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Abstract

Background: Congestive heart failure (CHF) is a disease that requires complex management involving multiple medications,
exercise, and lifestyle changes. It mainly affects older patients with depression and anxiety, who commonly find management
difficult. Existing mobile apps supporting the self-management of CHF have limited features and are inadequately validated.

Objective: The HeartMan project aims to develop a personal health system that would comprehensively address CHF
self-management by using sensing devices and artificial intelligence methods. This paper presents the design of the system and
reports on the accuracy of its patient-monitoring methods, overall effectiveness, and patient perceptions.

Methods: A mobile app was developed as the core of the HeartMan system, and the app was connected to a custom wristband
and cloud services. The system features machine learning methods for patient monitoring: continuous blood pressure (BP)
estimation, physical activity monitoring, and psychological profile recognition. These methods feed a decision support system
that provides recommendations on physical health and psychological support. The system was designed using a human-centered
methodology involving the patients throughout development. It was evaluated in a proof-of-concept trial with 56 patients.

Results: Fairly high accuracy of the patient-monitoring methods was observed. The mean absolute error of BP estimation was
9.0 mm Hg for systolic BP and 7.0 mm Hg for diastolic BP. The accuracy of psychological profile detection was 88.6%. The
F-measure for physical activity recognition was 71%. The proof-of-concept clinical trial in 56 patients showed that the HeartMan
system significantly improved self-care behavior (P=.02), whereas depression and anxiety rates were significantly reduced
(P<.001), as were perceived sexual problems (P=.01). According to the Unified Theory of Acceptance and Use of Technology
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questionnaire, a positive attitude toward HeartMan was seen among end users, resulting in increased awareness, self-monitoring,
and empowerment.

Conclusions: The HeartMan project combined a range of advanced technologies with human-centered design to develop a
complex system that was shown to help patients with CHF. More psychological than physical benefits were observed.

Trial Registration: ClinicalTrials.gov NCT03497871; https://clinicaltrials.gov/ct2/history/NCT03497871.

International Registered Report Identifier (IRRID): RR2-10.1186/s12872-018-0921-2

(JMIR Med Inform 2021;9(3):e24501) doi: 10.2196/24501
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Introduction

Background and Motivation
Congestive heart failure (CHF) is a disease in which the heart
cannot pump enough blood to supply oxygen and nutrients to
the body. The main symptoms are shortness of breath (dyspnea),
diminished ability to exercise, fatigue, and swelling in the feet
and legs (edema). The lifetime risk of developing CHF ranges
from 20% to 33%, and only approximately half of patients
survive for more than 5 years after diagnosis [1]. As CHF is
frequently the end stage of various conditions that affect left
ventricular function and cannot be cured, the focus of the
treatment is to prevent deterioration, manage symptoms, and
maintain a good quality of life [2].

The management of CHF includes multiple medications,
appropriate exercise, diet (paying particular attention to fluids
and salt), management of body weight, and abstaining from
alcohol and smoking. As the average age at CHF diagnosis is
74 (SD 14) years [3], 25% to 80% of the patients are affected
by cognitive impairment [4], a third of them have depression
or anxiety [5], and other comorbidities are also common, they
often find it difficult to manage the disease on their own [6].
Cardiac rehabilitation programs are either not available or poorly
attended—participation in Europe is approximately 20% [7].
Therefore, the relevant alternatives are technological solutions
to support the management of CHF.

Approximately 64 million people live with CHF globally [1],
and the economic burden of their disease amounts to more than
100 billion US $ annually [8]. This is a strong incentive to
improve CHF management. In addition to medications,
implantable devices (mainly pacemakers and defibrillators) are
already established treatment options [9]. Another option is
telemonitoring, but its benefits in CHF are uncertain [9]. Another
option is mobile health (mHealth) solutions, whose benefits in
CHF are poorly explored (see the Related Work section) but
have a strong backing of the market: the mHealth market in
2019 was US $46 billion and grew by 22% annually [10]
(compared with the telemonitoring market of US $2 billion with
13% growth [11] and the more mature implantable devices
market of US $23 billion and 8% growth [12]).

In the HeartMan project, we developed a comprehensive
personal health system for the self-management of physical and
psychological aspects of CHF. The first step was to analyze

evidence-based medical requirements and—following the
human-centered design process—to elicit requirements related
to everyday management of CHF from the patients themselves.
We then developed a mobile app comprising a decision support
system (DSS) and several intelligent data analysis modules. A
web application for medical professionals has also been
developed. Finally, the system was evaluated in a
proof-of-concept trial that assessed both its effectiveness and
patient perception.

Related Work
In 2018, a systematic review was devoted to mobile apps
supporting the self-management of CHF [13]. The authors
surveyed 10 leading paper repositories for papers on
interventions that used a mobile platform, evaluated them with
a randomized controlled trial or a similar design, and provided
usability or efficacy results. Papers on telecare and structured
telephone support were excluded. In total, 18 papers meeting
the inclusion and exclusion criteria were included in the review.
The authors also searched Google Play and Apple App Store
for health care apps by including “heart failure” as a keyword.
After excluding apps that track only blood pressure (BP) and/or
heart rate, a total of 26 apps were downloaded and evaluated
with respect to the quality of self-management components
included in the apps and quality of the user experience provided
by the apps.

