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Abstract� We characterize complete inference systems for entailment in negative �nite constraint
networks� The precise statement of the result is as follows� We �x an order ideal E of tuples� where
each tuple in E is interpreted as a disallowed combination of values� this interpretation determines
the entailment in E� We then identify certain inferences in E� which we call prime� and show that
they are partitioned into classes so that the following holds� a set of minimal inferences� together
with all unary inferences� generates the entailment in E if and only if it contains at least one prime
inference from each class� This prime decomposition theory can be developed for a general closure
operator in a �nite set� we actually do it �rst in this wider context and then specialize to negative
constraint networks�

It is one thing to know that prime inferences exist� and quite another to actually determine
them� As of now we are able to present all prime inferences in the set of all at most ternary tuples
on up to seven two�valued variables� and all prime inferences in the set of all at most binary tuples
on up to six three�valued variables� Prime inferences can be used to determine the power of a local
consistency technique� we give examples�

Keywords� �nite constraint satisfaction problem� negative constraint network� local consistency
technique� almost complete inference system� prime inference�

�� Introduction

A negative �nite constraint network is simply a set of tuples� where each tuple
represents a disallowed combination of values� an assignment of values to all vari�
ables thus satis�es the constraint network if and only if it is incompatible with
every tuple in the network� This notion of satisfaction determines the correspond�
ing semantic entailment in the set of all tuples for the given variables and their
domains� a semantic consequence of a set of tuples is any tuple incompatible with
every assignment of values to all variables that is incompatible with every tuple in
the given set� We may also observe the semantic entailment on a subset of the set
of all tuples� say on the set of all tuples whose scopes belong to some given scheme�
The central theme of the paper is examination of complete inference systems for
the entailment in certain sets of tuples� and the main task is characterization of
complete inference systems that are as small as possible�

The enquiry into the generative structure of retricted entailment has grown out
of the work on the problem of determining the least level of local consistency we
must enforce to derive all semantic consequences on the initially given set of tuples
�the enforcing of local consistency will normally be done on a larger set of tuples�
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but we are interested only in the derived tuples that belong to the initial set	� Our
problem is a variation of the problem of determining the level of local consistency
su
cient to ensure global consistency� Results in this direction relate the necessary
level of local consistency to properties of the underlying scheme� or to properties of
the constraints� Examples of the former are width �Freuder� ��
�	� and acyclicity
�Beeri et al�� ��
�� and Dechter and Pearl� ��
�	� examples of the latter are binary
networks of monotone relations �Montanari� ����	� tightness and looseness �van
Beek and Dechter� ����	� functional and monotone constraints �Van Hentenryck
et al�� ����	� and ����all�constraints �Cooper et al�� ����	� There is one result that
expresses the level of local consistency only in terms of the largest size of a domain
and the maximumarity of constraints �Dechter� ����	� without relying on any really
restrictive properties of either the scheme or the constraints�
Our approach departs from this line of enquiry in two respects� it does not re�

quire that constraint networks have any special properties� except that they must
be within a given set of tuples� and� we are interested only in the consequences
of networks that belong to the given set of tuples� The rationale of this approach
is that the level of local consistency which need be enforced to derive the desired
consequences may be much lower than the level needed to ensure the global consis�
tency�
It is at this point that inference systems enter the scene� Suppose we have a set of

�valid	 inference rules using which we can derive all semantic inferences in the given
set of tuples� We can verify whether enforcing a certain level of local consistency
su
ces to derive all desired consequences� by enforcing it on the sets of premises
of all inference rules� to see whether this will get us to their conclusions� if we can
derive all the inference rules in this manner� then the level of local consistency
is su
cient� otherwise it is not� Since it is clearly desirable that there are as
few inference rules as possible� the following questions naturally arise� What are
minimal complete inference systems like� What properties they have� How can we
�nd them� The paper tries to answer these questions�
The central result is the following structural characterization of minimal inference

systems in the case when the set of tuples on which we observe the entailment is
an order ideal of the set of all tuples� We identify certain inferences� which we
call prime� and show that they are partitioned into classes so that the following
holds� a set of minimal inferences� together with all unary inferences� is a complete
inference system �in the given order ideal of tuples	 if and only if it contains at
least one prime inference from each class� We will in fact develop this �prime
decomposition theory� �rst for a general closure operator in a �nite set and will
then specialize it to the restricted entailment�

The paper is organized in two parts� The �rst part examines general closure
operators and minimal inference systems that generate them� The second part
specializes the results of the �rst part to the context of negative constraint networks�
In the last two sections we list all prime inferences of small sizes for ternary two�
valued and binary three�valued networks� and then use them to determine the
strength of a low�level local consistency�
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�� Prime inferences for closure operators

Many problems related to semantic entailment in negative �nite constraint networks
can be better understood and more elegantly solved when they are formulated for
general closure operators in �nite sets�

In this section we �rst review basic facts about closure operators and inference
systems� This done� we introduce derivation with subsumption and prime infer�
ences� two themes that will reappear later on in the context of constraint networks�
Derivation with subsumption generalizes ideas of propositional resolution with

subsumption� We present it as a reduction relation and give some su
cient condi�
tions for uniqueness of a reduced result�
Prime inferences are� informally speaking� irreducible units of inference� they are

partitioned into classes so that within each class they are interchangeable with each
other� If we choose a representative prime inference from each class and add the
unary inferences� we always obtain a complete inference system� We will identify
a property of closure operators which guarantees that� conversely� every inference
system consisting of minimal and unary inferences contains at least one prime
inference from each class�

���� Basics

A closure operator in a �nite set E is a mapping ��PE � PE which is

� expansive� X � ��X	�

� increasing � X � Y implies ��X	 � ��Y 	�

� idempotent � ����X		 � ��X	�

For any subset X of E� the subset ��X	 of E is called the ��closure� or simply the
closure� of the subset X� A set X � E satisfying ��X	 � X is said to be closed

under �� or ��closed� or simply closed� The set F � F��	 of all ��closed sets is
a closure system in E� meaning that it is closed under intersections� The closure
system F determines the closure operator �� since the closure ��X	 of a set X is the
least of the sets in F containing X as a subset� Every closure system is associated
with a unique closure operator in this way�
For two closure operators � and � in the same set E� we de�ne � � � to mean that

��X	 � ��X	 for every X � E� The relation � � � between closure operators is
equivalent to the inclusionF��	 � F��	 between the corresponding closure systems�
A subset I of the set E is called ��independent if x �� ��I n fxg	 for every x � I�
Let � be a closure operator in a �nite set E� and A a subset of E� We de�ne

a closure operator � jA in the set A by �� jA	�X	 �� A � ��X	 for any subset X
of A� the closure operator � jA is said to be induced in the subset A by the closure
operator ��
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Dual to the notion of a closure operator is the notion of an interior operator

��PE � PE� which is

� erosive� X � ��X	�

� increasing � X � Y implies ��X	 � ��Y 	�

� idempotent � ����X		 � ��X	�

A subset X of E such that ��X	 � X is said to be ��open� The set O � O��	 of all
��open sets is an interior system� that is� it is closed under unions� Every interior
system O determines an interior operator �� where ��X	 is the largest subset of X
belonging to O� For any two interior operators � and ��� � � �� is equivalent to
O��	 � O���	� Complementation establishes a bijection between closure operators
and interior operators in E� for every closure operator � we have the companion
interior operator X 	� E n ��E nX	� and conversely�

If X and Y are two subsets of E such that ��X	 � Y � then we say that elements
of the set Y are ��consequences of the set of premises X� and write X j
� Y � or
simply X j
 Y when the closure operator � is known� A pair �X� y	 such that
X � E and y � E and ��X	 � y is called a ��inference and is written X j


�
y� or

simplyX j
 y� An inference X j
 y with jXj � m is said to be m�ary� The set of all
��inferences is the closed inference system associated with the closure operator ��
it is closed in the sense that it satis�es the following two conditions�

� re�exivity � X j
 x for every x � X�

� transitivity � if X j
 y for every y � Y �ie� X j
 Y 	� and Y j
 z� then X j
 z�

A non�re�exive inference X j
 y �ie� with y �� X	 is said to be proper� Every closed
inference system j
 corresponds to a unique closure operator �� where the closure
��X	 of X � E is the set of all y � E satisfying X j
 y�
More generally� an inference system in the set E is any set R of pairs �P� r	

with P � E and r � E� called inference rules� an inference rule �P� r	 is usually
written P j
 r� If X is a subset of E� let R�X	 denote the set of all y � E for
which there exists in R an inference rule P j
 y with P � X� A subset X of
E is said to be R�closed if R�X	 � X� All R�closed sets form a closure system�
whose corresponding closure operator � is said to be generated by the inference
system R� This closure operator � can be described as follows� De�ne R��X	 �� X
and Rn���X	 �� X �R�Rn�X		 for any natural number n� then ��X	 is the union
of the ascending chain of sets X � R��X	 � R��X	 � R��X	 � � � � �since we are
in a �nite set E� the chain eventually reaches ��X		�
Formation of the closure ��X	� where � is the closure operator generated by an

inference system R� can be also described using derivations� An R�derivation of
a set Y � E from a set X � E is a �nite �possibly empty	 sequence of inference rules
taken from R� say P� j
 r�� P� j
 r�� � � � � Pn j
 rn� so that Pi � X � fr�� � � � � ri��g
for i � �� �� � � � � n� and Y � X � fr�� � � � � rng� We have X j
� Y precisely when
there exists an R�derivation of Y from X�
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If R is an inference system and � is the closure operator generated by R� then the
��inferences X j
� y are said to be derivable fromR� The re�exivity and transitivity
conditions for closed inference systems can be perceived as inference rules in the
set �PE	 
 E� and as such they determine the derivation closure operator in this
set� The derivation closure of an inference system R � �PE	
E is the least closed
inference system R� � R� it consists of all inferences derivable from R�

Let � be a closure operator� R an inference system� and � the closure operator
generated by R� The inference system R is said to be sound relative to the closure
operator � if � � �� and it is said to be complete relative to � if � � ��

The ��closure of the empty set may be nonempty� for a general closure operator ��
elements a � ���	 correspond to nullary ��inferences j
� a� Of particular interest
are the unary ��inferences x j
� y with x� y � E� they determine a preorder in the
set E� Let us call a closure operator � simple� if ���	 � � and the relation x j
� y
is antisymmetric� �ie� it is a partial order� not just a preorder	�

With any closure operator � can be associated a simple closure operator ��� as
follows� Put O �� ���	� denote the equivalence relation �x j
� y and y j
� x� in
the set E nO by x 	 y� and let 
 be the canonical projection of the set E nO onto
the quotient set E� �� �E nO	�	� De�ne the quotient closure operator �� � ��	 in
the set E� by ���X�	 �� 
��
���X�	 nO	 for X� � E�� then �� is a simple closure
operator� If we know the set O� the equivalence relation 	� and the simple closure
operator ��� we are able to reconstruct �� since we have ��X	 � O�
����
�X nO	
for X � E�
This reduction of an arbitrary closure operator to a simple one means that we

can almost always assume that a closure operator under discussion is simple� since
any results formulated for simple closure operators can be extended to arbitrary
closure operators in an obvious way�

Now we introduce the notion of a minimal inference� We will de�ne it only for
a simple closure operator �� it easily generalizes to an arbitrary closure operator�
Let j
 be the corresponding closed inference system� When referring to the set E
as an ordered set� we shall always have in mind the ordering relation x j
 y�

A minimal consequence of a set X � E is a minimal element in the set of all
consequences of X� That is� an element y is a minimal consequence of a set X if
X j
 y holds and X j
 y� j
 y implies y� � y� A set X is said to be a minimal set of

premises for a consequence y� ifX j
 y while X� �j
 y for any proper subset X � ofX�
Now a minimal inference is an inference X j
 y� where y is a minimal consequence
of X and X is a minimal set of premises for y� The only unary minimal inferences�
and also the only re�exive minimal inferences� are the identities x j
 x�
Note that in an inference X j
 y whose set of premises X is minimal for the

consequence y� the premises are independent� Indeed� suppose that X n fxg j
 x
for some x � X� then X n fxg j
 X j
 y� contradicting minimality of X�

Let X j
 y be an inference� Choose any minimal subset X� of X such that still
X � j
 y� and then choose a minimal consequence y� of X� such that y� j
 y� The
inference X� j
 y� is minimal� since X�� � X� and X�� j
 y� j
 y imply X�� � X��
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Choosing X� and y� in the opposite order� �rst a minimal consequence y� of X such
that y� j
 y and then a minimal subset X� of X such that X� j
 y�� we also obtain
a minimal inference X� j
 y��
If X j
 y is any ��inference� then either x j
 y for some x � X� or x �j
 y for all

x � X and there exists a proper minimal inference P j
 r with P � X and r j
 y�
It follows from this observation that the proper minimal inferences together with
the proper unary inferences generate the closure operator�

���� Derivation with subsumption

We will describe a procedure that computes the set of all minimal consequences
for an arbitrary closure operator � in a �nite set E� The procedure generalizes the
propositional resolution with subsumption�

In order to facilitate the discussion we assume that the closure operator � is
simple� We will write the corresponding closed inference system as j
� The set E is
partially ordered by the relation x j
 y� for any subset X of E� denote by Min�X	
the set of all minimal elements of X in this partial ordering� Let � be the closure
operator in E generated by the unary ��inferences� Then X j
� y means that x j
 y
for some x � X� that is� the closure ��X	 of X � E is the order �lter of the set E
generated by the subset X� Note that x j
� y is equivalent to x j
 y�
Assume� from now on� that we have an inference system R such that R and �

together generate �� A subset X of E is then closed under � if and only if it is
closed under both R and ��

Lemma � With E� �� �� and R as in the text� the following properties of a subset X
of E are equivalent to each other�

�� ��X	 � ��X	 �

	� X � Min���X		 �


� R���X		 � ��X	 �

Proof� Because ��X	 � ����X		� condition � means that ��X	 is closed under ��
Since ��X	 is closed under �� it is closed under � if and only if it is closed under R�
this proves the equivalence of conditions � and ��
If ��X	 � ��X	� then Min���X		 � Min���X		 � Min�X	 � X� Conversely� if

X � Min���X		� then ��X	 � ��Min���X			 � ��X	� The conditions � and � are
thus equivalent�

We associate with R and � a reduction relation �R� in the set PE� in the
following way�

� if X � E contains two di�erent elements p and q such that p j
 q� then we may
remove the element q from X� denoting the removal as X �� X n fqg�
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� if there is an inference rule P j
 r in R such that P � X and r �� ��X	� then
we may add r to X� denoting the addition as X �R X � frg�

� the reduction relation �R� is the union of the relations �� and �R�

We will call X �� X
� a subsumption step� and X �R X� an R�derivation step� or

simply a derivation step�

The reduction relation �R� is terminating� since a derivation step strictly in�
creases ��X	� while a subsumption step leaves ��X	 unchanged but strictly de�
creases X� Every sequence of reduction steps starting with a set X will eventually
stop with a reduced set X�� The result of a reduction is not necessarily unique� to
ensure the uniqueness� we have to impose on R and � an additional condition�

Let us call a subset X of E subclosed under R relative to �� if R�X	 � ��X	�
We shall say that the inference system R is subsumable relative to �� if whenever
a subset X of E is subclosed under R relative to �� the set ��X	 is closed under R
�ie� if R�X	 � ��X	 implies R���X		 � ��X		�

Theorem � Let E� �� �� and R be as in the text� and suppose that R is subsumable

relative to �� Then the reduction relation �R� is terminating and reduces every

subset X of E to a unique reduced set� namely the set Min���X		�

Proof� We have already shown that �R� is terminating� Suppose that a set
X � E reduces �in any way	 to a reduced set X�� We have ��X�	 � ��X	�
because ��closure is preserved along any reduction path� Since no subsumption
applies to X�� we have Min�X�	 � X�� Since no derivation step applies to X�� we
have R�X�	 � ��X�	� hence by subsumability R���X�		 � ��X�	� implying that
��X�	 � ��X�	� Then X� � Min�X�	 � Min���X�		 � Min���X�		 � Min���X		�
so we have the unique reduced result as claimed�

In this paper we will meet only with the following special type of subsumability�
Let us say that the inference system R is submersible relative to � if the following
holds� if P j
 r is any inference rule in R� and we have for each p � P an element
p� � E such that p� j
 p but p� �j
 r� then there exists in R an inference rule P � j
 r��
whose set of premises P � is a subset of the set of all elements p� for p � P � and
whose conlusion r� satis�es r� j
 r�

Lemma � Submersibility implies subsumability�

Proof� Indeed� let R be submersible relative to �� Let X be a subset of E such
that R�X	 � ��X	� and suppose that there is an inference rule P j
 r in R with
P � ��X	 and r �� ��X	� thus violating R���X		 � ��X	� For each p � P choose
a p� � X such that p� j
 p� and let P � be the set of all p�� By submersibility there
exists in R an inference rule P �� j
 r� with P �� � P � � X and r� j
 r� whence r�

belongs to ��X	� and so does r� contradiction�
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���� Prime inferences

Throughout this section � is a simple closure operator in a �nite set E and j
 is
the corresponding closed inference system� By a closed set we will always mean
a ��closed set� by an inference a ��inference� and so on� Whenever we shall refer to
the set E as an ordered set� we shall have in mind the ordering relation x j
 y�

We denote byM the set of all proper minimal inferences P j
 r� and by U the set
of all proper unary inferences p j
 r� All minimal and unary inferences mentioned
without quali�cations will be assumed proper�

We shall say that a subset G of M is an almost complete inference system if the
inference system G � U is complete �ie� it generates the closure operator �	�

The closure of a set X will be� for our purposes� a useful measure of the �size�
of the set X or an inference X j
 y� This notion of the closure measuring the size
is re�ected by the following de�nition� given a subset A of E� we shall say that
a subset X of E� or an inference X j
 y� is A�small� if ��X	 is a proper subset
of ��A	� we shall say that an element x � E is A�small� if fxg is A�small�

We shall say that a subset X of E reduces to a subset X� of E if there exists
a derivation of X� from X that uses only X�small minimal inferences and any
unary inferences� and will refer to any such derivation as a reduction of X to X��
Likewise we shall say that an inference X j
 y reduces to another inference X� j
 y�

if y� � y and X reduces to X�� and will consider any reduction of X to X� to be
a reduction of X j
 y to X� j
 y�

Lemma � If every element of a set X � E is X�small� then any reduction of X
to some other set uses only X�small unary inferences� This holds� in particular�

when X is an independent set of at least two elements�

Proof� We shall show that every element z derived along a reduction starting
with X is X�small� This is true by the assumption about X when z belongs to X�
If z is derived using anX�small minimal inference P j
 z� then ��z	 � ��P 	 � ��X	�
Finally� if z is derived using a unary inference p j
 z� then since p is X�small and
p j
 z is proper� we have ��z	 � ��p	 � ��X	�

All unary inferences� and hence all inferences� used in a reduction of a minimal
inference P j
 r to some other inference� are P �small because P is independent and
has at least two elements�

The relation of reducibility between minimal inferences is transitive� that is� it
de�nes a preorder in the set M� We shall say that two minimal inferences are
associated if they reduce to each other� association is an equivalence relation inM�
We regard the reducibility relation as going downwards� so that when a minimal
inference reduces to another minimal inference� the latter is below the former�

Minimal members of the set M� where this set is preordered by the reducibility
relation� will be called prime inferences�
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If a prime inference P j
 r reduces to a minimal inference Q j
 r� then Q j
 r
reduces back to P j
 r and is therefore associated with P j
 r� Any minimal
inference associated with a prime inference is itself prime� The set of all prime
inferences is partitioned into classes of associated prime inferences� Choosing one
prime inference from each class we get a set of representative prime inferences�
We call an inference X j
 y decomposable if the consequence y can be derived

from the premises X using only X�small minimal inferences and any unary infer�
ences� and refer to any such derivation� in case it exists� as a decomposition of the
inference X j
 y� Clearly an inference X j
 y is decomposable if and only if it
reduces to some X�small inference� An indecomposable inference is one that is not
decomposable�

Lemma � A prime inference is indecomposable�

Proof� Let X j
 y be a decomposable minimal inference� There is some X�small
minimal or unary inference P j
 y such that X reduces to P � Because X j
 P � y is
a minimal consequence of P � so P j
 y cannot be a proper unary inference� The
minimal inference X j
 y therefore reduces to the minimal inference P j
 y� which
clearly does not reduce back� whence X j
 y is not prime�

We now consider the generative power of prime inferences�

Proposition � Every set of representative prime inferences is an almost complete

inference system�

Proof� Let R be a set of representative prime inferences� It su
ces to prove that
any minimal inference X j
 y is derivable using the inferences taken from R � U �
We will reason by induction on the closure ��X	� The minimal inference X j
 y
reduces to some prime inference and hence also to some prime inference P j
 y
in R� Every minimal inference used in a reduction of X j
 y to P j
 y is X�small�
thus by induction hypothesis derivable using R�U � and it follows that the minimal
inference X j
 y is also so derivable�

We now turn to the questions whether a set of representative prime inferences
can have a proper subset which is still an almost complete inference system� and
whether there are inclusion�minimal almost complete inference systems that are not
sets of representative prime inferences� Both can happen� in general� In order to
ensure that sets of representative prime inferences coincide with the minimal almost
complete inference systems� we must impose some condition onto the simple closure
operator �� Here is such a condition�

We shall say that a simple closure operator � is skew if for any two minimal
inferences P j
 r and Q j
 s� P � Q implies r � s�

The following equivalent formulation of skewness might elucidate why we have
chosen this term� The simple closure operator � is skew if and only if the following
holds� if P j
 r is a minimal inference and s is a minimal consequence of P di�erent



	


from r� then s is a consequence of a proper subset Q of the set P � Note that in
the situation just described the inference Q j
 s is P �small since the closure of Q
is disjoint with P nQ� P being independent�
Given an inference P j
 r with the set P of premises minimal for the conse�

quence r� we can always choose a minimal consequence r� j
 r of P and obtain
a minimal inference P j
 r�� When the closure operator � is skew� it is clear that
there is only one r� to choose�
We now show that when the closure operator is skew� the classes of associated

prime inferences are independent in a very strong sense�

Proposition � Suppose that � is skew� and let P j
 r be a prime inference� Then

avery derivation of r from P by minimal and unary inferences uses some prime

inference associated with P j
 r�

Proof� Let us have a derivation of r from P by minimal and unary inferences�
We can assume that the derivation stops the �rst time it reaches r� Since P j
 r is
indecomposable� the derivation must use some inference Q j
 s with ��Q	 � ��P 	�
take the �rst such inference Q j
 s used in the derivation� We have Q j
 r� and
clearly P reduces to Q� We cannot have Q � fqg� since then we would have
P j
 q j
 r� and the derivation would have already stopped with q � r� thus
Q j
 s is a minimal inference� Because P j
 Q j
 r� r is a minimal consequence
of Q� We must have s � r� for otherwise r would be a consequence of a proper
subset of Q and we would have a decomposition of P j
 r� The prime inference
P j
 r reduces to the minimal inference Q j
 r� thus the latter is a prime inference
associated with the former�

When the closure operator � is skew� a removal of an entire class of associated
prime inferences from the complete inference system M� U yields an incomplete
inference system� We have then the following characterization of the minimal almost
complete inference systems�

Theorem � For a skew closure operator� the minimal almost complete inference

systems are precisely the sets of representative prime inferences�

Let us mention here one special and easily recognizable type of prime inferences�
An inference P j
 r is called primitive if it is minimal and satis�es ��P 	 � P �frg�
In a primitive inference P j
 r� take any p � P � The closure of the set P n fpg is
a subset of P�frg and contains neither r �since P j
 r is minimal	 nor p �because P
is independent	� that is� the set P nfpg is closed� whence it follows that every proper
subset of P is closed� It is clear from this that a primitive inference can reduce
only to itself� so it is certainly prime� A primitive inference P j
 r is completely
independent of other inferences in the sense that when we remove it from the closed
inference system� the set P becomes closed under all remaining inferences�

Let A be a subset of the set E� If P j
 r� where P � A and r � A� is a minimal
inference for the closure operator �� then it is also a minimal inference for the



		

induced closure operator � jA� The converse does not always hold� However� if A
is an order ideal of the ordered set E� then every minimal inference for � jA is also
a minimal inference for �� So we have the following�

Proposition � If the closure operator � is skew and A is an order ideal of the

ordered set E� then the induced closure operator � jA is also skew�

We have seen that every prime inference is an indecomposable minimal inference�
The converse does not hold� not even for a skew closure operator� But under
an additional assumption about a minimal inference� its indecomposability does
imply that it is prime� We shall say that an inference X j
 y is nondescending if
y �j
 x for every x � X� For example� if y is a maximal element of the ordered
set E� then every proper inference X j
 y is nondescending�

Lemma � Let the closure operator � be skew� If P j
 r is a minimal inference and

Q j
 r is a nondescending inference� then P j
 Q implies that P reduces to Q�

Proof� For each q � Q choose �rst a minimal consequence q� j
 q of P � then
a minimal set of premises Pq � P for q�� Since r �j
 q� q� is a minimal consequence
of P di�erent from r� so all sets Pq are proper subsets of P � Since P is indepen�
dent� every ��Pq	 is a proper subset of ��P 	� It follows that a sequence of all the
proper minimal inferences Pq j
 q�� followed by a sequence of all the proper unary
inferences q� j
 q� is a reduction of P to Q�

Proposition � If the closure operator � is skew� then every nondescending inde�

composable minimal inference is prime�

Proof� Let P j
 r be a nondescending indecomposable minimal inference� The
minimal inference P j
 r reduces to some prime inference Q j
 r� Since P j
 r is in�
decomposable� we have ��Q	 � ��P 	� hence Q j
 P � Since P j
 r is nondescending�
Q j
 r reduces to P j
 r� and it follows that P j
 r is a prime inference �associated
with the prime inference Q j
 r	�

�� Prime inferences in negative constraint networks

We will now apply the general �prime decomposition theory�� which we have de�
veloped for closure operators� to the semantic entailment in negative constraint
networks�

This section has three parts� The �rst part introduces the necessary notions�
positive and negative constraint networks� semantic entailment for negative con�
straint networks� local consistency of various types and degrees� and so on� We also
take a look at the form the minimal semantic inferences take in negative constrain
networks� In the second part we examine prime inferences for the entailment clo�
sure operator acting on negative constraint networks on the scheme consisting of
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all sets of at most m variables� for some natural number m � �� In the last part
we determine some prime inferences of small sizes�

���� Preliminaries

A constraint network consists of a set of variables which have to be assigned values
from their domains so as to satisfy a set of constraints� Each constraint is a relation
on some subset of variables� All constrained subsets of variables form the scheme
of the constraint network� it is because of the scheme that we perceive constraints
as arranged in a �network��
We will consider only �nite constraint networks� That is� it will be always under�

stood that there are only �nitely many variables involved� and that each variable
takes values in a �nite domain�
In this section we specify mathematical structures that will be used to represent

constituents of constraint networks and constraint networks themselves�

Let us have a set V of variables and a family A � �Av j v � V 	 of their domains�
We will refer to pairs �v� �	� where v � V and � � Av� as tokens� We say that
a token a � �v� �	 is over the variable v� we denote the variable v of the token a
by var�a	� For any subset U of the set of variables V we denote by UA the set of
all tokens over variables u � U � for a variable v we write vA instead of fvgA� We
will graphically represent variables and tokens as in Figure ��
We say that a variable v appears in a set of tokens x � VA if it is the variable

of some token in x� we de�ne the scope of x� denoted scope�x	� as the set of all
variables appearing in x� For any set of sets of tokens X � P�VA	 we call the set of
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all scopes of sets belonging to X the underlying scheme of X� and de�ne the scope
of X as the union of scopes of its members�

Let U � V � For any set of tokens x we call the set of tokens x �U � �� x � UA the
restriction of x to U �we do not require U to be a subset of scope�x		� For any set
of sets of tokens we call X �U � �� fx �U � j x � X g the projection of X to U �

We de�ne a tuple as a set of tokens x � VA that contains precisely one token x�u	
over each variable u in its scope� We denote the set of all tuples by A�� The empty

tuple is just the empty set considered a tuple� Anm�ary tuple is a tuple consisting
ofm tokens� A set X of tuples such that

S
X is a tuple is said to be compatible� it is

easy to see that X is compatible if and only if any two tuples in X are compatible�

If x is a tuple and scope�x	 � U � we say that x is a tuple over U � The set of
all tuples over a set of variables U � V is the direct product of the domains Au
for u � U � we denote it by AU � �This �overloading� of exponential notation will
never cause any confusion�	 Sets AU � for all U � V � form a partition of A��

A relation on a set of variables U � V is any subset of AU � An m�ary relation is
a relation on a set of m variables�

We shall refer to any set of subsets of V as a scheme and call its members scopes�
We shall say that a scheme is descending if it is an order ideal of the powerset PV
ordered by inclusion� Let C be any scheme� We denote the union of sets AU for
U � C by A�C	� Suppose we have a family �RU j U � C 	 of relations RU � AU �
If R is the union of all relations RU for U � C� then each relation can be recovered
as RU � R�AU � This means that families of relations over scopes of the scheme C
can be represented by subsets of A�C	�

For any natural number m we denote by V �m� the scheme in V of all m�element
subsets of V � and by V ��m� the scheme of all at most m�element subsets of V � We
shall also write A�m� �� A�V �m�	 and A��m� �� A�V ��m�	�

Now� a constraint network is given by a set V of variables� a family A of domains
for variables in V � a scheme C in V � and a family R of relations on scopes in C�
we shall usually refer to it as the constraint network R on the scheme C� supposing
that variables and domains are known� We will always assume that each domain
contains at least two values� A constraint network is said to be k�valued if every
domain consists of at most k values� and is said to be m�ary if every scope consists
of at most m variables�

Given a constraint network� we must still specify how precisely the relations con�
strain the variables� This depends on whether we interpret the relations positively
or negatively�

In the positive interpretation� each relation RU is a set of admissible tuples
over the scope U � Formally� a tuple s over V satis�es a positive constraint net�
work R on a scheme C if for each scope U in the scheme C the restriction s �U �
belongs to RU �

The negative interpretation is complementary� on the side of relations� to the
positive one� A tuple s over V is taken to satisfy a negative constraint network Q
on a scheme C if it satis�es the positive network A�C	nQ on C� that is� if s �U � �� QU
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for each scope U in the scheme C� Equivalently� a tuple s � AV satis�es a negative
network Q on C if q �� s for every tuple q � Q�

A tuple that satis�es a constraint network �be it positive or negative	 is also called
a solution of the constraint network�

We will graphically represent a constraint network as shown in Figure �� Unary
scopes and tuples are the black nodes� For a binary scope or tuples we draw the line
connecting the two nodes� Scopes and tuples of arity three or more are represented
as �neurons�� this notation is far more readable than the usual one� where sets of
nodes are indicated by drawing fences around them� Note that the relation Qfx�yg is
empty� Were the constraint network Q positive� it would be obviously unsatis�able�
As it happens� the network Q is negative� and so the emptiness of Qfx�yg means
that the given constraint on the scope fx� yg does not really constrain anything�
Even so it makes sense to have the scope fx� yg in the scheme� since an algorithm
run on the network may install a proper constraint on it�

Sometimes we want to change the scheme of a constraint network to some smaller
or larger scheme� When we narrow down the scheme by removing some scopes�
we lose the constraints on the removed scopes� when we enlarge it by additional
scopes� we install on each added scope an always satis�ed constraint� Formally�
let D � C be two schemes� We de�ne the restriction of a network R � A�C	 on
the scheme C to the scheme D as the network R jD �� R�A�D	 on the scheme D�
we let the restricted network have the same polarity� positive or negative� as the
network R� If a network S on D is the restriction of a network R on C� we also
say that the network R is an extension of the network S� The default extension of
a network S on the scheme D to the scheme C depends on polarity of S� if S is
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positive� the default extension is the positive network S�A�DnC	� if S is negative�
the default extension is S itself� regarded as a negative network on the scheme D�
We may also restrict a scheme� or a constraint network� to a subset V � of the set

of variables� The restriction of a scheme C to V � is the scheme C jV �� consisting of
all scopes U � C that are subsets of V �� For a network R on a scheme C� we de�ne
the restriction R jV � as the restriction of R to the restricted scheme C jV ��

We shall use multiplicative notation for unions of tuples that have disjoint scopes
and� occasionally� for unions of disjoint sets of variables� If we have� say� tuples x
and y and a token a� then we write the union x�y�fag as xya� provided the scopes
scope�x	� scope�y	� and scope�fag	 are disjoint� We extend multiplicative notation
to sets of tuples X and Y that have scope�X	 and scope�Y 	 disjoint� writing XY
for the set of all tuples xy with x � X and y � Y � When X � AU and Y � AW are
relations on disjoint sets U and W � the relation XY � AU�W is the direct product
of relations X and Y �

���� Entailment� local consistency

Here we de�ne the semantic entailment for negative constraint networks� and then
introduce several types of local consistency of positive and negative constraint net�
works� All networks considered are assumed to be given on the set V of variables
with domains Av� v � V �

Let us look� for a start� at negative constraint networks on the largest possible
scheme PV � In this case a negative constraint network is just any set of tuples X �
A�� recall that a tuple s � AV satis�es X if and only if x �� s for every tuple x � X�
This satisfaction relation determines the semantic entailment in the set A�� If X
is a set of tuples� y is a tuple� and every s � AV that satis�es X also satis�es y�
then we write X j� y� saying that X entails y� and call y a semantic consequence

of X� Told in the opposite direction� X j� y means that every tuple s � AV which
includes the tuple y also includes some tuple x � X� The entailment j� is a closed
inference system� we denote the corresponding closure operator by Conseq� It is
easily shown that a tuple x entails a tuple y if and only if x is a subtuple of y� since
also Conseq��	 � �� the closure operator Conseq is simple�
Now let C be any scheme in V � We denote by ConseqC the restriction of the clo�

sure operator Conseq to the subset A�C	 of A�� in the special case when C � V ��m�

we write the restricted closure operator as Conseqm� We will say that a negative
network Q on C is closed under entailment if it is closed under ConseqC�
Consider a positive network R on C� Let S � AV be the set of all solutions of R�

and de�ne the positive network R� on C by R�
U �� S �U � for U � C� Since R� has

the same solutions as R� we have R�� � R�� whence R 	� R� is an interior operator
in A�C	� It takes but a moment to see that this interior operator is just the com�
panion to the closure operator ConseqC � that is� R

� � A�C	 nConseqC�A�C	 nR	�

The closure operator ConseqC and its companion R 	� R� are complete in the
sense that the former �nds all semantic consequences belonging to A�C	 while the
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latter removes all tuples that cannot be extended to solutions� Since it is NP�hard
to do what these two do� they are computationally expensive� Luckily they have
many distant relatives� collectively known as �local consistency techniques�� which
are computationally more a�ordable� A local consistency technique is a sound� but
generally incomplete� operator �closure operator for negative� interior operator for
positive networks	� which enforces certain local �compatibilities� or �consistencies��
that are present in every network produced by the complete operator�
We shall introduce three types of local consistency� internal consistency� weak

relative consistency� and strong relative consistency�

From now on we consider only constraint networks on descending schemes� so let
C be a descending scheme in V �

A positive network R on the scheme C is said to be internally consistent if
RU �W � � RW for any two scopes W � U in C� it clearly su
ces if this condi�
tion is satis�ed for pairs of scopes W � U where U di�ers from W by a single
variable� Every union of internally consistent networks is an internally consistent
network� so there exists in each positive network R on C a largest internally con�
sistent subnetwork R� � R� we say that R� is obtained from R by enforcing the
internal consistency� The mapping R 	� R� is an interior operator in A�C	� Since
the network R� is internally consistent� we have always R� � R��
Let us transfer the notion of internal consistency from positive to negative net�

works� via complementation in A�C	� A negative network Q on C is then internally
consistent if and only if for any pair of scopes W andWu in C� where u is a variable
not in W � it satis�es the conditions

� for any tuple x � QW and any token a � uA� the tuple xa belongs to QWu�

� if x � AW is such that xa � QWu for every token a � uA� then x � QW �

which can be read as inference rules in A�C	� namely�

�� x j
 xa � for any tuple x � AW and any token a � Au�

�� Aux j
 x � for any tuple x � AW �

These inference rules generate a closure operator in A�C	� the companion to the
interior operator R 	� R� de�ned in the preceding paragraph� we will call the
corresponding closed inference system� written j
� the internal inference on the
scheme C�
The internal inferences of type � obviously generate the unary inferences in A�C	�

For any Q � A�C	� let ExtC�Q	 denote the closure of Q under the unary internal
inferences in A�C	� ie� ExtC�Q	 is the set of all tuples in A�C	 that include some
tuple belonging to Q� The set of all internal inferences of type �� together with
the unary inferences� generates the internal inference� this set of inferences is not
subsumable� but can be expanded to a submersible set of internal inferences� which
we now proceed to do� We will say that a set of tuples P � A� is a resolution fan

with a hub v � V � if it satis�es the following conditions�
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� every tuple in P contains a token over the variable v�

� every token over the variable v belongs to precisely one tuple in P �

� r � �
S
P 	 n �vA	 is a tuple�

The tuple r is called the resolvent of the resolution fan P � the resolvent r is a seman�
tic consequence of P � since every tuple s � AV which includes r contains some token
a over v� hence includes the tuple p � P which contains the token a� the inference
P j� r is called a resolution inference� A resolution fan P such that scope�P 	 � C�
and the corresponding resolution inference� are said to be C�bounded�

Internal inferences of type � are special C�bounded resolution inferences� Con�
versely� if P is a C�bounded resolution fan with a hub v and a resolvent r� then the
corresponding resolution inference is an internal inference� since it can be derived
using the internal unary inferences p j
 p�v	r for p � P � and the internal inference
Avr j
 r� It follows that the C�bounded resolution inferences� together with the
unary inferences in A�C	� generate internal inference in A�C	� It is clear that the
set of all C�bounded resolution inferences is submersible� The derivation with sub�
sumption which uses C�bounded resolution inferences for derivation steps therefore
�works�� we will call it the C�bounded resolution �with subsumption	� We have the
following result�

Proposition � For any negative constraint network Q on a descending scheme C�

the negative constraint network ExtC�Q	 on C is internally closed if and only if

Q is subclosed under C�bounded resolution inferences� The C�bounded resolution�

when applied to an arbitrary negative constraint network Q on C� produces the set

of all minimal internal consequences of Q�

The condition in the �rst assertion of the proposition means� when spelled out�
that for every C�bounded resolution inference P j
 r with P � Q� the resolvent r
includes some tuple in Q�

When the scheme is C � V ��m�� m � �� the C�bounded resolution inferences are
those resolution inferences whose resolvents are at most �m
 �	�ary� We will name
the V ��m��bounded resolution inferences according to the maximum allowed size of
their resolvents� calling them �m 
 �	�resolution inferences� and will refer to the
corresponding V ��m��bounded resolution as the �m 
 �	�resolution�

We can apply the �m
�	�resolution to any negative constraint network Q � A��
which may contain tuples of arity greater than m� There is a well�known notion of
local consistency� the strong m�consistency� introduced by E� C� Freuder �Freuder�
���
� ��
�	� It can be characterized� for negative constraint networks� by means of
the �m 
 �	�resolution inferences�

Proposition � A negative constraint network Q � A� is strongly m�consistent if

and only if it is subclosed under �m
�	�resolution inferences� The �m
�	�resolution
enforces strong m�consistency�
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We will now de�ne the notions of weak and strong relative consistency� this time
only for negative constraint networks� Let C � D be two descending schemes�
We will say that a negative constraint network Q on the scheme C is weakly

consistent relative to the scheme D� if for every scope W � D the restricted negative
network QjW is closed under the entailment closure operator ConseqCjW � It is clear
that the set of all Q � A�C	 that are weakly consistent relative to D is a closure
system in A�C	� and that the corresponding closure operator is generated by all
semantic inferences P j� r such that scope�P � frg	 � D�

We will say that a negative constraint network Q on the scheme C is �strongly	
consistent relative to the scheme D� if it can be extended to an internally consistent
negative network on D� Once more we have a closure system� The corresponding
closure operator can be described as follows� given a negative network Q � A�C	�
we regard it as a negative network on D� then apply to it the internal closure
operator in A�D	� and �nally restrict the result back to C� The strong consistency
on C relative to D can thus be enforced by the D�bounded resolution� where we
retain only those derived consequences that lie in A�C	�

When C � V ��m� and D � V ����� � � m � �� we will refer to the weak �strong	
consistency on C relative to D as the weak �strong	 relative ��consistency of m�ary
negative networks�

Let m � � and k � � be natural numbers� and suppose that we have for each
family A � �Av j v � V 	 of k�valued domains a closure operator �A in the set
A��m�� We will call the family

�
�A
�
a consistency technique if the closure operators

�A satisfy the following conditions�

� Each closure operator �A is sound relative to the semantic entailment in A��m��
that is� �A�Q	 � ConseqAm�Q	 for every negative constraint network Q � A��m��

� If B � AjV � is a subfamily of a familyA of k�valued domains� and Q is a subset
of B��m� �hence also a subset of A��m�	� then �B �Q	 � �A�Q	�

�Another natural thing to require of closure operators �A would be that they should
act isomorphically in isomorphic situations� We do not need this for the simple point
we want to make�	 Closure operators �A will in general not be complete� but they
may be complete up to a certain number of variables�

We de�ne the reach of a consistency technique
�
�A
�
as the largest natural num�

ber n such that �A � ConseqAm whenever the number of variables does not exceed n�
The reach of a consistency technique

�
�A
�
can be also characterized as the largest

level of weak relative consistency enforced by every closure operator �A� this follows
easily from the second requirement above�

Enforcing strong relative ��consistency of m�ary k�valued constraint networks�
where � � m� is certainly a consistency technique by our de�nition� we will denote
its reach by reach�m� k� �	� Obviously reach�m� k� �	 � �� It would be worthwhile
to know how fast reach�m� k� �	 increases as a function of �� for �xed m and k
�where either m � � of k � �� to exclude the trivial case m � k � �	� A simple
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estimate shows that any rate of growth greater than � ln � would make the enforce�
ment of strong relative ��consistency� with � depending on the number of variables�
into a subexponential complete consistency technique� provided we had a good�
e
ciently computable lower bound for the reach� Since this is almost surely not
true� it is a good guess that reach�m� k� �	 � O�� ln �	 �where the factor implicit
in O depends on m and k	� If the reach grows approximately as � ln �� then the
enforcement of strong relative ��consistency is roughly equivalent� with regard to
time complexity� to the direct enumeration�
We are still very far from any reliably close estimate of the reach� All we know at

this moment are some rather unimpressive lower bounds for the reach� and values
of the reach��� �� �	 and reach��� �� �	 for small values of �� For example� it can be
shown that

reach��� �� �	 � ��
 �

�we will not prove this here	� Towards the end of the paper we will �nd that
� � reach��� �� �	 � 
 and that reach��� �� �	 � � �the latter is larger than the
estimate � � �
 � � �	�

���� Minimal inferences in negative constraint networks

In this section we examine the structure of minimal semantic inferences in neg�
ative constraint networks� We start o� with the simple but important principle
of localization� then introduce minimal cotautologies� which are closely related to
minimal inferences� and �nally turn to the minimal inferences themselves� A set V
of variables and a family A of their domains will be �xed throughout�

We introduce the principle of localization in the form which shows how a semantic
inference can be localized to an arbitrary set of tokens�

Lemma � �Localization	 If we have fp�� � � � � png j� r in A�� and t � VA is any

set of tokens� then fp� � t� � � � � pn � tg j� r � t holds�

Proof� Suppose that a tuple s � AV includes r � t� Put W �� V n scope�r n t	�
and construct the tuple s� �� s �W � �r n t	 � AV � Since s� includes r� it includes pi
for some i � �� � � � � n� whence s � s �W � � s� �W � � s� � t � pi � t�

Taking t �
S
P � we get the following consequence of the localization lemma�

Corollary � If P j� r� then P j� r �
S
P � In particular� if the inference P j� r

is minimal� then r �
S
P �

Each of the statements in the corollary is in fact equivalent to the principle of
localization as stated in the localization lemma�

Next on our agenda are unsatis�able negative constraint networks� we are going
to call them cotautologies� for the following reason� A negative constraint network



�


Q � A� is unsatis�able precisely when each tuple over scope�Q	 includes at least
one tuple from Q� We can reformulate this in terms of truth�valued functions�
Let us associate with a negative constraint network Q the function hQ�AV � f�� �g�
de�ned by

hQ�s	 ��
�

q�Q

�

a�q

�a � s	 � for any tuple s � AV

�we assume here that logical formulas� like �a � s	� evaluate to truth values � � false

and � � true�	 The function hQ is the negated interpretation of the negative
constraint network Q� since hQ�s	 � � precisely when s satis�es Q� The negative
constraint network Q is therefore unsatis�able if and only if hQ is the constant
function s 	� �� This is why we will refer to unsatis�able negative constraint
networks as cotautologies �and also because it is shorter	�
A cotautology is minimal if none of its proper subsets is a cotautology�
For any set of tuples Q � A� and any set of variables U � V denote by Q hU i

the set of tuples f q �U � j q � Q and q �U � �� g�

Proposition 
 If Q is a minimal cotautology� then Q hU i is a cotautology for

every nonempty set of variables U � scope�Q	�

Proof� Write W �� scope�Q	� Suppose that for some nonempty subset U of W �
Q hU i is not a cotautology� That is� there exists a tuple p � AU so that q �U � �� p
for every tuple q � Q with a nonempty restriction q �U �� For every tuple r � AWnU

the tuple pr � AW includes some tuple q � Q� since then q �U � � p� the restriction
q �U � must be empty and thus q � r� But this means that Q� � Q j �W n U 	 is
a cotautology� Because each variable u � U �� � appears in some tuple belonging
to Q� the cotautology Q� is a proper subset of the cotautology Q� contrary to the
minimality of Q�

Corollary � If Q is a minimal cotautology with scope�Q	 � W � then
S
Q �WA�

Proof� For every variable w �W � Q hwi is a cotautology� thus Q hwi � Aw� This
means that every token a �WA belongs to some tuple q � Q�

Corollary � The underlying scheme of a cotautology Q is connected�

Proof� Suppose that the underlying scheme of Q is not connected� Then there
exists a partition of the set of variables W �� scope�Q	 into two nonempty subsets
U and U � such that for every tuple q � Q either scope�q	 � U or scope�q	 � U �� But
then the cotautology Q hU i � QjU is a proper subset of the minimal cotautology Q�
contradiction�

We will now relate minimal inferences to cotautologies� For any set of tuples
P � A� and any tuple r � A�� de�ne

P 
 r ��
�
p n r

�� p � P is compatible with r
�
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Writing U �� scope�r	� we have pn r � p �V n U � for every p � P compatible with r�

Lemma 
 Let P � A�� r � A�� Then P j� r if and only if P 
 r is a cotautology�

Proof� Put U �� scope�r	�
Suppose that P j� r� Since the scopes of tuples in P 
 r are subsets of the

set V nU � we will prove P 
 r to be a cotautology if we show that every tuple over
V nU includes sume tuple from P 
r� Let then s � AV nU � Since the tuple sr � AV

includes the consequence r� it includes some premise p � P � which is compatible
with r� and s includes p �V n U � � P 
 r�
Conversely� suppose that P 
 r is a cotautology� Take any tuple s � AV that

includes r� The tuple s includes p n r for some tuple p � P compatible with r� and
then also includes �p n r	 r � p�

Proposition � Let P � A� and r � A�� Then P j� r holds� with the set of

premises P minimal for the consequence r� if and only if the following conditions

are satis�ed�

� every tuple in P is compatible with the tuple r�

� the mapping P � �P 
 r	 � p 	� �p n r	 is a bijection�

� P 
 r is a minimal cotautology�

Proof� Suppose that P j� r with P minimal for r� Let P � be the set of those tuples
in P that are compatible with r� Since P � 
 r � P 
 r is a cotautology� P � j� r
holds� so we must have P � � P because of the minimality of P � The mapping

 �P � �P 
 r	 � p 	� �p n r	 is surjective by the de�nition of P 
 r� For every
tuple q in P
r choose a tuple q� in P for which q�nr � q� and let P � be the set of all
chosen tuples q�� Then again P �
 r � P 
 r and hence P � � P � so 
 is a bijection�
Finally� choose a minimal cotautology Q � P 
 r and put P � �� 
���Q	� since
P � 
 r � 
 �P �	 � Q is a cotautology� we have P � � P � thus also Q � P 
 r�
Conversely� suppose that P and r satisfy the conditions� Because P 
 r is a co�

tautology� we have P j� r� If P � is a proper subset of P � then P � 
 r is clearly
a proper subset of the minimal cotautology P 
 r� whence P � �j� r�

If the set of premises P in P j� r is minimal for the consequence r� and P 
 r
contains the empty tuple � then P 
 r � f g and P � fpg with p � r� otherwise
P 
 r is a set of nonempty tuples� thus in every tuple p � P there appear variables
not appearing in r�

Corollary � Let P j� r� with P minimal for r� Writing W �� scope�P 
 r	 �
scope�P 	 n scope�r	� we have WA �

S
P � WA � r� If also r is minimal for P �

then
S
P � WA � r�

Proof� Suppose P is minimal for r in P j� r� Since P
r is a minimal cotautology
with scope�P 
r	 � W � we have WA �

S
�P 
r	 �

S
P � On the other hand� every

tuple p � P satis�ses p � �p n r	 r � WA � r� and thus
S
P � WA � r�
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Now let also r be a minimal consequence of P � Localizing P j� r to P j� r� with
r� �� r �

S
P � we �nd that r � r� �

S
P �

Corollary � If P is minimal for r in P j� r� then r �
S
P is the only minimal

consequence of P among the subtuples of the tuple r� No variable appearing in

r n
S
P appears in P �

Proof� Write W �� scope�P 
 r	 and r� �� r �
S
P � and let r�� � r be a minimal

consequence of P � Because WA �
S
P � WA � r� we have

S
P � WA � r��

Because P is still minimal for r��� we have also
S
P � WA � r��� It follows that

r�� �
S
P nWA � r�� A variable appearing in r n

S
P � r n r� does not appear

in WA or in r�� hence does not appear in
S
P �WA � r��

If the inference P j� r is minimal� then the consequence r is the ��at part� of the set
of tokens

S
P �see Figure � for an impression of the shape of a minimal inference	�

In particular� in a minimal inference the set of premises uniquely determines the
conclusion� Formally�

Proposition � If P j� r and P � j� r� are minimal� then P � P � implies r � r��

In short� the entailment closure operator is skew�

���� Prime inferences

Let A be a family of domains for variables in V � Since the closure operator Conseq
inA� is skew� the results we have obtained for general skew closure operators can be
applied to it and also to any closure operator induced by it in an order ideal of A��
It would be worthwhile to know more about prime inferences in an arbitrary order



��

ideal of A�� here we shall restrict the discussion to the closure operator Conseqm�
induced in the order ideal A��m� of A� by the entailment closure operator Conseq�
for some natural number m � ��

Let us take a quick look at the prime inferences P j� r in A��m� with jrj � m� we
will not be much concerned with them� It is not hard to �gure out what the classes
of associated prime inferences are in this case�

Proposition �
 If r is a tuple with m
 � elements� then for each variable v not

in scope�r	 there is in A��m� one class of associated prime inferences� consisting of

the prime inference Avr j� r alone� For each tuple r with at most m 
 � elements

there is in A��m� one class of associated prime inferences that have the conclu�

sion r� which consists of all minimal inferences P j� r in A��m� such that r � p
for every p � P � There are no other prime inferences with at most �m 
 �	�ary
conclusions�

We omit the easy proof� It is also easy to show that an indecomposable minimal
inference in A��m� with an at most �m 
 �	�ary conclusion is always prime� and
hence every indecomposable minimal inference in A��m� is prime�

From now on let r be anm�ary tuple� All sets of tuples mentioned will be assumed
to be subsets of A��m�� Since r is maximal in the set A��m�� a minimal inference
P j� r reduces to a minimal inference Q j� r if and only if P j� Q�

We will need localized versions of reduction and primeness� We say that an
inference P j� r locally reduces to an inference Q j� s� if s � r and P j� Q andS
Q �

S
P � Local reducibility is transitive� We call an inference locally prime if it is

minimal� and has the property that whenever it locally reduces to another minimal
inference� this other inference reduces back to it� �Note that we do not require of the
other inference to reduce back locally�	 If a locally prime inference P j� r locally
reduces to a minimal inference Q j� r� then Q j� r is a locally prime inference
associated with P j� r� It is obvious that every prime inference is locally prime�
The converse also holds� We �rst prove two lemmas�

Lemma � Every premise of a locally prime inference is m�ary�

Proof� Let P j� r be a minimal inference that has a premise p � P with jpj � m�
Choose a variable u appearing in r but not in p� and let a be the token r�u	�
Put P � �� �P n fpg	 � fpag� Clearly P j� P � j� r� where P � j� r is minimal
and

S
P � �

S
P � We will now show that P � �j� p� Because the inference P j� r

is minimal� there exists a tuple s over scope�P 	 which includes r and p and ex�
cludes P n fpg� In the tuple s� change the token s�u	 � a to some di�erent token
over u� and denote the resulting tuple by s�� The tuple s� still excludes P n fpg�
it also excludes the tuple pa� hence excludes the whole P �� while it includes the
tuple p� This proves that P j� r is not prime�



��

Lemma � If a locally prime inference P j� r reduces to a prime inference Q j� r�
then

S
Q �

S
P �

Proof� For each q � Q choose a minimal consequence q� � q of P � and let Q�

be a minimal subset of the set of all q� such that Q� j� r� then P j� Q� j� r
and

S
Q� �

S
P � Here Q� j� r is a proper minimal inference� if Q� � fq�g� then

P j� q� j� r implies r � q� � q � Q� which is not possible because Q j� r is proper�
Since P j� r is locally prime� Q� j� r is also locally prime� But then every tuple
in Q� is m�ary and therefore belongs to Q� Since we have Q� j� r with Q� � Q� and
Q j� r is minimal� it follows that Q� � Q�

Now we have�

Proposition �� Every locally prime inference is prime�

Proof� Let P j� r be a locally prime inference� it reduces to some prime inference
Q j� r� Since we have

S
Q �

S
P � and P j� r is locally prime� the prime inference

Q j� r reduces to P j� r� which is therefore also prime�

Corollary � If a prime inference P j� r reduces to a minimal inference Q j� r�
then

S
P �

S
Q�

Proof� Since Q j� r is also prime and reduces back to P j� r� and because
prime inferences coincide with locally prime inferences� we have both inclusions
between

S
P and

S
Q�

For any natural number h let �h be the closure operator in A��m� which enforces
the weak relative �m � h	�consistency of negative networks on the scheme V ��m��
and let j
h be the corresponding closed inference system� The closure operator ��
enforces the internal consistency on V ��m�� Closure operators �h increase with
increasing h� up to the entailment closure operator Conseqm� where �h � Conseqm
for every h � jV j 
m�
We know that any representative set of prime inferences for Conseqm is an al�

most complete inference system for this closure operator� we will show that it also
provides almost complete inference systems for each of the closure operators �h�
We say that an inference system Q in A��m� essentially generates a closure opera�

tor � in A��m�� if Q and j
� together generate �� We will say that a prime inference
P j� r in A��m� with jrj � m and j scope�P 
 r	 j � h is of height h� Note that
a prime inference P j� r of height h or less satis�es P j
h r�
If R is any set of prime inferences in A��m�� then for each natural number h � �

we denote by Rh the set of all prime inferences from R that are of height h� and
put R�h �� R� � � � � � Rh�

Proposition �� If R is any representative set of prime inferences for Conseqm�

then the closure operator �h is essentially generated by R�h� for each natural num�

ber h � ��
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Proof� The closure operator �h is generated by all minimal inferences P j� r
in A��m� such that j scope�P 	 j � m�h� together with all unary inferences in A��m��
Since for every unary inference p j� q in A��m� we have p j
� q� it su
ces to prove
that any minimal inference P j� r in A��m� with m� �� j scope�P 	 j � m � h is
derivable using Rh and j
�� The proof will be by induction on the set Conseqm�P 	�
For m� � m we have P j
� r� so suppose that m� � m�
If jrj � m� choose a set U of m variables such that scope�r	 � U � scope�P 	�

and let Q be the set of all tuples over U that extend the tuple r� For each q � Q
choose a minimal set of premises Pq � P for the consequence q� and then choose
a minimal consequence q� � q of Pq� let Q

� be the set of all tuples q�� Since all
tuples in Pq are compatible with q� while there are tuples in P incompatible with q�
each Pq is a proper subset of P � hence P �small because P is independent� Since
scope�Pq	 � scope�P 	� we have j scope�Pq	 j � m� h� By induction hypothesis� all
minimal inferences Pq j� q� are derivable using Rh and j
�� and moreover� we have
Q� j
� Q j
� r�
Suppose that jrj � m� The minimal inference P j� r locally reduces� in A��m��

to a locally prime inference P � j� r� which is in fact prime and therefore reduces to
a prime inference Q j� r in R� Since

S
Q �

S
P � �

S
P � the height of the prime

inference Q j� r is at most h� For each q � Q choose Pq and q� as in the previous
case� also the rest of the proof is just as in the previous case� except that now we
have the prime inference Q j� r instead of Q j
� r�

���� Prime inferences of heights � and �

In this section we describe all prime inferences of heights � and � for the restricted
entailment closure operator Conseqm in A��m�� where A � �Av j v � V 	 is an
arbitrary family of domains� and m � ��

Proposition �� Prime inferences of height � for the closure operator Conseqm
are precisely those resolution inferences in A��m� in which all premises and the

resolvent are m�ary tuples� All prime inferences of height � are primitive�

Proof� Clearly any prime inference of height � is a resolution inference in which
all premises and the resolvent are m�ary tuples�
Conversely� let P j� r be a resolution inference with P � A�m� and r � A�m��

The set of premises P is minimal for r� The resolution procedure� applied to P �
produces the resolvent r and stops� Since all tuples in P�frg are maximal in A��m��
we have Conseqm�P 	 � P � frg� ie� the inference P j� r is primitive�

Characterization of prime inferences of height � is slightly more complicated� Let
w� and w� be two di�erent variables� The general form of a minimal cotautology Q
with scope�Q	 � fw�� w�g is

Q � X� �X� � Y�Y� �



��

where

Xi � Awi � Yi � Awi nXi �� � � for i � �� � �

Let r be an m�ary tuple such that U �� scope�r	 is disjoint with a set of vari�
ables W � If P j� r is an inference with scope�P 
 r	 � W in which the set P of
premises is minimal for the conclusion r� then Q �� P 
 r is a minimal cotautol�
ogy on W � and each premise p � P is of the form p � q
 �q	 with 
 �q	 � r for
a unique q � Q� Conversely� given a minimal cotautology Q on W � if we choose
for each q � Q an arbitrary subtuple 
 �q	 of the tuple r and let P be the set of
all tuples q
 �q	 for q � Q� then we obtain an inference P j� r whose set P of
premises is minimal for r� With the inference P j� r represented in this way� we
write 
 �Q�	 ��

S
q��Q� 
 �q�	 for any subset Q� of Q�

Proposition �� Using the notation introduced in the text� the following holds�

a minimal inference P j� r with scope�P 
 r	 � W � fw�� w�g� whose premises

and the conclusion are m�ary tuples� is prime if and only if


 �X� � Y�y�	 � r for every y� � Y� � and


 �X� � y�Y�	 � r for every y� � Y� �

All prime inferences of height � are primitive�

Proof� First we prove that the conditions are su
cient by proving that they imply
primitivity of the inference P j� r� We will show that P�frg is the set of all minimal
consequences of P for the entailment closure operator Conseq in A�� For each
y� � Y� we have the resolution fan fx�
 �x�	 j x� � X� g � f y�y�
 �y�y�	 j y� � Y� g
with the resolvent 
 �X�	 � y�
 �Y�y�	 � y�
 �X� � Y�y�	 � y�r� Symmetrically we
get a resolvent y�r for each y� � Y�� Since this exhausts all resolution fans in
the set P � frg� this set is subclosed under resolution in A� and is therefore the
set of all minimal consequences of the set P � Since all the tuples in P � frg are
maximal in A��m�� it follows that Conseqm�P 	 � P � frg� proving primitivity of
the inference P j� r�

Now assume that the conditions of the proposition are not satis�ed� There is�
say� an y� � Y� such that 
 �X� � Y�y�	 �� r� is a proper subtuple of the tuple r�
As in the �rst part of the proof there is the resolvent y�
 �X� � Y�y�	 � y�r

�� but
now we have jy�r�j � m� Choose an �m 
 �	�ary tuple r�� such that r� � r�� � r�
and put p� �� y�r

��� Also put p �� y�y�
 �y�y�	 � P for some y� � Y�� and construct
P � �� �P n fpg	 � fp�g� Clearly P j� P � j� r� we shall show that P � �j� p� Since
jp � rj � j
 �y�y�	j � m
� � m
� � jr��j � jp� � rj� the tuple p� is not a subtuple of
the tuple p� so there exists a tuple s overW �U such that p � s and p� �� s� Clearly
the tuple s excludes P n fpg because it includes y�y�� The tuple s excludes P �

and includes p� showing that P � �j� p� Let P �� � P � be a minimal set of premises
for r� The minimal inference P j� r is not prime� because it reduces to the minimal
inference P �� j� r which does not reduce back�
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Let us look at the prime inferences P j� r of heights � and � for binary net�
works� Denote by W the set scope�P 
 r	� and write the binary tuple r as r � ab�
where a and b are tokens over two di�erent variables not in W � Specializing the
propositions �� and �� we arrive at the following characterization�

Proposition �� Let W � P � and r � ab be as in the text�

Prime inferences of height � over a complete binary scheme are precisely the

resolution inferences

Xa � Y b j� ab �

where X and Y are nonempty complementary subsets of the set Aw �W � fwg	�
Prime inferences of height � are precisely the inferences

X�a � Y�b �X�a � Y�b � Z�Z� j� ab �

where Xi� Yi� Zi are nonempty sets forming a partition of the set Awi for i � �� �
�W � fw�� w�g	�

Figure � shows binary prime inferences of heights � and � as described by the
proposition ��� A moment�s thought shows that prime inferences of height � enforce
path consistency� Prime inferences of height � thus embody the simplest type of
�weak relative	 consistency beyond the path consistency�

��	� Weak primitivity of prime inferences

Prime inferences for the closure operator Conseqm have the following property�
which will be referred to as weak primitivity �

Lemma �
 Let P j� r be a prime inference for Conseqm� writeW �� scope�P
r	�
If q �� P � frg is an at most m�ary tuple such that q �W � � p �W � for some tuple

p � P � then P �j� q�



��

Proof� Taking q� �� q �
S
P � we have P j� q if and only if P j� q�� Since q� is at

most m�ary� q� �� P �frg� and q� �W � � p �W �� we can assume that already q �
S
P �

and in particular� that q is compatible with r� When q �W � � � the tuple q is
a proper subtuple of the minimal consequence r of the premises P � whence P �j� q�
from now on we assume that the tuple q �W � is not empty�

In the case jqj � m we cannot have q� r � p� r� since then we would have q � p�
Suppose that jqj � m� We can extend the tuple q to an m�ary subtuple q� of the
tuple q � r in such a way that q� �� p� by the choice of q� we have q� �W � � q �W ��
The tuple q� is certainly di�erent from r� Moreover� q� does not belong to P �
if q� �W � is a proper subtuple of p �W �� then q� does not belong to P because P 
r is
a minimal cotautology� if q� �W � � p �W �� then q� �� p does not belong to P because
the mapping P � �P 
 r	 � x 	� x �W � is a bijection� If we show that P �j� q�� it
will follow that P �j� q� In short� we can assume that q is an m�ary tuple�

We must show that P �j� q� suppose that� on the contrary� P j� q holds� Construct
the set P � �� �P n fpg	 � fqg� Then P j� P �� and since q �W � � p �W �� P � 
 r is
a cotautology� so we have P � j� r� Choose a minimal set of premises P �� � P � for
the consequence r� There exists a tuple s over scope�P 	 which includes r and p
but excludes P n fpg� In the tuple s� replace some token a � �q n p	 � r �� by
a di�erent token over the same variable� The resulting tuple s� excludes P �� but
includes p� whence P �� �j� p� contradicting primeness of P j� r�

For any minimal inference P j� r� every token over a variable in scope�P 
 r	
belongs to some premise p � P � so we have the following corollary of the lemma ���

Corollary 
 If P j� r is a prime inference and q �� P �frg is an at most m�ary

tuple of the form q � cr�� where r� is a subtuple of the tuple r and c is a token over

a variable not appearing in r� then P �j� q�

The following corollary of lemma �� is also worth mentioning�

Corollary � Every premise of a prime inference P j� r is a minimal consequence

of the set of premises P �

Proof� If p� is a proper subtuple of some premise p � P � then p� �� P � frg and
p� �W � � p �W �� hence P �j� p� by weak primitivity of P j� r�

��
� All prime �����
inferences up to height �

This subsection presents all prime inferences of heights �� �� �� and � for the closure
operator Conseq� on two�valued variables� we will call them prime ��� �	�inferences�
We will give proofs for the prime inferences of heights �� �� and �� but will only list
the prime inferences of height � without a proof that the list is complete �primeness
of the listed inferences can be easili checked	�
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Let us have a tuple r � abc� where a� b� and c are tokens over three di�erent
variables� and let us alos have a set W of at most four variables disjoint with
scope�r	� We will determine all prime inferences P j� r with scope�P 
 r	 � W �
The two tokens in wA� for w �W � will be written x and  x� or y and  y� and so on�

We start by extracting the prime ����	�inferences of heights � and � from the
general propositions �� and ���

Proposition �� All prime ��� �	�inferences of height � are of the form

fxabc�  xacg j� abc �

while all prime ��� �	�inferences of height � are of the form

fxab� yab�  x ycg j� abc �

All prime ��� �	�inferences of heights � and � are primitive�

Proof� The case of height � is trivial�
Height �� In the notation of proposition ��� we cannot have X� � �� since in

this case the tuple 
 �Y�y�	 would consist of at most two tokens� and similarly we
cannot have X� � �� Every prime ����	�inference of height � is thus of the form
fx
 �x	� y
 �y	�  x y
 � x y	g j� abc� where 
 �x	 and 
 �y	 are binary subtuples and 
 � x y	
is a unary subtuple of the tuple abc� such that 
 �x	 � 
 � x y	 � abc � 
 �y	 � 
 � x y	�
From this we see that� up to a permutation of the tokens a� b� and c� we have

 �x	 � ab � 
 �y	 and 
 � x y	 � c�

Figure � shows the prime ����	�inferences of heights � and �� We will prefer to
draw them �and other prime inferences	 in the abbreviated form shown in Figure !�
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in this form we represent a prime inference P j� r by the cotautology P 
 r� where
for each premise p � P we mark the tuple pn r � P 
 r by the tuple p� r� whenever
this tuple is nonempty�

Next lemma gives a handful of conditions satis�ed by any prime ����	�inference
P j� r� Some conditions constrain the cotautology P 
 r� and some constrain how
subtuples of r are attached to tuples in P 
 r to form the tuples in P �

Lemma �� Let P j� r be a prime ��� �	�inference� Then the following holds �where
x� y� and z are tokens over di�erent variables in W � scope�P 
 r	� while �� ��
and � are subtuples of the tuple r � abc	�

�i	 P 
 r does not contain both a tuple xyz and a tuple xy z�

�ii	 P 
 r does not contain both a tuple xy and a tuple x yz�

�iii	 P 
 r does not contain both a tuple xy and a tuple x y�

�iv	 P 
 r does not contain two di�erent inclusion�comparable tuples�

�v	 when jW j � �� P 
 r does not contain a pair of tuples x�  x�

�vi	 when jW j � �� P 
 r does not contain a triple of tuples x� y�  x y�

�vii	 if P contains tuples xy� and  x�� then � � � � abc�

�viii	 if P contains tuples x�� y�� and  x y z� then � � � � abc�

�ix 	 if P contains tuples xy��  xz�� and  yz�� then � � � � � � abc�

Proof� Conditions �iv	� �v	� and �vi	 are satis�ed because P 
 r is a mini�
mal cotautology� All other properties listed in the lemma follow easily from the
weak primitivity of prime inferences �lemma ��	� For example� in �ix	 we have
fxy��  xz��  yz�g j� z�� � � � �	� hence by corollary � the tuple z�� � � � �	 must
consist of at least four tokens�

It is now a fairly simple task to determine all prime ����	�inferences of height ��



