sensor and an accelerometer. They clustered 32 activities in 6 activity groups (lying, higher
whole-body motion, lower whole-body motion, walking, running and biking), and they compared
six methods, two of them using only a single regression model for all the activities (single method in
the categorization) and the rest using four activity-specific regression models. The activity-specific
methods outperformed the single ones. Between the activity-specific methods, the winning one was
a hybrid method combining MET lookup table for the lying activity and regression models including
anthropometric, HR and accelerometer features for non-sedentary activities. They highlighted the
creation of the cluster for grouping the 32 activities as a key point for improve the performance of
their method.

In 2013, Altini’s team [10] including Chen et al. [32] continued with their approach of clustering
activities but in this case, using unsupervised clustering to avoid activity recognition per se. Despite
lacking specific activity type information, similar activities normally tends to have similar EEE and
even new activities without any specific regressor can have a good estimation. They also work on
personalization including allometric modeling to achieve a better clustering and better estimations.

The same year, Gjoreski et al. [52] proposed an ensemble of regression models that use major fea-
tures (activity, acceleration peaks count, HR, BR, GSR, chest and arm ST, and ambient temperature)
as a context component. Each of the features has a discrete number of possible values (continuous
contexts are discretized), and for each possible value, a different regression model is built. The
training dataset for each regression model uses only data samples from the corresponding context
component. Once all the models are trained, estimation phase consists of the invocation of the
regression model for each context component selected according to its value (e.g., the models for
running activity and high HR) and fusing the results of all of them as their median. Four regression
algorithms were compared: LR, Gaussian process, SVR and Multilayer perceptron (MLP) regression.
The ensemble method surpassed single regression models: the best results were achieved by the
SVR ensemble and MLP ensemble, later on [53] expanded the work clustering the 15 activities in 7
groups and improved their results with SVR.
From the same team of Luštrek and Gjoreski, Cvetković et al. [39] compared three different

sensor configurations: a HR monitor and two accelerometers mounted on the subjects’ thigh and
chest (full set); a HR monitor with an embedded accelerometer, and a smartphone carried in the
trousers pocket (embedded set); and only a smartphone carried in the trousers pocket (phone set).
They explored feature extraction and selection computed from the acceleration sensors which are
partially adopted from Munguia-Tapia [90] (43 features) and partially designed by the authors (25
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features). A feature selection procedure was used to decrease the number due to battery limitations.
The results show improvement over the state-of-the-art methods in terms of MAE.

An original proposal about location of the sensor was proposed by Bouarfa et al. [23], training
and validating a model working in a single ear-worn accelerometer for EEE in a controlled setting
using healthy subjects. The study is interesting not only for the location of the sensor but for the
regressor used: nearest neighbor regression.

In 2014 Altini et al. [13] designed an algorithm to automatically normalize several physiological
signals (respiration, GSR and HR) from the low intensity activities in order to avoid the individual
calibration given the physiological differences between inter-individual, obtaining baseline and
range for each signal. The next year, they [14] evaluated a hybrid activity-specific method. The
participants were equipped with five accelerometers attached to their chest, ankle, waist, dominant
wrist and dominant thigh. The method first uses AR to cluster the performed activity into one
of 7 groups (3 clusters for sedentary and 4 for active behaviour). A regression model utilizing
acceleration data is trained for each activity group except for the sedentary activity group which
uses a regression model trained on BMR, body weight, and the static value from the Compendium
(lookup table). They evaluated the proposed method against a single-model approach and a MET
lookup table. Results demonstrated that there is no difference between sedentary clusters when
comparing activity-specific methods with accelerometer features and using METs lookup, but the
former outperforms the latter for active clusters. They also showed that a single sensor can achieve
accurate EEE results compared to the five accelerometers assuming activities are known in advance,
being the chest the best placement for EEE and the wrist the worst.
Pande et al. [96] focused on accurate EE estimation for tracking ambulatory activities (walk-

ing, standing, climbing upstairs, or downstairs) of a typical smartphone user without leveraging
significant computational resources. Using their accelerometer and barometer sensor, sampled at
low frequency and bagged regression trees, developed a regression model for EE estimation that
yields up to 96% correlation with actual EE measured by Cosmed K4b2 device. Running or biking
activities are not included and smartphone was placed (and fixed) in a waist pouch, so although the
results were very good, it cannot be stated that this study improve the state-of-the-art.