According to the authors of the review [13], most apps are
poorly designed and do not include all the necessary components
for the self-management of CHF. Indeed, only 2 apps—Heart
Failure Storylines [14] and HeartMapp [15]—include exercise
interventions, which is one of the most important aspects of
CHF management. The Heart Failure Storylines app is perhaps
the most complete one that can be currently found in the market.
It provides medication reminders, a symptom tracker, keeps a
record of vital signs, and tracks physical activity and daily
moods. Nevertheless, the interventions provided by the app are
poorly personalized (except for medication reminders) because
the app does not consider the patients’ psychophysical state,
making the usefulness of such interventions questionable [9,16].
The HeartMapp app provides personalized interventions, but it
is quite basic and is not adapted to the patients’ psychophysical
state. The app was tested in a randomized controlled trial with
only 18 participants (intervention group, n=9) [17].

We searched the Google Play and Apple App Store for apps
that were not included in the review. We found 6 apps that were
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published after the review. Five of these apps include only
educational materials [18-23], whereas 1 app provides only
guidance on medication therapy [24]. In short, no new apps
provide a comprehensive solution for CHF management.

Methods

Collection of Requirements and Human-Centered
Design

Medical Requirements
The first step in designing the HeartMan system was to study
the state-of-the-art medical knowledge on CHF
self-management. A systematic review of the available literature
was performed to identify parameters that predict the hard
outcomes of mortality and hospitalization in patients with CHF
as well as variables that affect the patient-reported outcome of
quality of life in this patient group [25]. We further selected
those parameters that are modifiable by self-care behaviors that
the HeartMan system can recommend. These modifiable
parameters are primarily clinical parameters (eg, body mass
index, BP, heart rate), physical capacity, medication use,
characteristics of CHF (eg, fluid retention), and mental health
(eg, depression, anxiety). We then screened relevant medical
guidelines for CHF, focusing on nonpharmacological
recommendations and lifestyle advice, to identify the best
approaches for modifying these parameters [26] and
incorporated these into the HeartMan DSS. We designed an
exercise training and nutrition program (including diet and fluid
intake restrictions) to influence physical capacity, clinical
parameters, and fluid retention. Medication adherence is
expected to be enhanced through DSS, providing reminders,
disease education, and self-monitoring. Finally, cognitive
behavioral therapy and mindfulness exercises were included to
improve mental health and self-management. Management
guidelines for comorbidities were also taken into account, as
many patients with CHF have conditions such as diabetes, atrial
fibrillation, and chronic obstructive pulmonary disease.

An additional source for developing the medical requirements
was data from the Chiron project [27], a previous telemonitoring
study in patients with CHF focusing on short-term outcomes of
subjective well-being on a daily basis. Data mining analysis
suggested environmental parameters, that is, ambient conditions
such as temperature and humidity, to play a role in predicting
day-to-day changes in perceived health. This was incorporated
into an additional module of DSS.

User Requirements
As our goal was not only to provide medically relevant advice
but also to design the HeartMan system to be useful and well

accepted by the patients, we adopted a human-centered design
[28]. This approach involves users throughout the design
process, focusing on their perspective and needs. In our case,
it consisted of a thorough analysis of patients’ context of use,
which took place in three stages in Belgium and Italy. The first
stage was a diary study, in which patients kept a diary for a
period of 10-14 days (n=19 in Belgium; n=18 in Italy). The
diary contained questions and assignments related to everyday
activities and habits, such as patients’ experience, disease
management, and their social network. The second stage was a
follow-up interview study conducted with most patients who
participated in the diary study (n=14 in Belgium; n=15 in Italy).
In this interview study, patients participated in semistructured
interviews in which the output of the diary study was discussed
in detail. This analysis resulted in a rich, qualitative description
of patient characteristics as well as the patient experience
regarding disease management, the challenges related to therapy
adherence, lifestyle changes as a result of being a CHF patient,
and relationships with caregivers. These insights were translated
into concrete user requirements for the HeartMan system, which
served, together with the medical requirements, as the starting
point for the third stage: the design and evaluation of a series
of prototypes with both patients and caregivers. In this process,
several design trade-offs were made regarding patient autonomy,
technology appropriation, and patient well-being [29]. The main
patient characteristics that were found to impact the design of
the HeartMan system were the patient’s digital literacy,
perception of empowerment, and existing therapy adherence
habits.

For medical professionals, a web portal was developed, allowing
them to follow up on the patients’ data gathered by the
HeartMan system. This prototype was developed and evaluated
using a separate human-centered design process. In this process,
various stakeholders (including cardiologists, nurses, dieticians,
psychologists, and physiotherapists) offered insights into the
needs and requirements related to the follow-up of patients with
CHF based on the HeartMan monitoring data.

System Overview
In the HeartMan system designed as described in the previous
section, sensing devices collect information about the patient,
patient monitoring methods further interpret some of this
information, and a DSS recommends actions based on the
(interpreted) information. The recommendations are presented
to the patient via a mobile app, and medical professionals have
access to the system via a web application. A diagram presenting
an overview of the system is presented in Figure 1.
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Figure 1. The logical architecture of the HeartMan system.

The sensing devices (yellow in Figure 1) are custom sensing
wristbands, off-the-shelf BP monitors, weight scales, and
environmental sensors that measure temperature and humidity.
According to the medical requirements, heart rate (obtained
from the photoplethysmogram [PPG] signal), BP, weight, and
ambient temperature and humidity are important determinants
of the health and well-being of patients with CHF. As it would
be relevant to monitor BP more frequently than once per day
(which can be expected with a regular BP monitor), we
developed a method to estimate BP continuously from the PPG
signal (green). Owing to the importance of psychological support
for patients with CHF, we also developed a method to recognize
their psychological profile from the heart rate, heart-rate
variability, and voice recorded with the smartphone. Finally,
the accelerometer in the wristband is used to recognize the
patient’s physical activities, which allows the initiation of
psychological interventions at the appropriate moment. As the
accelerometer provides the greatest volume of data of all the
sensors, this last method is implemented on the smartphone,
whereas the previous 2 reside in the cloud.

