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Abstract 

The cyclicity of a hypergraph is an efficiently computable integer that extends the notion of 
the cyclomatic number of a graph. Generalizing the notion of the degree of a node in a graph, 
we define the star articulation degree of a subedge in a hypergraph, and then use it to set up the 
expression for the cyclicity. The basic properties of cyclicity are that it is zero on acyclic 
hypergraphs and strictly positive otherwise, and that on graphs it coincides with the cyclomatic 
number; moreover, the cyclicity depends only on maximal edges, decreases on subhypergraph, 
and is additive on compositions. We introduce the notions of circulant graphs and join-graphs 
of a hypergraph. Neither of these two kinds of graphs is uniquely determined by a hypergraph; 
however, every circulant graph and every join-graph of a hypergraph has the cyclomatic 
number equal to the cyclicity of the hypergraph. We also compare the cyclicity of a hypergraph 
with the cyclomatic number of a hypergraph, which is another, already known, extension of the 
cyclomatic number of a graph. 

1. In trodu c t ion  

Extensions of the cyclomatic number  of a graph to hypergraphs are nothing new. 
Berge gives in [3] one such extension, the cyclomatic number #(E) of a hypergraph E, 

introduced by Acharya and Las Vergnas in [1]. It is defined as 

# (E) :=  ~ le l -  I U E [ -  we, 
e e E  

where we is the maximal weight of a subforest in the intersection graph of the 

hypergraph E. The weight is calculated as the sum of terms lelne21 over all arcs 
(el, e2} of the subforest. The cyclomatic number/~(E) is non-negative and is zero 
precisely when the hypergraph E is acyclic; moreover,  when E is a graph, #(E) is the 
usual cyclomatic number  of the graph E. 
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In this paper we propose another integral measure, the cyclicity V, defined for 
hypergraphs, which has the same key properties as the cyclomatic number p: it 
extends the notion of the cyclomatic number for graphs, is always non-negative, and is 
zero precisely on acyclic hypergraphs. The cyclicity of a hypergraph E is defined as 

?(E):= ~ ( 6 e ( f )  - 1) - IMax(E) l  + 1, 
f 

where ~iE(f) is the 'star articulation degree' of a subedgefin E and the sum runs over 
all those subedgesf that have this degree at least two. 

What use is another extension of the cyclomatic number of graphs to hypergraphs? 
One interesting point of 7(E) is its form, as a simple additive combination of terms 
reflecting local structural properties of the hypergraph E. By contrast, the term wg in 
the expression for the cyclomatic number #(E) is decidedly a global characteristics of 
the hypergraph E. The cyclicity has, in addition to this rather technical distinction, 
some properties not enjoyed by the cyclomatic number, e.g. the cyclicity is preserved 
under blowups of a hypergraph while the cyclomatic number is not. 

The cyclicity of hypergraphs is related to the cyclomatic number of graphs in 
another way. We can associate with a hypergraph certain 'circulant graphs' so that the 
cyclomatic number of each of these graphs is equal to the cyclicity of the hypergraph. 
Another kind of graphs associated with a hypergraph are its join-graphs, which are 
natural generalizations of join-trees of an acyclic hypergraph. We will be able to 
completely analyze the structure of join-graphs, thus gaining an insight into the 
meaning of summands in the formula for cyclicity. This analysis will show, in 
particular, that every join-graph of a hypergraph has the cyclomatic number equal to 
the cyclicity of the hypergraph. 

In spite of differences between the cyclomatic number and the cyclicity of a hyper- 
graph they parallel each other in several respects. Both are efficiently computable, 
both depend only on the maximal edges, both decrease on passing to subhypergraphs, 
and both are additive on compositions. 

Here is a short overview of the contents. Section 2 gives basic definitions. In Section 
3 we define the star articulation degree of a subedge in a hypergraph and consider the 
joints ofa hypergraph, which are the subedges whose degree is at least two. After these 
preparations we define in Section 4 the cyclicity of a hypergraph and prove its key 
properties. In Sections 5 and 6 we introduce and examine circulant graphs and 
join-graphs associated with a hypergraph. We compare the cyclicity of a hypergraph 
with the cyclomatic number of a hypergraph in Section 7, and conclude with some 
reflections on the cyclicity and related notions. 