Given the number of sensors in a smartphone and the possibility of carrying it in various places
on the body in any orientation, Cvetković et al. [38] presented an innovative application to be used
for EEE. It first detects if the smartphone is on the body or not, and then uses a machine learning
model to detect its placement (trousers pocket, torso pocket or bag). The placement location is used
as a context for the selection of an appropriate AR model. Once the activity is recognized it serves
as a feature in the EEE regression model. The application is able to use additional sensors such as
HR chest monitor which increases the accuracy of both the AR and EEE.
In 2015, Zhu et al. [139] presented the first deep learning approach to EEE. Instead of feature

extraction and selection steps, they used raw signals from a tri-axial accelerometer as input for a
Convolutional neural network (CNN). A small set of activities (walking, climbing stairs, running,
standing or sitting and riding an elevator) was used to estimate the EE, and the CNN was compared
with a shallow ANN and a linear-regression activity-specific model. Results showed the CNN
outperformed the other models.
In 2016, Cvetković et al. [40] presented a method for EEE using multiple sensors and multiple

regression models. They first evaluate the estimation power of each individual sensor and their
combinations per activity. The results are used to decide which activities should use activity-specific
regression model, and which should use a model trained for a group of activities. Each of the models
may also use its own sensor set. Experiments showed that light activities should use regression
models trained only on acceleration data and should not contain physiological sensor data. On
the other hand, moderate and vigorous activities benefit from utilizing additional physiological
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information in training the regression model. For example, HR and near-body temperature depend
on the intensity of activity, which is valuable in activities in which the movement does not strongly
correspond to the effort (cycling). The obtained results outperform the state-of-the-art taking into
account the number of activities studied and the size of the dataset.

A richer device is used by Beltrame et al. [19]: the Hexoskin t-shirt. The features extracted are HR,
Delta HR, minute ventilation, respiratory frequency, total hip acceleration and walking cadence. In
this approach the features are filtered using a 0.01Hz low pass filter to avoid circulatory distortions,
then a Random Forest (RF) model was implemented as a set of bootstrap aggregate regression trees.
Although the authors attempted to estimate oxygen absorption and not METs, their results showed
that their model can accurately classify light and moderate activities.
In 2018, Cvetković et al. [41] expanded their previous work [38, 64] and proposed a real-time

activity monitoring algorithm for AR and EEE with a smartphone, wristband (Microsoft band 2)
or both devices. The algorithm first detects which device is currently on the body. Second, it uses
a machine learning model to detect walking, which is used for normalization of the orientation.
Third, it uses a machine learning model to detect the placement of the smartphone if it is present.
Fourth, the placement is used as a context for the selection of the model to recognize the activity.
Fifth, the placement and the recognized activity are used together as a context for the selection of
the regression model for EEE. They evaluated all combinations of the devices and compared the
EEE against commercial devices. The results of the proposed approach showed a large decrease in
error compared to the approach that has no information about the orientation and the placement
of the devices. Moreover, it also outperformed the compared commercial devices.

The same year, Catal et al. [29] improved the work of Gjoreski et al. [53] using a Boosted Decision
Tree Regression algorithm. They designed a cloud-based EE system that is queried using a web
service to obtain EEE given the data from the user.

There are several interesting points that we summarize bellow:

Activity recognition and clustering It can be seen that activity recognition boosts the accuracy
of EEE. Crouter et al. [35] started with this idea, categorizing activities into three types to
use one regressor or another based on the type, Munguia-Tapia followed him, developing a
very powerful AR system to classify 52 types of activities and again used one regressor per
class (or used the Compendium). Several researchers applies this technique with good results.
An interesting point is how to arrive at a good AR system. The process is complex due the
manual labelling process of each activity that sometimes includes mistaken labels. Chen
and Altini et al. [10, 32] decided to use a non-supervised algorithm to cluster the activities
without knowing the exact activity performed. This method is very interesting because AR
never achieves a perfect accuracy but helps to distinguish between types of activities, the
same that a cluster does. Furthermore, the EE of new activities that do not have a regressor
prepared for them can be estimated accurately if a regressor for a similar activity is used.