All patient information is fed into the DSS and stored in the
cloud (blue in Figure 1). The DSS has three components, the
first of which is an expert system that helps patients manage
their physical health (exercise, nutrition, medications, and
self-monitoring). The second is another expert system that
provides psychological support (elements of cognitive
behavioral therapy and mindfulness). The third uses predictive
models (based on the previously mentioned Chiron data) to
recommend actions related to temperature and humidity that
are expected to improve patients’ well-being. The first 2
components rely on expert knowledge because it is well
established how the aspects of the CHF management they
address should be tackled. The last one relies on data and
predictive modeling because we had relevant data available,
but there is little expert knowledge on the effect of the
environment on the well-being of patients with CHF.

The recommendations provided by the DSS are shown in the
mobile app (purple in Figure 1), which also collects inputs from
the patients. Medical professionals can use a web application
to view information collected from sensing devices as well as
the patients’ adherence to recommendations. Although the
content of recommendations is mostly based on the medical
requirements, the way information is presented via the 2
applications was heavily influenced by the users’ inputs obtained
during the human-centered design process.

Patient-Monitoring Methods

The HeartMan Wristband
The wristband used by the system includes a PPG sensor, which
provides information on the heart rate and beat-to-beat intervals
in addition to the raw data, tri-axial accelerometer, and
temperature sensor. It communicates with the HeartMan app
via Bluetooth Low Energy 4.1. Its battery life is sufficient for
a full day of operation, while continuously streaming sensor
data to the phone. It features a liquid crystal display and
vibration motor, which can be used to deliver urgent
notifications to the user, such as about too high or low heart
rate during exercise.

BP Estimation
Continuous BP estimation is well researched when 2 signals,
typically ECG and PPG, are available, as the pulse transit time
between 2 points on the body is highly correlated with the BP
[30,31]. In HeartMan, we aimed to use a single wristband PPG
sensor [32,33], as this is the most convenient for the patients.
However, such a sensor typically has a modest sampling
frequency, the sensor-to-skin contact is often compromised due
to movement, and the wrist area exhibits less pulsatility
compared with a fingertip, making this approach challenging.

To obtain high-quality parts of the PPG waveform, the signal
was preprocessed. The first step was zero-mean unit-variance
normalization. Outlier samples above 3 SDs from the local
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median (10-sample window) were removed using a Hampel
filter. Afterward, the signal was filtered using a fourth-order
Butterworth band-pass (0.5-4.0 Hz) filter. Then, a transformation
based on the first-order derivative was used to detect systolic
peaks and diastolic valleys in between. Once the valleys were
detected, the signal was traversed with a sliding window, and
a template was created as the average of all cycles in a window.
Following this, each individual cycle was compared with the
template using several metrics. This allowed for the detection
of segments where the signal was stable with only a few
artifacts, while also allowing for individual bad cycles in an
otherwise good segment to be discarded [34].

After preprocessing, per-cycle temporal features describing the
cycle shape were computed based on related work [35] and
further expanded with some features from the frequency domain.
The latter were computed from a window centered on a cycle
and extending 5 seconds before the cycle start point and 5
seconds after the end point. Most of the temporal morphologic
features rely on high-quality waveform, exhibiting a clear
systolic and diastolic peak, as they were designed for fingertip
PPG devices in a controlled setting. The HeartMan wristband
signal is generally of lower quality, so we focused on frequency
domain features, which are more robust, as they are computed
from longer windows and not on a per-cycle basis. In addition,
as some morphological features were infeasible to compute
from the HeartMan wristband data, we additionally leveraged
information from the accelerometer, which tells us about the
person’s physical activity. We considered some commonly used
features computed from the three-axis accelerometer, which are
known to work well in separating a person’s activities [36]. We
decided on this because having information about a person’s
activity might prove useful for BP estimation, as the
cardiovascular response of the body changes during intense
physical activity compared with the state. This fact differentiates
this work from previous work dealing with similar problems,
as related work often focuses on PPG signals without
considering the person’s activity, which can be reflected in the
accelerometer signal [37]. Finally, heart rate was also used as
a feature to inform us about a person’s cardiac activity. All these
features were fed into regression models that estimated systolic
BP (SBP) and diastolic BP (DBP). Several algorithms
implemented in the Scikit-learn toolbox [38] were used to train
the models, some of which are compared in the Results section.

Psychological Profile Recognition
The development of technological interventions for behavior
changes as well as growing interest in affective computing have
resulted in various attempts to recognize psychological states
from sensor data. Some authors [39] used mobile phones to
analyze user voices and classify their emotions (happy, sad,
fear, anger, and neutral). Others have focused on stress,
dementia, and cognitive dysfunctions, relying more on wearable
devices that sense the heart rate, electrodermal activity, skin
temperature, and acceleration [40,41].

The HeartMan system combines the patient’s voice obtained
during a structured weekly phone interview with an informal
caregiver with heart rate features, which can be obtained from
the HeartMan wristband. The speech data were preprocessed

to normalize the different acoustic properties, such as higher
volume and background noise, using standard techniques [42].
The features extracted from the speech are the fundamental
frequency (pitch), mel-frequency cepstral coefficients, and the
smoothed energy. The mean, SD, range, maximum, and
minimum were computed for each base speech feature. In
addition, the heart rate and heart rate variability represented by
the root mean square of successive differences between
heartbeats were extracted. The features are then fed into a
machine learning model that recognizes motivated, anxious,
and depressed psychological profiles. All the data were
preprocessed and analyzed using MATLAB and R software.