2. Preliminaries 

A hypergraph is any finite collection of edges, where each edge is a finite set of 
vertices. We allow a hypergraph to have an empty edge. The span of a hypergraph E is 
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the union U E of its edges; its elements are called the vertices of E. A subedge of 
a hypergraph E is a subset of an edge of E. We denote by Max(E) the hypergraph 
consisting of all maximal edges of a hypergraph E. A hypergraph whose edges are 
pairwise incomparable is said to be simple. A subset of a hypergraph E is called 

a partial hypergraph of E. 
Let E be a hypergraph and U any set of vertices of E. We call the hypergraph 

E(U) :=  {e ~_ UIe~E} 

the part of E in U, and the hypergraph 

E [ U ] : = { e ~ U [ e ~ E }  

the subhypergraph induced by E in U. If U ~ V are any two sets of vertices of E, then 
(E(U))(V) = E(V) and (E[U])[V] = E[V]. The operation of inducing the subhyper- 
graph in a fixed vertex set U has the property that Max(E[U])  depends only on 
Max(E); the operation of taking the part of a hypergraph in a fixed vertex set does not 

have this property. 
With E and U as in the previous paragraph, we construct the intersection graph of 

E relative to U, which is the graph G with the set of nodes E\E(U), whose arcs are all 
pairs {e,f} of different edges of E such that er~fis not a subset of U. Node sets of the 
connected components of the intersection graph G are the connected components of 
E relative to U; the connected components of E relative to the empty set are simply the 
connected components of E. 

We shall also be dealing with graphs, always undirected and without loops or 
multiple edges. To distinguish graphs from hypergraphs, we will talk of a graph as of 
a set of nodes connected by a set of arcs. A graph G can be regarded as a simple 
hypergraph, consisting of the two-element edges {u, v} for the arcs uv of G, and of the 

singletons {u} for the isolated nodes u of G. 
Finally, let us mention acyclic hypergraphs, just for reference. There are many 

characterizations of acyclic hypergraphs (Beeri et al. give in [2] quite a few). We will 
present here only one of them, as the definition of acyclic hypergraphs. A join-tree is 
a tree T which has for the set of nodes a simple hypergraph E and satisfies the 
following condition: for any three nodes eo, e, el eE,  with the node e lying on the 
unique path in the tree T between the nodes eo and el, we have e _ eoc~el. Now 
a simple hypergraph E is said to be acyclic if it admits a join-tree, i.e. if there exists 
a join-tree on the set of nodes E. 

3. Star articulation degree and joints 

Let E be a hypergraph. For  any set of vertices U, the star of U in E, notation StE(U), 
is the hypergraph consisting of all edges e ~ E such that U __ e. (the star is nonempty if 
and only if U is a subedge of E). Let n o w f b e  a subedge of the hypergraph E. The star 
articulation degree o f f  in E, denoted bE(f), is the number of connected components of 
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the star StE(f) relative to the subedge f ;  since 6E(f) is the only kind of degree 
considered in this paper, we will refer to it simply as the degree off  in E. The subedge 
f h a s  the same degree in E as in Max(E). Maximal edges of E have degree zero, while 
a proper subedge of E has degree at least one. Call the subedgefwhose degree in E is 
at least two, a joint of E, and let 7~(E) denote the set of all joints of E. Joints of 
a hypergraph generalize those nodes of a graph which have at least two neighbours. 

Lemma 1. Every joint of a hypergraph E is the intersection of two different maximal 
edges of E. 

Proof. Let f be a joint of E. Take any two maximal edges el and ea of E from 
different connected components of the star StE(f) relative to f. Then clearly 

elne2=f.  [] 

A simple but important consequence of this lemma is the upper bound 
IEI(IEI - 1)/2 on the number of joints of a hypergraph E. 

For any hypergraph E let A (E) denote the set of all intersections of pairs of different 
maximal edges of E. We have just shown that qJ(E) is a subset of A(E). We can say 
more: 

Lemma 2. Max(A(E)) = Max(~P(E)). 

Proof. L e t f b e  maximal in A(E). Any two different maximal edges of E that include 
f m u s t  have intersection f, by maximality off. This means that each maximal edge of 
the star StE(f) belongs to a different connected component of the star relative to f, and 
since there are at least two different maximal edges in the star, the subedgefis a joint 
of E, clearly a maximal one. 

Conversely, l e t fbe  a maximal joint. Sincefbelongs to A(E), it is a subset of some 
maximal member g of A(E). Now according to the first part of the proof g is a joint, 
hence must be equal to the maximal jointf .  [] 

An easy consequence is that any hypergraph with at least two different maximal 
edges has joints. As we can see from the proof, a j o i n t f o f  a simple hypergraph E is 
maximal precisely when each connected component of the star StE(f) relative to 
f consists of a single edge. 