Personalization Munguia-Tapia developed a feature ScaledHR to normalize HR, which is very
dependent on each subject’s fitness level: “this normalization, between resting and maximal
heart rate, helps to minimize the inter-individual variations in heart rate values”. Altini et
al. [11, 11, 13] avoided individual calibration and normalized HR based on low-intensity
activities of daily living, exploiting the known relation between HR, cardiorespiratory fitness
and EE.

Results State-of-the-art results show that, although not all of them are comparable, with one
on-body device (including multiple sensors) and ten or more physical activities, it is possible
to reach MAE of 0.29 Kcal/min [108] or 0.58 MET [40, 41]. It is surprising that one of the
initial works from Rothney et al. in 2007 is unbeaten, but one of the reasons is that later
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researchers did not have access to their data and worked with different datasets. With two
devices, MAE of 0.54 MET is the best result [41] and with three devices MAE of 0.526 MET
[29]. All the results are better than those obtained using only commercial devices, which
suggests there is room for improvement for EEE algorithms for commercial smartwatches
and wristbands.

Sensor location The placement of a single or multiple devices on the body importantly affects the
accuracy of EEE, especially in activity-specific methods, since the selected location affects the
range of activities that can be recognized correctly using AR and therefore the accuracy of
the EEE for these activities [14]. Due to the popularity of smartwatches and activity-tracking
wristbands, the wrist is becoming a popular location. It is appropriate for EEE of hand-related
activities, but hand motions not accompanied by whole-body movement can confuse it. The
torso, waist or hip is a traditional placement for dedicated devices and is also the location of a
smartphone in a jacket pocket. The other common smartphone location is the thigh (trousers
pocket). These locations are appropriate for ambulatory activities, although – except for the
thigh – they have difficulties with cycling [36]. Both placements have shortcomings when
used on their own (although the wrist was reported to be more problematic [14]), so some
recent research focused on combining devices in both locations for more accurate EEE [41].

Sensor type The most commonly used sensor by far is the accelerometer. Accelerometers are
often packaged into IMU together with gyroscopes, so these can also be used for EEE, but
we have found no evidence that they importantly contribute to EEE accuracy. HR sensor
is the next most commonly used. While HR is certainly related to EE, exploiting this is not
straightforward. As mentioned in relation to personalization, it depends on the subjects’s
physical fitness, and it can also be affected by psychological factors. It was found that it is
not beneficial during low-intensity activities [12, 40], but it can improve the accuracy during
high-intensity activities, especially those where exertion depends on resistance rather that
intensity of motion (e.g., lifting burdens or cycling in different gears). GSR, ST and other
sensors have also been used occasionally, but their contribution seems marginal [13, 40].

Regressors A comparison of different regression algorithms is out of scope of this paper, but
commonly used for EEE are LR as a basic approach, or Support Vector Regression (SVR) [18],
Random Forest Regression [77] and Regression trees (boosted or bagged) [43] as more complex
alternatives. Although there are several works using ANN [63, 78, 79, 85, 88, 108, 115, 123],
only one paper used deep learning (CNN) [139], so it may be that EEE is not a particularly
suitable problem for this approach, but we expect more work using deep learning to appear
in the future.
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Paper Method Regressor # sens. & loc. # act. MAE MAPE RMSE
Crouter et al. [35] Activity 2-R 1 (h) 17 (3) - - -
Rothney et al. [108] Single ANN 1 (h) 12 (3) 0.29* - 0.47*

Munguia Tapia [90]

Lookup 7(F,w,h,a,t,c)

52

0.76 - 1.09
Activity LR 7(F,w,h,a,t,c) 0.78 - 1.12
Lookup 3 (w, h, f) 0.79 - 1.17
Activity LR 3 (w, h, f) 0.78 - 1.12