Physical Activity Recognition
Physical activity recognition is a relatively mature field,
although the requirements of HeartMan present some challenges.
As the purpose was to initiate psychological interventions, it
was most relevant to recognize eating and to distinguish resting
from walking and more intense activities. Eating recognition is
quite difficult and rarely addressed in the literature, whereas
wrist—being able to move independently from the body—is
not the best location for recognizing the intensity of activity.

Similar to the previous 2 patient-monitoring methods, this
method also uses machine learning. The stream of acceleration
data is first low-pass filtered to remove noise and then band-pass
filtered to remove the gravitational component, retaining the
component due to dynamic human motion. The stream was then
segmented into 2-second windows. In each window, the
low-pass filtered data are used to compute features related to
the orientation of the sensor, whereas the band-pass filtered data
are used to compute the features related to the motion of the
sensor. A total of 90 features were extracted [37]. Some describe
the intensity and shape of the acceleration signal, such as the
mean, variance, skewness, and kurtosis. Others have a
physics-based interpretation, such as changes in velocity and
kinetic energy. The rest are based on expert knowledge, such
as the number of peaks in the signal and the number of times
the signal crosses its mean value. The features are fed into a
machine learning model that returns one of the following
activities: rest, standing, walking, Nordic walking, running,
other exercise, eating, washing hands or face, household chores
(whole-body movement), and light hand activities (hand
movement). The model was built using the random forest
algorithm implemented in the Weka toolkit [43].

DSS

Expert System for Physical Health Management

Exercise

The HeartMan DSS administers a comprehensive exercise
program [44] according to the established medical guidelines
[16]. Before starting the exercise program, the patients were
expected to perform a cardiopulmonary exercise
(cycloergometry) or a 6-min walking test to assess their physical
capacity. On this basis, the physical capacity of each patient is
assessed as low or normal, which affects the exercise planning.
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Weekly Exercise Planning

The DSS proposes a weekly exercise plan for each patient,
consisting of endurance and resistance exercises. The DSS
suggests the frequency (times per week), intensity, and duration
of each exercise type. The suggestions are based on the patient’s
physical capacity, the number of active weeks in the program,
and the current frequency and intensity. They are also based on
the patient’s psychological profile: the difficulty increases more
gradually for depressed patients, which is in line with the
shaping technique suitable for this profile. For instance,
low-capacity patients start with very light 10- to 15-min
endurance exercises twice per week. According to the patient’s
progress, these parameters may change with time, typically by
increasing the frequency and intensity of exercises, if the patient
agrees. The planning process is governed by an expert system
that consists of 2 rule-based models, developed using a
qualitative multicriteria method decision expert [45] and
described in more detail in our earlier work [44].

Exercise Sessions

Before the start of each exercise session, the HeartMan DSS
checks whether the patient’s BP and heart rate are in a safe
range and whether the patient feels well enough to exercise. If
the exercise is allowed, a list of exercises is shown to the patient,
who can then select the preferred exercise. This is illustrated in
Figure 2. Typical endurance exercises involve walking and
cycling, whereas resistance exercises aim to strengthen the
patient’s arms, legs, and body. After selecting the exercise, a
detailed description (text or graphical) was provided. During
the exercise, the heart rate and SBP were continuously measured
using the wristband. Patients are advised to stop the exercise in
cases of symptoms or measurements outside a safe range. During
endurance exercises, the DSS uses the wristband display to
suggest an increase or decrease in pace based on the heart rate.
After completing the exercise, the patients can rate their feeling
of intensity, which is used in the weekly planning to decide
whether to increase the intensity.

Figure 2. Exercise-related screens of the HeartMan app: the main screen, blood pressure input before the exercise, health check before the exercise,
and exercise list.

Nutrition

To provide appropriate nutrition advice, the DSS requires the
following medical information: the patient’s BMI, whether the
patient has diabetes, and the prescribed amount of liquid intake.
Next, the DSS creates a personalized questionnaire to be
answered by the patient; it includes general questions about
healthy nutrition and specific questions about the patient’s eating
and drinking behavior. On this basis, the DSS assesses the level
to which topics (about breakfast, lunch, dinner, fat and
cholesterol, fluid intake, salt, diabetes, and medication) are
understood by the patient. Finally, the patient received feedback
in terms of positive reinforcement messages (for well-understood
topics), educational statements (for misunderstood general
topics), and advice on how to modify the diet to make it healthier
(for misunderstood eating behavior topics).

Self-Monitoring and Medication

Patients with CHF are required to measure their BP, heart rate,
and daily weight. The HeartMan system reminds them of this

and warns if the measurements are outside the safe ranges. It
also reminds the patients to take their medications and helps
them fill the weekly pillbox (if they use one). It periodically
asks the patient about the number of pills remaining in the
pillbox and assesses medication adherence based on the
deviation from the expected number.