�	

Proposition �
 Every prime ��� �	�inference has one of the following three forms

�shown in Figure 
 in abbreviated graphic notation	�

xbc� yac� zab�  x y z j� abc �

xac� ybc�  xzb�  y za j� abc �

xyc� xzb� yza�  x yc�  x zb�  y za j� abc �

All prime ��� �	�inferences are primitive�

Proof� We will refer to the properties of prime ����	�inferences in lemma ��
without mentioning the lemma� The proof is divided into cases according to the
number of unary tuples in the cotautology Q �� P 
 abc� This cotautology can
contain at most three unary tuples� since due to �v	 each of the unary tuples must
be over a di�erent variable�
��	 The cotautology Q contains three unary tuples x� y� and z� The tuple  x y z

contains a tuple in Q� which cannot be binary� because of �vi	� hence must be
ternary� ie� the tuple  x y z itself belongs to Q� The cotautology Q thus consists of
the tuples x� y� z� and  x y z� To each of the unary tuples in Q is attached a binary
subtuple of the tuple abc� to make the corresponding tuple in P � It follows from �viii	
that xbc� yac� zab is the only possibility� up to a permutation of the tokens a� b� c�
Running the resolution on the set P � fxbc� yac� zab�  x y zg� we �nd that the only
minimal consequences consisting of at most three tokens are the tuples in P and
the tuple abc� which means that the inference P j� abc is primitive�
��	 The cotautology Q contains precisely two unary tuples x and y� Each of the

tuples  x yz and  x y z includes a tuple in Q� We cannot have the two ternary tuples
themselves in Q� since this would violate �i	� hence the cotautology Q must contain
at least one binary subtuple of the one or the other ternary tuple� The tuple  x y does
not belong to Q� because of �vi	� We may assume that Q contains the subtuple
 xz of the tuple  x yz �otherwise we swap the variables of the tokens x and y� or
exchange tokens z and  z� or do both	� The tuple  x y z does not belong to Q� since
otherwise Q would contain tuples  x y z and  xz� which it does not� because of �vi	�
Thus one of the binary subtuples of the tuple  x y z belongs to Q� We have already
seen that this binary subtuple cannot be  x y� it also cannot be  x z� since this would
violate �iii	� The only possibility is the tuple  y z� which in fact gives us a minimal
cotautology Q consisting of the tuples x� y�  xz� and  y z� Let the corresponding
tuples of P be x�� y��  xz�� and  y z�� We see from �vii	 that � and � complement
each other in abc� and that the same holds for � and �� Can we have � � �� say
� � c � �� Then we would have � � ab � �� P � fxab� yab�  xzc�  y zcg� and
P j� abc would reduce to the inference fxab� yab�  x ycg j� abc of height �� hence
would not be prime� So we must have � �� �� say � � b and � � a� and therefore
P � fxac� ybc�  xzb�  y zag� We verify that the inference P j� abc is primitive using
the method of the previous case�
��	 There is only one unary tuple x in the cotautology Q� The token  x belongs

to some binary or some ternary tuple in Q� we will discuss these two possibilities
in two subcases�



��

��a	 The cotautologyQ contains the unary tuple x and a binary tuple  xy� Neither
of the tuples  x yz�  x y z belongs to Q� because this would violate �ii	� The tuple  x yz
therefore includes a binary tuple in Q� which cannot be  x y because of �iii	� so it is
one of the tuples  xz�  yz� For the same reason one of the binary subtuples  x z�  y z
of the tuple  x y z belongs to Q� If the tuple  x yz includes� say� the tuple  xz � Q�
then because of fx�  xzg j� z j�  yz the tuple  yz does not belong to the minimal
cotautology Q� The tuples  xz and  yz cannot be both in Q� and likewise  x z and  y z
cannot be both in Q� Since according to �iii	� Q does not contain both  xz and  x z�
and also does not contain both  yz and  y z� there remains only one possibility� up
to a symmetry� namely that Q contains the tuples  xz and  y z� This indeed yields
a minimal cotautology Q � fx�  xy�  xz�  y zg� But this Q does not correspond to any
prime inference P j� abc� If we have� say� xbc � P � then by �vii	 we have  xya � P
and  xza � P � contradicting �ix	� according to which the three tuples  xy�  xz� and  y z
from Q should be attached via P to three di�erent tokens in abc�

��b	 The cotautology Q contains the unary tuple x and a ternary tuple  xyz�
We may assyme that there is in Q no binary tuple containing the token  x� as this
possibility has been already discussed in the subcase ��a	� Then the tuple  x yz
should include the binary tuple  yz in Q� or it should itself belong to Q� both is
impossible� the former in view of �ii	 and the latter in view of �i	�

We have shown that there is no prime ����	�inference of height � whose corre�
sponding cotautology would contain only one unary tuple�

��	 The cotautology Q contains no unary tuples� First we show that Q does not
contain any ternary tuple� Assume that� on the contrary� there is in Q a ternary
tuple xyz� Since each of the three tokens in abc belongs to some tuple in P � the
cotautology Q must contain at least three binary tuples� Because of �ii	 and �iv	
only the three binary tuples  x y�  x z� and  y z can belong to Q� so the cotautology Q
contains all three of them� and contains no other binary tuple� But then the
tuple xy z� which does not include any of the tuples in Q� should belong to Q�
in contradiction to �i	�

The cotautology Q thus consists entirely of binary tuples� Over any pair of
variables inW we have inQ either no tuple� or one tuple ��� or two tuples �� and  � ��
where � is a token over one and � a token over the other of the two variables� this
holds because of �iii	� The cotautology Q is therefore� up to a symmetry� a subset
of the set fxy�  x y� xz�  x z� y z�  yzg� or of the set fxy�  x y� xz�  x z� yz�  y zg� The �rst
set is not a cotautology� so the cotautology Q cannot be its subset� The second set
is a minimal cotautology� hence coincides with Q� By several applications of �ix	 we
�nd that tokens a� b� and c can be attached in only one way� up to a permutation� to
tuples in Q� namely as in P � fxyc � xzb� yza�  x yc�  x zb�  y zag� We verify primitivity
of P j� abc just as we have veri�ed it in the cases ��	 and ��	�

What have we done here� We have searched for and found all sets P of ternary
tuples p � WA � abc such that P j� abc is a prime inference� The presence or
absence of a particular tuple in a set P can be regarded as a propositional variable�
Our search was guided by constraints on these variables stemming from minimality
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\alpha

\beta

\gamma

\delta

(a) (b)

�

�

�

�

�a	 �b	Figure �	

and weak primitivity of prime inferences� The constraints were not strong enough to
completely characterize the prime inferences� as it became apparent in the case ��	
of the proof� In short� we formulated a �relaxed� propositional constraint network�
whose solutions were candidates for prime inferences� we then generated all solu�
tions� cutting down on symmetries as we went along� and checked each solution for
primeness�

The same method should work for all heights� at least in principle� In practice it
soon grows into an onerous and error�prone task to carry out by hand� Determining
all prime ����	�inferences of height four was already a considerable project� even
though the search was further narrowed down by additional constraints� Two of
constraints satis�ed by prime ����	�inferences of height four �or more	 can be seen
in Figure 
� �a	 is a combination of tuples that never appears in the cotautology
P 
 abc� while in the situation �b	 always � � � � � � � � abc� All types of prime
����	�inferences of height four are listed in Figure �� Most of them are primitive�
with the exception of the inferences ����� ����� and ����� For example� the prime
inference ���� has a minimal consequence yub� which is di�erent from abc and is
not one of the premises� Each of the three exceptional prime inferences� while not
primitive� is isolated in the sense that it is associated only with itself�

All prime ����	�inferences of heights � and � can be derived by ��resolution� see
Figure �� for one such derivation of the prime ����	�inference ���
� On the other
hand� ��resolution is unable to derive the prime inference of height ! in Figure ���
So we have

Proposition �� � � reach��� �� �	 � 
�

The remaining gap at height � ought not to take long to �ll in�

���� All prime �����
inferences up to height �

In this subsection we give all prime inferences of heights �� �� �� and � for the closure
operator Conseq� on three�valued variables� we call them prime ��� �	�inferences�

We have a binary tuple r � ab and a set W of at most four variables �x� y� z�
and u	 disjoint with scope�r	� The three tokens over the variable x in W will be
written x�� x�� and x�� and so on�
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Proposition �� All prime ��� �	�inferences of height � are of the form

fx�a� x�a� x�bg j� ab �

while all prime ��� �	�inferences of height � are of the form

fx�a� x�b� y�a� y�b� x�y�g j� ab �

Prime ��� �	�inferences of heights � and � are primitive�

Prime ��� �	�inferences of heights � and � are shown in Figure �� in normal notation�
and in Figure �� in abbreviated notation�
Figure �� lists all prime inferences of heights � and �� all are primitive� Also� all

are derivable by a ��resolution on three�valued variables� a sample derivation of the
prime ����	�inference ���� is shown in Figure ���
There is a prime ����	�inference of height ! �Figure �!	 which is not derivable by

��resolution� But this time it can be shown �we omit the proof	� without explicitly
determining all prime ����	�inferences of height �� that each of these inferences can
be derived by a judicious elimination of variables inW which never produces a more
than ternary resolvent� In this case we therefore know the precise reach�

Proposition �
 reach��� �� �	 � ��

�� Conclusion

We have shown the existence of prime inferences� we have characterized minimal
�almost	 complete inference systems for entailment in negative constrain networks
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as the representative sets of prime inferences� and� using complete lists of prime in�
ferences of small heights� we have determined the reach of a low�level strong relative
consistency for two special types of negative constraint networks� Practical results
at this point are meager� to say the least� We are still lackig deep enough insight
into properties of prime inferences� which would enable us to produce a provably
close lower bound for the reach of the relative consistency�
But the prime inferences are worth further study� It is intriguing enough that

they provide us with so neatly structured complete inference systems �even though
the reason why this is so� namely the skewness of the entailment� is quite simple	�
By unearthing prime inferences we have in a sense revealed the �rst lower layer of
complexity inherent in the �nite constraint satisfaction problem� If anything� we
must dig deeper� trying to �nd regularities in the structure of prime inferences� to
�gure out how they relate to each other� to discover ways to construct them� and
so on� This will be the direction of further research�
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