Staudenmayer et al. [115] Activity ANN 1 (h) 18 (4) - - 1.22
Bonomi et al. [22] Lookup 1 (lb) 6 - - -
Zakeri et al. [134] Single MARS 1 (c) 7 - - -
Crouter et al. [36] Activity 2-R 1 (h) 17 (3) - - 0.84
Albinali et al. [4] Lookup 3 (h,t,a) 22 - - -
Trost et al. [123] Activity ANN 1 (h) 12 (5) - - 0.93±0.04
Lin et al. [78] Activity ANN 4(wa,w,an,c) 14 (3) - - -

Luštrek et al. [82] Context ANN 2 (c,w) 24 0.91 - -
Vyas et al. [126] Context RR, LWR 1 (a) 8 - 15 -
Altini et al. [9] Activity LR 1 (c) 32 (6) - - 0.87*
Altini et al. [10] Activity MLR 1 (c) 37 (5) - - -
Chen et al. [32] Activity MLR 1 (c) 41 (3) - - 0.96*

Gjoreski et al. [52] Context MLP 3 (c, a, t) 15 - 27.5 -

Cvetković et al. [39]
Single

SVR
1 (p)

12
0.83 33.97 -

Activity 2 (c, p) 0.68 33.57 -
3 (2c, p) 0.60 26.71 -

Bouarfa et al. [23] Activity NNR 1 (e) 10 1.2 - -
Lyden et al. [83] Activity ANN 1 (h) 5 - - 1
Mu et al. [89] Activity MLR 1 (wa) 19 (5) - - 1.37

Pande et al. [88] Single ANN 3 (w, t, a) 14 (4) - - 1.34
Pande et al. [93] Single BRT 2 (wa, c) 5 - - -
Altini et al. [13] Activity LR 2 (w, c) 25 (6) - 15* 0.83*
Zaman et al. [135] Single K-sense 3 (w, an, wa) 6 - - -
Hormann et al. [59] Single MARS 1 (c) 5 - - 0.768

Jang et al. [63] Activity ANN 3 (w, wa, an) 4 - - 0.787
Altini et al. [14] Activity LR 1 (c) 34 (7) - - 0.84*
Pande et al. [96] Context BRT 1 (wa) 5 0.401 - 0.73
Gjoreski et al. [53] Context SVR 3 (2 c, t) 15 (7) 0.601 - 0.825
Cvetković et al. [38] Activity SVR [1-2](c, [p/c/b]) 10 (6) 0.76 - -
Zhu et al. [139] Single CNN 2 (c, wa) 5 - - 1.12*

Cvetković et al. [40] Activity SVR 1 (c) 15 (10) 0.62 24.6 0.91*
2 (c, wa) 15 (7) 0.52 23.2 0.81*

Kate et al. [67] Activity BRT 1 (h) 8 - - 0.7456
Mackintosh et al. [85] Single ANN 1 (c) 3 - - 1.22
Nagata et al. [92] Activity LR 1 (wa) 6 - - -
Alinia et al. [5] Single LR 2 (h, an) 6 - - -
Park et al. [98] Activity SVR 3 (2 a, c) 6 - - 0.89±0.42*
Janko et al. [64] Single SVR 3 (p,c,b) 13 1.37 - -

Beltrame et al. [19] Single RF 1 (s) 7 - - -

Cvetković et al. [41] Activity RF 1 (w) 18 (8) 0.58 25 0.79
2 (w, p) 18 (6) 0.55 23 0.76

Catal et al. [29] Context BDTR 3 (2c, t) 15 (7) 0.526 - 0.757
Table 5. Best results for each study. Sensor acronyms: a: arm, an: ankle, b: bag, e: ear, c: chest, f: foot, F:
feet, h: hip, lb: lower back, p: trousers pocket, s: shirt, t: thigh, wa: waist, w: wrist. Regressor acronyms:
2-R: 2-regression model, ANN: Artificial Neural Network, BDTR: Boosted Decision Tree Regression, BRT:
Bagged Regression Tree, CNN: Convolutional Neural Network, LR: Linear Regression, LWR: Local Weighted
regression, MARS: multivariate adaptive regression splines, MLR: Multiple Linear Regression, NNR: Nearest
Neighbor Regression RF: Random forest, RR: Robust regression, SVR: Support Vector Regression. *Kcal/min
not in MET.
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6 APPLICATIONS
Currently, the most interesting applications of EEE are health monitoring, both for the general
population and for those suffering from obesity or similar diseases, and sports monitoring, where
professional athletes need to know how much energy they expend to have a personalized recovery
period.