Expert System for Psychological Support
In most cases, CHF diagnosis requires substantial changes in
daily life and habits, such as dietary modifications and increased
physical activity. Combined with psychological distress, which
also often follows the diagnosis, patients can face an intrusion
of distorted beliefs and negative automated thoughts that cause
them to feel unable to pursue a goal [46]. Sometimes a vicious
circle called cognitive dissonance is triggered: a conflict between
their desire to be healthy on one hand and practicing unhealthy
behaviors for short-term comfort on the other hand. In the long
run, this results in poor adherence to self-management guidelines
as well as psychological discomfort [47].
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The psychological DSS is designed to select the appropriate
strategy to improve patients’ psychological well-being and
adherence to physical exercise and dietary guidelines. The
strategy is adapted to the user’s psychological profile, as
discussed in the section on psychological profile recognition.
The DSS provides cognitive behavioral interventions and
mindfulness exercises that are modified according to a weekly
plan. These exercises are suggested daily, at a time when the
user engaged in a physical activity expected to make them
receptive to the suggestion. The relevant activities are eating,
walking, and sitting, as discussed in the Physical Activity
Recognition section.

Cognitive Behavioral Therapy

This is a combination of behavioral and cognitive techniques
developed to reduce anxiety and depressive symptoms, which
tend to make patients less motivated, tired, and less energetic.
The DSS provides specially designed messages intended to
align the patients’ actions with their desires, as shown in the
examples in Table 1. These messages are formulated according
to the principles by Festinger [48] of cognitive consequences
of forced compliance for the motivated profile, free choice for
the anxious profile, and effort justification for the depressed
profile.

Table 1. Examples of cognitive behavioral therapy messages about physical exercises for three different psychological profiles.

Example messageFestinger principlePsychological profile

I should perform physical exercise to obtain benefits similar to those from medicationsCognitive consequences of forced
compliance

Motivated profile

Walking for 10 min and watching TVa are two ways to relax. Walking improves
your heart health, whereas TV does not

Free choiceAnxious profile

Walking for 10 min will bring benefits similar to those obtained from medicationEffort justificationDepressed profile

aTV: television.

Mindfulness

Mindfulness exercises enhance patients’ awareness of their
present condition and help them disassociate (unhealthy)
emotional and behavioral responses from physical sensations
and thoughts. Mindfulness exercises consisted of the following:

• Games to deal with intrusive thoughts (eg, loss of
independence, feeling restricted in daily activities), as
shown in Figure 3.

• Audio recordings dealing with the perception of the
patient’s body and breathing exercises.

• Mindful messages that help the patient focus on a mindful
moment. These messages are contextualized as follows:
mindful walking when the user is walking, mindful
breathing when the user is sitting, mindful eating when the
user is eating, and mindful listening and observing when
the user is either walking or sitting.

Figure 3. Mindful game "World Sense".

Predictive Models for Environment Management
Unlike the DSS approaches used for physical health
management and mental support, which mainly rely on expert
knowledge, a data-based approach was developed for
environment management. We used data from the Chiron project
[27], which consists of features describing the patient’s situation
and their self-reported feeling of health. The features are
physiological (eg, heart rate, BP) and environmental (eg,
temperature, humidity) and very similar to those available to
the HeartMan system.

In the first step, we built a machine learning model that could
predict the feeling of health from the features. We used the
random forest algorithm implemented in the Weka toolkit [43].
The accuracy of distinguishing between good and bad feelings
of health was 83.2%. We also divided the features into
modifiable, correlated (with modifiable), and uncorrelated. We
build linear regression models that can predict each correlated
feature from the modifiable ones.

In the second step, we set up a multi-objective optimization
problem, where we searched for minimal modifications of
modifiable features that change the feeling of health from bad
to good. For each solution, the correlated features were predicted
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using linear models, and the admissibility of the solution was
checked using the feeling-of-health model. The objectives were
the sum of the volumes of modifications needed and the number
of modified features, as making smaller modifications to a
smaller number of features is easier. To solve this problem, we
used the multi-objective evolutionary algorithm Nondominated
Sorting Genetic Algorithm-II [49].

For more than half of the cases, we were able to find a solution
where changing only 1 or sometimes 2 modifiable features
would improve the patient’s feeling of health. For some cases,
we needed to change more features, and for a minority of the
cases, no suitable modification could be found. More detailed
results can be found in our previous study [50].

Implementation
All the patient-monitoring and decision support modules were
integrated into the HeartMan system together with apps for
patients and medical professionals. The architecture of the
integrated system is illustrated in Figure 4. The wristband and
environmental sensor are connected to the mobile app via
Bluetooth Low Energy. The mobile app, which includes the
physical activity recognition, runs on the smartphone. Physical
activity recognition was placed there because it was more
efficient to do so than to transmit all the raw accelerometer data
to the cloud. On the right side are cloud services, which include
BP estimation, psychological profile recognition, and DSS.
These were placed entirely in the cloud because they required
less raw sensor data, and implementation was easier. Cloud
services were installed inside the hospital to comply with the
general data protection regulation.

Figure 4. The physical architecture of the HeartMan system.

The data from the mobile app were received by the IoTool
middleware [51], whose main purpose was the retrieval of sensor
data from smartphones and connected devices, and its storage
in a database in the cloud. As it can send data in both directions,
it was also used to synchronize application data (such as exercise
plans, patient inputs, and push notifications) between the
smartphone and the cloud. In this way, the app received the
information needed to support each patient on a weekly basis
and was then largely independent from the internet for a week.
Finally, IoTool can apply arbitrary transformations to sensor
data, creating so-called virtual sensors: this capability was used
for physical activity recognition, which was implemented as an
IoTool virtual sensor transforming acceleration data into
physical activities.