4. The cyclicity of a hypergraph 

In this section we introduce the cyclicity of a hypergraph and prove two of its key 
properties, namely that it decreases on subhypergraphs and that it extends the 
cyclomatic number of graphs. 
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Definition 3. Let E be any hypergraph. The integer 

7(E):= ~ ( f iE ( f ) -  1)--[Max(E)l  + 1 
f E ~P(E) 

will be called the cyclicity of E. 

Sometimes it comes handy to have the summation in the definition of 7(E) extended 
over some other proper subedges of E besides the joints; this does not change the sum, 
since all additional terms are zeros. We can also incorporate the term [Max(E)[ into 

the sum and write 

7(E):= ~(f iE(f)  - 1) + 1 
f 

with f running over all maximal edges and all joints, and perhaps over some other 
subedges. From the defining formula it is clear that the cyclicity is efficiently comput- 
able (assuming the hypergraph E is given by an explicit list of edges). Because each 

subedge has the same degree in E as in Max(E), we have 7(E) = 7(Max(E)). 

Theorem 4. I f  F is a subhypergraph orE, then 7(F) ~< 7(E). 

Proof. We can assume that E is simple and that F = E[U],  where U is the span (JE 
minus some vertex u of E. The hypergraph E can be written as the disjoint union 
E = E(U)wStE(u). Put S:= StE(u) and 

So := {e E S le\{u} is a subedge of E(U)} 

and let $1 be the complement of So in S. Note that for every eo E So, eo\{U} is a proper 
subedge of E(U). Then 

Max(F) = E(U)uS ,  [-U], 

where the union is disjoint and different edges e from S~ give rise to different edges 
e•U = e\{u} of SI [U] ,  so that 

[Max(F)[ = [ E [ -  [So[. 

We must show that in passing from E to F, the sum in the formula for the cyclicity 
(with summation over all proper subedges) decreases by at least [So[. 

Let f be any proper subedge of F. If f is not a subset of any edge of S, then 
StE(f) = Stv(f), hence fir(f) = fie(f). Now assume t h a t f i s  a subset of at least one 
edge of S, and write R :=  Sts(f),  S ' := StE~v)(f). Then S t E ( f ) =  S 'uR  and 
Stv(f)  = S'wR [U].  All the edges of R are directly connected to each other relative to 
f, because the intersection of any two of them contains the vertex u ¢ f  Suppose that 
f e R  [ U]. Then the connected components of StE(f) relative to f which contain edges 
e'ER[U[,  say there are k such components, get merged into a single connected 
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component of St~(f) relative to f, while all other connected components relative 
to f are the same in StF(f) as in Ste(f). Thus 6~(f) = 6F(f) - k + 1. But now we 
have also a proper subedge fw{u}  of E, where 3E(fu{u})>~k, whence 
be(f)  + 6~(fw{u}) >~ 6v( f )  + 1, i.e., 

(6e(f) - 1) + (6E(fw{u}) -- 1) i> 6F(f) -- 1. 

There remains the case wi thfe  R [U]. Sincefis a proper subedge of F, we must have 
f =  eo\{U} for some eo e So. Moreover, R = {eo} and the connected components of 
StE(f) relative to f are those of S t / f )  and the one additional component {eo}, 
therefore 6~(f) = 3v(f)  + 1. We have already noticed that, for every eo e So, eo\{U} 
is a proper subedge of E(U) and hence of F. This gives us I Sol proper subedges of F at 
each of which the sum in the definition of cyclicity gains 1 on going from F to E. [] 

Since the hypergraph whose only edge is the empty set is a subhypergraph of every 
hypergraph, we have the following. 

Corollary 5. The cyclicity of a hypergraph is non-negative. 

We shall see later on (Theorem 12) that the cyclicity of a simple hypergraph is zero 
precisely when the hypergraph is acyclic. 

Lemma 6. Let G be an undirected graph represented as a simple hypergraph. Then ?(G) 
is the usual cyclomatic number of the graph G. 

Proof.  Let G have q arcs, p nodes, and s connected components. Some nodes may be 
isolated, say P0 of them. We extend the sum in the definition of cyclicity over all proper 
subedges of G, which are the singletons {u} for all non-isolated nodes u and the empty 
subedge. Computing the cyclicity of G, 

7(G) = ~ ( 6 ( u )  - 1) + (6(0) - 1) - IGI + 1 
u 

= 2 q - ( p - p o ) + ( s - 1 ) - - ( q + p o ) +  l = q - - p + s ,  

we find that it is in fact equal to the cyclomatic number of the graph G. [] 

5. Circulant graphs 

We will associate with a hypergraph certain 'circulant' graphs. There may be 
several circulant graphs associated with the hypergraph, but they all have the same 
cyclomatic number, which is equal to the cyclicity of the hypergraph. 