6.1 Health
According to the World Health Organization [132, 133], “the leading causes or mortality are high
blood pressure, tobacco use, high blood glucose and physical inactivity”. Recommendations on physical
activity benefit from accurate information on actual EE, which can be provided by EEE methods. For
general health maintenance, commercial devices can probably be considered sufficient. However,
for people already suffering from some health problem, greater accuracy or specially adapted EEE
methods or applications may be necessary.

Obesity Physical inactivity is normally followed by overweight and in some cases by obesity. Obe-
sity is usually related to cardiovascular diseases and diabetes. Reducing sedentary activities
can help type 2 diabetes and cardiovascular health [55], and increasing physical activity is
also a common recommendation. However, research from Pontzer et al. [103] shows how EE
increases when physical activity is performed at low activity levels, but plateaus at higher
levels, because the body attempts to keep the total EE within a small range.
Specifically, [114] points out that light-intensity activity and standing must be further re-
searched.
EEE methods using wearable devices are a valuable tool for preventing obesity and suggesting
the best physical activity to carry out.

Disabilities Physical impairments normally result in a decreased physical activity, promoting
obesity. Pande et al. [94] studied the EEE algorithms in children with Duchenne muscular
dystrophy. Their results show that the methods developed to determine EE for children
with disabilities are very different from those for normal adults. A non-linear regression
specifically developed for this group yielded better results.

Chronic obstructive pulmonary disease (COPD) The links between health, disability, mortal-
ity and physical activity level makes the physical activity measurement and EE a priority
to evaluate in all kind of patients, also those with COPD. EEE is commonly used for this
[30, 99, 125]. Specifically, Cavalheri et al. [30] analyzed the more demanding activities of
patients with COPD, concluding that walking upstairs or downstairs is the hardest one.

Cardiovascular disease Physical exercise is very important for people with cardiovascular dis-
ease, both as rehabilitation after a heart attack or heart surgery, and as a part of long-term
management of chronic conditions. The development of EEE methods by Cvetković et al. [39]
and Luštrek et al. [81] using dedicated sensors began with the intention to monitor the health
of congestive heart failure patients, whose main symptom is an inability to be physically
active (exercise intolerance). In such patients, physiological responses to exercise are different
than in the general population, particularly their HR increases more quickly, but may also
plateau due to medications. This necessitates adapted EEE methods.

Diabetes In diabetes, the body does not produce sufficient hormone insulin, or the cells do not
respond appropriately to it. Insulin promotes the absorption of glucose from blood, so the
main task of diabetes management is regulating the amount of blood glucose, since low
levels (hypoglycemia) can lead to unconsciousness and even death, whereas high levels
(hyperglycemia) lead to severe long-term problems, such as kidney, nerve and eye damage.
In addition to insulin, the amount of blood glucose depends on the intake of carbohydrates
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(which increases it) and exercise (which decreases it). Accurate information on the EE can
thus importantly contribute to disease management, and was the motivation for the work by
Cvetković et al. [40] using a smartphone and chest-worn HR monitor.

6.2 Sport
Energy requirements of athletes [130] during training and competing are beyond those of the
general population. In competitions, having an accurate knowledge about energy requirements
can be necessary to improve results and assure competitor health. Sports dietitians, scientists and
coaching staff can exploit this data boosting and adapting training, nutrition and recovery.
Accurate assessment of EE is a valuable information for the management of an athlete’s diet