Most raw sensor data were retained in the IoTool database for
offline analysis, whereas the data required for HeartMan
operation were passed through the interface and interoperability
layer, stored using the HL7 FHIR (fast health care

interoperability resources) standard for health data exchange
[52] if applicable and made available to other services: BP
estimation, psychological profile detection, and the DSS. Each
of these services reads inputs from and writes outputs to the
central storage via the interface and interoperability layer. The
data that needed to be sent back to the smartphone were stored
in the IoTool database for synchronization. The interface and
interoperability layer also provided data to the web application
for medical professionals and enabled interoperability with
hospital information systems. To do so, it complied with the
FHIR REST (representational state transfer) API (application
programming interface) specification [52].

The HeartMan mobile app is divided into four sections according
to the main topics identified in the medical and user
requirements. The respective dashboards are shown in Figure
5. They prominently show the percentage of monthly or weekly
activities already performed, which corresponds to the adherence
to the HeartMan-suggested self-management at the end of the
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month or week. The buttons at the bottom trigger various
activities, and there is also an Insights section that provides
general education on CHF.

The web application for medical professionals shows the
patients’ clinical information, measurements of heart rate, BP,

and weight, and their adherence to the HeartMan-suggested
self-management. It also enables the management of
medications, with the updated medication plan displayed in the
mobile app. Screenshots of the web application are shown in
Figure 6.

Figure 5. Dashboards of the HeartMan mobile app for physical activity, nutrition, mental support, and medication management.
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Figure 6. Screenshots of the HeartMan web application for medical professionals: heart rate measurements (upper) and adherence to the
HeartMan-suggested self-management (lower).

Results

Accuracy of the Patient-Monitoring Methods

BP Estimation
For the first BP estimation test, we collected a data set from 22
healthy subjects (ages 22 to 39 years, 6 women and 16 men)
using the Empatica E4 wristband [53]. They wore the wristbands
continuously throughout the day and were told to measure their
ground truth BP with a certified Omron device every 30 minutes.
Each ground truth BP value was attributed to the PPG signal
30 seconds before and after each measurement was made.
Leave-one-subject-out evaluation was conducted, and the mean

absolute error (MAE) between the estimated and ground truth
SBP and DBP was used as the evaluation metric. Several
regression algorithms were compared against a baseline dummy
regression model, which always outputs the average SBP and
DBP of the training set.

Using the Empatica E4 data, the initial errors of ensembles of
regression trees were approximately 10 mm Hg for SBP and 6
mm Hg for DBP, as shown in Figure 7. The results were further
improved using personalization, achieving errors of 6.70 mm
Hg for SBP and 4.42 mm Hg for DBP, suggesting that the
connection between PPG and BP is person-specific and that a
general model is difficult to derive.
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Figure 7. Mean absolute error of systolic blood pressure and diastolic blood pressure estimation in the leave-one-subject-out experiment using the
Empatica E4 wristband. DBP: diastolic blood pressure; MAE: mean absolute error; SBP: systolic blood pressure.

As the HeartMan wristband was a prototype intended for wide
use by patients (as opposed to the Empatica E4, which is a
high-cost research device), the quality of the PPG signal was
lower. Therefore, we built person-specific models using the
data collected from the HeartMan trials. The patients wore the
wristband and were instructed to measure their BP daily with

a certified device, so we matched the PPG and BP data as in
the previous experiment. We used a train-test split of 70% to
30% to ensure no data leakage. We compared a number of
regression algorithms with random forest performing the best,
as shown in Table 2.
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Table 2. MAEs of systolic blood pressure and diastolic blood pressure estimation of personalized models from the HeartMan trial.

MAE of diastolic blood pressure (mm Hg)MAEa of systolic blood pressure (mm Hg)Algorithm

8.911.4Baseline dummy (mean)

10.113.1Decision tree

7.510.6k-nearest neighbors

8.511.3Support vector regression

7.09.0Random forest

aMAE: mean absolute error.

An example segment of the DBP estimates is shown in Figure
8. The results show that BP estimation is feasible; however,
most state-of-the-art methods are highly dependent on high

signal quality to obtain precise morphological features on a
per-cycle basis, which is difficult to achieve with an affordable
wristband.

Figure 8. Segment of example estimates and ground truth diastolic blood pressure from the HeartMan trial. DBP: diastolic blood pressure.

Psychological Profile Recognition
To test the psychological profile recognition, we collected a
data set from 30 healthy subjects (mean age 68, SD 2 years, 6
women and 23 men). The subjects used the HeartMan mobile
app for psychophysiological data collection.
Leave-one-subject-out evaluation was conducted, and
classification accuracy into depressed, anxious, and motivated
profiles was used as the evaluation metric. Classification models
trained with four machine learning algorithms were compared
against a baseline dummy model, which always returned the
majority class.

As shown in Table 3, the support vector machine (SVM) model
performed best, achieving a fairly high accuracy, especially
considering that this is a subject-independent result. In Table
4, we can see the results in terms of precision, recall, and
F1-score for the SVM model. The percentages of the confusion
matrix as a result of the cross-validation procedure showed that
SVM can classify all 3 classes with precisions of 93%, 86%,
and 84%, respectively. From the results, it can be observed that
the motivated profile was recognized most accurately, whereas
most of the misclassifications came from the anxious and
depressed profiles, which are sometimes very similar.

Table 3. Classification accuracies of the psychological profile detection.

Classification accuracy (%)Algorithm

37.9Baseline dummy (majority)

79.7Naïve Bayes

75.1Multilayer perceptron

62.6Random forest

88.6Support vector machine
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Table 4. Precision, recall, and F-measures of the psychological profile detection.