Let E be a simple hypergraph. Add to E all its joints and perhaps some other 
subedges of E, and denote the resulting hypergraph by F. (Hypergraphs assembled 
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in this manner are characterized by the property that all of their joints are their 
edges.) We take the hypergraph F for the node set of a graph G. For  each edge f of 
F which is a proper subedge of E, and each connected component C of the star Sty(f)  
relative to f, we choose an edgef '  in C; the arcs of G are then all the pairs {f, f '  }. We 
will say that any graph G obtained in this way is a circulant graph of a simple 

hypergraph E. 

Theorem 7. Every circulant graph G of a simple hypergraph E is connected, and the 
cyclomatic number of G is equal to the cyclicity of E. 

Proof. Take a look at the formula for the cyclicity of E (Definition 3). We can assume 
that the sum of terms 6~(f) - 1 runs over all those edges f in the node set F of the 
graph G that are proper subedges of E. Since E = Max(F), we have 6E(f) = 6F(f) for 
every e d g e f o f  F. Now split the sum into the difference of the sum of degrees 6F(f), 
which is precisely the number of arcs of the graph G, and the sum of l's, which 

together with the term I E[ yields the number of nodes of G. We see that the whole 
expression in fact gives the cyclomatic number of the graph G, provided G is 
connected. 

Suppose G is not connected. Then the node set F can be partitioned into two 
non-empty subsets FI and F2 such that each arc of G lies within one of these two 
subsets. Since every node of G is connected in G to some node in E, the sets 
E1 := Ec~F~ and E2 := Ec~F2 are not empty. Let g be maximal among all intersections 

of the form e l se2  with el eE~ and e 2 E E 2 ;  because e~ and e 2 are different maximal 
edges of F, g is a proper subedge of both el and e 2. The star S := Sty(g) is partitioned 
into S~ := Sc~Fa and $2 := SnF2, where el ~ S~ and e2 E S 2. The intersection of any 
edge from S~ with any edge from $2 is g, because of the maximality of g. This means 
that the star S has at least two connected components relative to g, so g is a joint and 
therefore belongs to F, say g 6 F~. But then g is connected by an arc of G to some node 
in $2, a contradiction. [] 

In particular, the cyclicity of a simple hypergraph is zero if and only if some of its 
circulant graphs is a tree - -  in which case every circulant graph of the hypergraph is 
a tree. 

6. Join-graphs, the join-invariant, and the cyclicity 

Let E be a simple hypergraph and G a graph on the set of nodes E. If f is a subedge 
of E, then a walk in G whose every node includes f will be said to be over f. We will say 
that G joins a pair of edges el, e2 of E if and only if the edges el and e2 are connected in 
G by a walk over e lne2,  and will say that G joins the hypergraph E if and only if 
G joins every pair of edges of E. A graph G that is minimal (as a set of arcs) w.r.t, the 
property of joining the hypergraph E, will be called a join-graph of E. 
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The complete graph on the set of nodes E clearly joins E; it follows that the 
hypergraph E has at least one join-graph. Suppose that a graph G joins E, and that 

a = {e~, e2) is an arc of G such that the edges el and e2 are joined in G by a walk p on 
which the arc a does not appear; let us call such an arc a of the joining graph 
G redundant. If we remove from G a redundant arc a = {el, e2}, then the remaining 
graph G' still joins the hypergraph E: any pair of edges da, d2 of E is joined by a walk in 
G; if the walk contains the arc a, then el ne2 ~ d~ rid2, so substituting the walk p for 
the arc a we obtain a walk in G' over dl rid2, which therefore joins d~ and d2. On the 
other hand, if no arc of the graph G is redundant, and we remove from it one or more 
arcs, then the end nodes of any of the removed arcs can no longer be joined in the 
remaining graph. Thus we have 

Lemma 8. A 9raph that joins a simple hypergraph is its join-graph if and only if it does 
not have any redundant arcs. 