and training load to optimize the performance. Usually, commercial devices are used for EEE
due to the ease of gathering information or generating reports. Taylor et al. [117] analyzed how
accurately does the BodyMedia FIT Armband Mini estimate the EEE of female basketball players
in the course of intermittent-intensity basketball skill and game-like condition. Although EE was
strongly correlated between the BodyMedia device and indirect calorimetry, EE was underestimated
in each experimental trial. Roos et al. [106] evaluated the EEE accuracy of several sport watches
(Suunto Ambit2, Polar V800 and Garmin Forerunner920XT) during aerobic and anaerobic running.
Results show that the evaluated sport watches perform with large estimation error during anaerobic
exercises. Koehler et al. [69] studied the applicability of the SenseWear armband to measure EE
in athletes. While the device provides decent estimates in the general population, in athletic
populations it was shown to underestimate the EE. This effect was stronger at greater intensities
and was particularly noticeable above 10 MET. Similar conclusions were made by Gastin et al. [51],
using the same device and ActiGraph GT3X+, particularly during very intense and intermittent
movements, and by Zanetti et al. [137] in rugby players during intermittent movement and recovery.
As it can be seen, algorithms for estimating EE used in commercial devices during intense and

intermittent activities must be improved.

7 CONCLUSIONS, RECOMMENDATIONS AND BEST PRACTICES
This paper surveyed the field of human EEE using wearable devices, and is oriented towards
machine learning researchers. Its contribution consists of an analysis of the available deep and
classical machine learning techniques for EEE. We first introduced how EE is measured and how
commercial wearable devices estimate it. Then, we explained typical experimental settings and
how datasets, the most precious tool in this area, are gathered, as well as released and described
a new dataset. We explained how the EEE process is structured and we categorized the related
papers according to the methods used. Finally we pointed out the common applications of EEE.
We can observe that the field most closely related to EEE is probably AR (addressed in ACM

Computing Surveys in 2013 [60] and 2014 [26]). Our survey suggests that the general methodology
used in these fields is similar, and so is the degree of sophistication in the recent work. There
is, however, a notable difference in the volume of work: considerably more researchers tackle
AR. While AR may be used in more applications (after all, it is used as a part of most recent EEE
methods), EEE is probably more often the final goal (most consumer wearable devices report EE,
but not many report the user’s activity). This suggests that the disparity in the volume of work
is not due to a disparity in the importance of the problems. A more likely explanation is that the
difficulty of obtaining a suitable dataset represents a considerable barrier to anyone wishing to
work on EEE: very few public datasets are available, and obtaining ground-truth values for one’s
own dataset requires expensive equipment.

For new researchers in EEE we present some recommendations and best practices:

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.



A Survey on Energy Expenditure Estimation using Wearable Devices. 1:27

• Newly developed methods should be tested on a common dataset. We offer our own dataset
(described in Section 3.2), but we also encourage other researchers to open their datasets,
so that the community can settle on the most suitable one. Such a reference dataset can be
used in addition to a dataset tailored to the specific problem a researcher may be addressing
– for instance, special groups such as children with disabilities, patients with COPD, elderly
people or athletes need specific datasets and models. A high-quality common dataset can
also solve the problems of unrealistic activities, EE steady state and cropping data (discussed
in Section 5).

• If developing a new dataset, care should be taken to record representative activities in a
natural environment – with the availability of portable indirect calorimeters, this is quite
feasible. Activities should be long enough to reach steady-state EE (around 5 minutes is
generally recommended, although the time can be shorter with similar activities, such as
walking or running at increasing speed). Reporting steady-state EEE performance of a method
makes sense since it is clearly defined, as opposed to EE that also includes non-steady state.
However, the performance over whole activities is also of interest.

• Common units and errors should be used for easy comparison of various methods. Our survey
shows that MET is the most popular unit, so it should always be reported. Similarly, MAE is
the most commonly used error, so it should be included, possibly in addition to other errors
such as MAPE and RMSE. Some researchers prefer METs as unit of error given the result
can be generalized but others tend to use Kcal/min. As long as there is no consensus we
recommend to supply all measures.

• While the best results were achieved with three devices, those with a single device are very
close. A single device is best for user acceptance, and it also reduces communication overhead,
since data can be processed on-board as it is not necessary to fuse data from multiple devices
– this is important to prolong battery life. The market indicates that preferable devices are
wristbands or smartwatches, where big brands are still struggling. Here, the focus on health
applications and FDA approval may tip the balance toward one competitor.