F-measure (%)Recall (%)Precision (%)Psychological profile

949493Motivated profile

858386Anxious profile

868784Depressed profile

Physical Activity Recognition
The model for physical activity recognition was built and
evaluated on recordings of 10 healthy subjects (mean age 59,
SD 5 years, 6 women and 4 men). The subjects performed a
scenario consisting of all the activities to be recognized with
several variations: walking at different speeds, uphill and
carrying a burden, eating various foods, and performing a wide
range of chores (cooking, sweeping floor, gardening tasks, etc)
and hand activities (writing, using a computer, knitting, etc).
Similar to the previous cases, a leave-one-subject-out evaluation
was conducted. Precision (the fraction of the instances
recognized as a certain activity that in fact belong to that

activity), recall (the fraction of the instances belonging to a
certain activity that are recognized as such), and F-measure
(harmonic mean of precision and recall) were used as the
evaluation metrics.

Table 5 shows that most of the activities can be recognized
reliably. Standing has the smallest F-measure, because it is often
misclassified as rest. This is understandable because in both
cases, the hand with the wristband does not move much and is
not overly problematic because most people rarely stand still
for a long time. The second largest problem is confusing eating
with hand activities, which is also understandable but makes
accurately triggering psychological interventions during eating
difficult.

Table 5. Precision, recall, and F-measure of the physical activity recognition.

F-measure (%)Recall (%)Precision (%)Activity

878984Rest

383248Standing

808675Walking

727867Nordic walking

676274Running

747772Exercise

616162Eating

757773Washing

828184Chores

666567Hand activities

717171Macro average

General Effectiveness of the System
A proof-of-concept trial was set up to evaluate the effects of
the HeartMan intervention on health-related quality of life and
disease management (self-care) as primary endpoints [54]. The
secondary endpoints we targeted were clinical parameters,
illness perception, and mental and sexual health. The clinical
trial was registered on NCT03497871 on 2018-04-13. It was
implemented in two countries: three hospitals were involved in
Belgium, and one hospital and a local health authority
participated in Italy. A randomized controlled design was used
with a 1:2 ratio of the control and intervention groups. Eligible
patients were recruited by the treating cardiologist or general
practitioner at the time of regular consultation. After providing
informed consent, participants underwent a baseline data
collection, containing medical record data registration,
questionnaire assessments, and some clinical assessments,
including a 6-min walking test. Patients were then randomly
assigned to either the control group receiving the usual care or
the intervention condition additionally receiving the HeartMan

personal health system that they used in their home setting for
a period of 3-6 months. All outcome measurements were
repeated in both the intervention and control groups at the end
of the trial.

The intervention effects were evaluated in a final sample of 56
patients (ie, 34 in the intervention group and 22 in the control
group). Trial results showed that the HeartMan system was
successful in improving self-care behavior, resulting in a higher
quality of disease management, as indicated by the significant
(P=.02) improvement of 11% in the Self-Care of Heart Failure
Index [55]. No such effect was observed on health-related
quality of life, as assessed with the Minnesota Living with Heart
Failure Questionnaire [56]. Regarding secondary endpoints,
using HeartMan significantly (P<.001) improved psychological
outcomes, that is, intervention patients decreased their level of
depression (Beck Depression Inventory II [57]) and anxiety
(State Trait Anxiety Inventory Form Y [58]) by 15%, and these
reductions were even higher in the patients who had used the
mental support module in the app more intensely. The HeartMan
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intervention also significantly (P=.01) reduced the experience
of sexual problems, that is, by 26% on the Sexual Adjustment
Scale [59]. No effects were shown for illness perception or
clinical outcome of exercise capacity. However, additional data
available in a subgroup of the trial sample showed a significant
(P=.04) improvement of 11% in the left ventricular ejection
fraction. A more extensive publication of trial results is pending.

Patients’ Perception of the System
The user experience of HeartMan was investigated both
qualitatively and quantitatively in the intervention group.
Quantitatively, the Unified Theory of Acceptance and Use of
Technology (UTAUT) questionnaire was used [60], adapted to
the objectives of the HeartMan system and to the population of
older adult users [61]. This questionnaire assesses users’
intentions to use the HeartMan system and their usage behavior.
The UTAUT questionnaire pointed out that HeartMan users’
attitude toward the system was generally positive, with low
scores on technology anxiety related to this positive attitude
and relatively high-performance expectancy (“the degree to
which the user expects that using the system will help him or
her to attain gains in job performance” [60]).

Qualitatively, semistructured interviews were performed with
10 patients (7 men and 3 women) and their informal caregivers
after having participated in the trial for 3-4 months [62]. The
results of an in-depth analysis of sociotechnical complexities
in home-based health monitoring systems [63] showed some
potential for the HeartMan system as a tool for self-management.
Although stressful for some participants, collecting health data
such as weight and BP in the HeartMan trial generally raised
awareness among the patients of their lifestyle and health.
Monitoring their health parameters enabled them to be more
aware of their bodies, intervene, and ask for help in a timely
manner. The evaluations also showed that the HeartMan system
positively affected patients’ dietary knowledge and that they
felt stimulated to engage in physical activities. This suggests
that self-monitoring and empowerment goals are generally
achieved. Some weaknesses were also found, such as the need
for increased flexibility regarding the interface and interactions
with the system.

Discussion

Technology
The HeartMan system is complex, spanning sensing devices, a
mobile app, and the cloud; combining diverse technologies; and
featuring extensive content to comprehensively address CHF
management. The challenge of integrating all this was tackled
by an architecture with independent components connected
through the IoTool middleware as well as the interface and
interoperability layer. A lesson learned was that there is a
tradeoff between too tight integration, which makes changes
difficult, and too many layers between components, which
makes integration testing difficult.