We will now state the structure theorem for join-graphs. We need some notions to 
do this. A pair {el, e2} of different edges of a simple hypergraph E is said to be 
articulated if and only if e~ and e2 are not connected in the star StE(e~ ne2) relative to 

e lne2.  Equivalently, {e~, e2} is an articulated pair if and only if e~ he2 := f is a joint 
and the edges e~ and e2 lie in different connected components of the star StE(f) 
relative to f. For  any joint f of E we denote by ~g~(f) the set of all connected 
components of S te( f )  relative to f. Let f be a joint and T a set of articulated pairs 
{el, e2} with e~ n e  2 = f  To each pair {el, e2} in T there corresponds the pair {C~, C2} 
of different connected components in cg~(f), where Ci is the connected component 
containing the edge ei, for i =  1, 2; let Y-- be the set of all pairs of connected 
components corresponding to the pairs of edges in T. We call T a tree set over f if and 
only if the mapping {e~, e2} w-, {C~, C2} from T to Y- is bijective and Y- is the set of 

arcs of a tree on the set of nodes ~gE(f). 

Theorem 9 (Structure of join-graphs). Let G be a join-graph of a simple hypergraph E. 
All arcs of G are articulated edge pairs in E, and for each joint f of E the set T f of all arcs 

{el, e2} of G with e lne2  = f is a tree set over f. 

Proof. We show first that any arc {el, e2} of G is an articulated pair of edges. Write 

f : =  elne2,  and assume that el and e2 are connected in the star Stn(f)  relative tof .  
Then there is a sequence of edges ho = ex, h~ . . . . .  h, = e2 such that hj_ lnh j  ~ f f o r  
eachj = 1 . . . . .  n. Since G joins E, each pair of edges hi_ 1, hj is joined in G by a walk pj. 
The composition of walks Pl . . . .  ,p, is a walk p joining e~ with e2, where the 
intersection of any two consecutive nodes on p is a proper superset of f. The arc 
{el, e2} does not appear on the walk p and is therefore redundant, contrary to 
minimality of G. This contradiction shows that el and e2 are not connected in Stg(f)  
relative to f. 
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Let n o w f  be any joint of E and let the set T f  be as in the statement of the theorem. 
We will show that there cannot be two different arcs {el, e2} and {e'~, e~} in T f  such 
that ei and e'i would belong to the same connected component Ci in cge(f), for i = 1, 2. 
Assume the contrary. Then the edges e~ and e'~ are joined by a walk Pi in G, i = 1, 2 (at 
least one of the walks Px, p2 is of non-zero length), where the intersection of any two 
consecutive nodes on the walk p~ is a proper superset of the jointf. No arc on pi can be 
either {el, e2} or {e'x, e~}, and it follows that, say, the arc {el, e2} is redundant. Denote 
by ~ the set of all pairs of connected components in cg~(f) corresponding to arcs in 
Tf.  It can be shown, by an argument similar to the one we have used just now, that 

can contain no cycle. It remains to show that . ~  connects any two different nodes 

C 1 and C2 in cgE(f). Choose edges C 1 E C 1 and C 2 ~: C 2 ,  and let do = cl, dl . . . . .  d, = C 2 

be the sequence of nodes on some walk in G joining cl and c2; all the edges do, 
d~ . . . . .  d, belong to St~(f). For  eachj  = 0, 1 . . . . .  n let Dj be the connected component 
in Z e ( f )  containing dj. Then in the sequence Do, D~, ... ,D, either Dj_ 1 ~-Dj, or 
{D j_ 1, D~} belongs to ~ ,  for each j = 1, . . . ,  n. We have a walk (possibly with some 
consecutively repeated nodes) connecting Cx with C2 in the tree ~ .  [] 

The structure theorem for join-graphs has two immediate corollaries. The first 
corollary asserts the existence of the join-invariant of a simple hypergraph, while the 
second corollary 'explains' the summands in the formula for the cyclicity of a hyper- 
graph as the sizes of tree sets over the joints of a hypergraph. 

Corollary 10 (The join-invariant). Let G be any join-graph of a simple hypergraph E. 
The multiset (formal linear combination with natural coefficients) of joining sets el nee 

for all arcs {el, e2} of G is 

(6E(f) - 1).f,, 
f 

where the sum is taken over all joints of E. 

Corollary 11. Any join-graph of a simple hypergraph has the cyclomatic number equal to 
the cyclicity of the hypergraph. 

Join-trees are clearly just join-graphs which happen to be trees. Either all join- 
graphs of a simple hypergraph are trees, or none is; in the former case, the hypergraph 
is acyclic and its cyclicity is zero, in the latter it is not acyclic and has a non-zero 
cyclicity. So we have: 

Theorem 12. A simple hypergraph is acyclic if and only if its cyclicity is O. 