• Context- and activity-specific methods, particularly hybrid ones, are the most promising EEE
methods. Related work typically uses established regression algorithm that perform well on
the given problem. Deep-learning approaches are not yet sufficiently explored. So on one
hand, using an established algorithm appears adequate, but on the other hand, exploring new
regression algorithms may be an opportunity to advance the field.

After surveying the existing work on EEE, we consider the following directions most interesting
for future work:

Free-living and independent validation : Several datasets are obtained in laboratory controlled
conditions, moving from controlled conditions towards free-living settings on heterogeneous
populations and from leave-one-person-out cross-validation towards independent validation
set (an independent sample of subjects in a different setting) will generate EEE machine
learning models with clinically acceptable accuracy.

Different sensors. The commercial competition in wearables devices for AR and EEE made some
very interesting devices such as Bodymedia Fit armband disappear, making the wrist the only
common placement for dedicated devices. This placement is suitable for activities where the
intensity of hand motion is similar to that of whole-body motion (e.g., walking or running),
but it is a challenge to recognize others such as biking or weight-lifting using acceleration
and HR, so multi-sensor devices including sensors for heat flux, GSR, ST etc. are needed to
improve the results. Including the smartphone as a sensing device also presents an interesting
opportunity, but also a challenge, since different placements are possible.
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Personalization. Models are normally evaluated independently of the subject, however, the fitness
level and metabolism vary between people and adaptation of the models to the particular
person can decrease the estimation error. Most of the research in personalization was done
by Altini et al. [6–8]. They first addressed it by normalizing multiple physiological signals
(HR, GSR and respiration) [13] and successfully decreased the error. In their later work, they
introduced additional parameter, the cardiorespiratory fitness, that they estimated from HR
data and used it in hierarchical Bayesian model to further improve the estimation [7]. The
personalization of the EE models with unlabeled data (which is readily available in large quan-
tity) is also an interesting challenge with the promise of improved performance. Cvetković
has proposed a semi-supervised learning approach for personalization in her thesis [37] and
used it for personalization of activity-specific EE models. The perfect concordance between
ground truth and estimation methods will be difficult to achieve if we cannot sufficiently
personalize models based on cardiorespiratory fitness, sex, weight, and height. Current con-
sumer devices are getting such personal information when the user registers the device via a
mobile application. In addition, every second, subject dependent data is obtained from the
same user and similar ones (HR, ECG, steps, calories, even an estimate of cardiorespiratory
condition based on training) and are uploaded into private clouds. Personalization is more
than feasible, but so far, EE is not a key measure to attract more customers, but battery
consumption is. Continuously recognizing user activity, using accelerometers and heart rate,
and applying the best regressor to obtain EEE can significantly reduce some battery hours.

Energy-consumption optimization. Multiple sensors in a small wearable device such as a wrist-
band can quickly drain the battery. The problem is compounded by computing many sophisti-
cated features, although this can be alleviated by feature selection, and the sensors themselves
are the bigger problem anyway. This can be overcome by improvements in hardware, but
also by smart EEE that turns some sensors on only when others indicate this is needed (e.g.,
the HR sensor is turned on when the accelerometer detects an intense activity). This has
been tried for context recognition [65], but – to our knowledge – not yet for EEE.

Deep-Learning. Only one deep-learning study [139], using a single approach, was found for
EEE in this survey. Automatic feature selection using deep-learning enhanced the results of
AR [127], so more exploration in this direction, probably using a combination of different
deep-learning models (activity or context-specific methods) could improve the current state-
of-the-art results. Long short-term memory [58] networks may also be able to help with
this task. Several small hardware devices are being designed to run inference deep learning
models in an efficiency way, something that can help with the previous point.

Motivation. The accuracy of EEE is critical for certain patients and athletes, while the main
challenge for the general population is to develop a motivational method (that uses EEE) to
get users to exercise. It is quite clear this challenge has not been successfully met yet, but we
are not aware of any research on how motivation is affected by inaccurate EEE.
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