Individual components largely performed as expected. BP
estimation from PPG proved the most difficult, as this is a
difficult research problem even in ideal conditions, when
high-quality PPG signals from a clinical or research device are

available. Thus, this technology is not yet sufficiently mature
for everyday use by patients. In the DSS, we mainly relied on
expert knowledge, and only recommendations regarding
temperature and humidity were provided by data-based methods.
Although we believe data-based decisions will play a greater
role in health management in the future, the amount of raw data
currently available to support the range of decisions needed to
manage a disease such as CHF cannot yet rival the expert
knowledge available in the literature and medical practice.
Although that knowledge is ultimately based on data, these data
are simply not available in one place (and possibly not at all in
some cases).

Medical Perspective
Although the use of telemonitoring systems in cardiac patients
has increased tremendously, evidence regarding their
effectiveness in managing patients with CHF remains to be
mixed [64]. HeartMan, however, is different from most
telemonitoring systems: it focuses on empowering patients to
properly manage their disease, rather than remote monitoring
by health care professionals. It mainly aims to improve the
quality of life and self-management in patients by integrating
several intervention modalities in the domains of physical health
management and psychological support. The trial results showed
that the obtained beneficial effects were mostly psychological,
more than physical, which is in line with the predefined primary
outcomes. A possible explanation is that the system did not
achieve sufficient adherence to the advanced and gradually
progressive exercise program, which would probably be the
most effective way to improve physical health. Nonetheless,
before drawing definite conclusions, we need to investigate the
effectiveness of the HeartMan system in a wider context, that
is, in a larger sample of patients with CHF over a longer
intervention period.

User Perspective
As early as during the analysis of the patients’ context of use,
the HeartMan concept was presented to patients and their initial
reactions were captured. Several insights gathered in this phase
remained relevant during later evaluation phases and applied
to patient-monitoring systems in general. One of the most
important such insights was the fact that patients tend to have
high and not necessarily correct expectations of automatic
patient-monitoring systems such as HeartMan. Patients tend to
expect their caregivers to be continuously aware of what the
system detects. Although this can lead to a positive motivation
to monitor health parameters, it can also lead to a false sense
of safety. In addition, while many patients were motivated to
monitor these health parameters, they were closely related to
lifestyle choices, such as nutrition and physical exercise. We
learned that several patients disliked the fact that HeartMan
monitors these lifestyle choices and are concerned about a
possible loss of control and autonomy in this respect.

These observations lead to a nuanced view of the patients’
perspective on self-monitoring technology, with both perceived
benefits (feeling of reassurance, increased awareness) and
drawbacks (false perception of safety and loss of autonomy).
This view suggests that patient empowerment truly is the correct
goal, in the sense that patients should not rely on the supervision
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of caregivers (as it may not be available) and should also not
feel judged and controlled by the system (but should be making
healthy lifestyle choices for themselves). We also observe that
although HeartMan started on the way to this goal, further
improvements can still be made.

On a more practical level, we learned that a distinction between
patients regarding digital literacy can be useful [29]. The patients
with high literacy received a full explanation of HeartMan
functionality at the beginning of the trial. They were encouraged
to be proactive and to navigate through the various functions
of the application, which was empowering. Such use was
feasible because the interface, particularly the information
hierarchy of the application, was designed, tested, and refined
in collaboration with the patients. Patients with lower digital
literacy were asked to react primarily to notifications in the app.
In this way, they were able to cope with the app that, even
though it was designed to be simple, it was still relatively
complex for some users.

Conclusions
We developed HeartMan, a personal health system for the
comprehensive self-management of CHF. It uses a wristband
and other sensing devices to obtain information on the patient’s
BP, physical activity, and psychological profile by means of
machine learning as well as some other parameters by more
mundane means. All this information is fed into a DSS, which
provides recommendations on physical health and psychological
support. These translate into a detailed physical exercise
program, mindfulness exercises, games, and other forms of
support for the patient. This is adapted to the patient’s physical
capacity, current activity, and psychological profile. A web
application for medical professionals is also a part of the system.

Patients with CHF were involved throughout the development
of the system to ensure the system meets their needs. The final
prototype was evaluated in a proof-of-concept trial in 56
patients, showing significantly improved disease management
while reducing depression, anxiety, and sexual problems.
Although illness perception and exercise capacity did not
improve, a significant improvement in left ventricular ejection
fraction was observed in a subgroup. Overall, the patients’
perception of the system was positive.

The HeartMan system was designed with both patients and
medical professionals. It works best when integrated with a
hospital information system to have access to the users’
up-to-date health records and to provide information on the
users to their treating clinicians. As such, it bridges the gap
between user-friendly mHealth solutions and medical devices,
but it can only be offered to patients through a health provider.
Therefore, we are also working on a simplified version of the
system that will not be a medical device from a regulatory
perspective and will not require connection to a hospital or any
kind of backend. This will make it easily deployable via mobile
app stores and widely accessible to patients with CHF.

In summary, the HeartMan project combined a range of
advanced technologies with human-centered design to develop
a complex system that was shown to help patients with CHF.
Its benefits were psychological more than physical, which may
be because the system did not manage to cause difficult
behavioral changes such as increased exercise. The reason for
this may be that the system was designed to be more supportive
than persuasive. Thus, a key area for future development should
be behavior change techniques. Nevertheless, the system is
ready to be used, and we are pursuing multiple paths to the
market.
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