The structure theorem for join-graphs has an exact converse, the construction 
theorem, which says in effect that the tree sets determined by a join-graph are 
arbitrary and independent of each other. We need a preliminary lemma. 
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Lemma 13. For any two edges el and e 2 o f  a simple hypergraph E there exists 
a sequence of edges starting at el and ending at e2, in which each edge is a superset of 
el he2 and any two consecutive edges form an articulated pair. 

For  the proof just join the edges el and e2 by a walk over el he2 in any join-graph of 
E. Now we are all set for the construction theorem: 

Theorem 14 (Construction of join-graphs). I f  E is a simple hypergraph, and for each 
joint f of E, Ty is any tree set over f then the union of the tree sets Ty for all joints f is the 
set of arcs of a join-graph of E. 

Proof. For  each tree set Ty denote ~ the corresponding tree on the node set ~gg(f). 
The tree sets T I are disjoint from each other: since for every edge pair {el, e2} in Tf we 
have el he2 = f ,  tree sets over different joints cannot have any edge pair in common. 
Let G be the graph on the set of nodes E whose set of arcs is the union of all tree sets 
T I. For every j o i n t f o f  E the set of all arcs {ex, e2} of G with el he2 = f is precisely the 
tree set T s. If we show that G joins E, it will immediately follow that G is in fact 
a join-graph of E, since by the structure theorem for join-graphs we cannot remove 
any arcs from G and still have a graph joining E. 

Because of Lemma 13 it suffices to show that an articulated pair of edges {el, e2} is 
joined in G. The proof will be by induction on the joint f : =  exc~e2 in the ordering of 
joints opposite to the inclusion (i.e. the induction will go downwards). Let Ci be the 
connected component in cgE(f) containing the edge el, i =  1, 2. There is a walk 
DoD1...D, (n>ll) in the tree ~ connecting C I = D o  to C 2 = D , .  For  each 
j - 1, . . . ,  n let {d)_ 1, dj} be the pair in the tree set Tj such that d)_ 1 G D j_ i and dj G D r. 
Here the pairs (d)_ 1, dj-} are already arcs of the graph G, and the nodes d)_ 1, 

d r includef. It remains to show that the pairs {el, db}, (dl, d'~}, . . . ,  {dn-1, d',_ 1}, {d,, 
e2} are joined in G. Each of these pairs is connected in the star Stn(f)  relative to f, so 
let {d, d'} be any such pair. There exists a walk CoCl ... cm connecting d -- Co to d' -- cm 
(where possibly m -- 0) in Ste( f )  relative tof. For  each k = 1 . . . . .  m the edges CR- 1 and 
Ck are connected, according to Lemma 13, by a walk over Ck-:C~Ck ~f ,  where all arcs 
on the walk are articulated pairs of edges. The concatenation of these walks is a walk 
from d to d', each arc of which is an articulated pair of edges {a, b} with ac~b ~f ,  hence 
by the induction hypothesis the edges a and b are joined in the graph G, and so are 
then the edges d and d'. [] 

A coherent join-graph is one in which each tree set Tf is connected, so is in fact 
a tree naturally isomorphic to the tree ~ .  According to the construction theorem for 
join-graphs, every simple hypergraph has coherent join-graphs; in particular, every 
acyclic simple hypergraph has coherent join-trees. 

Let us mention, as a curiosity, that the collection ~g of all join-graphs of a simple 
hypergraph E is the set of bases of a binary matroid. We can easily exhibit a coor- 
dinatization. Take the set of all pairs (f, C), where f is a joint of E and C is a 
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connected component of the star StE(f) relative to f, and make this set a basis of 
a vector space V over the two-element field. Let a = {el, ez} be any arc of the 
complete graph K(E) on the node set E. If {el, e2} is an articulated pair, then put 
va := (f, Ca) + (f, C2)E V, wheref i s  the joint elne2,  while C~ and C2 are the connec- 
ted components in ~ e ( f )  that contain e~ and e2, respectively; otherwise, if the pair 
{el, e2} is not articulated, put va := 0 ~ V. Then a subset G of K(E) (both considered as 
sets of arcs) is a join-graph of E if and only if the family (vblb~G) is a basis of the 
subspace of V spanned by the vectors va for all arcs a of K(E). 

7. Cyclicity vs. cyclomatic number 

We have mentioned in the introduction the cyclomatic number #(E) of a hyper- 
graph E. In this section we compare it with the cyclicity of a hypergraph. 

Let us first verify that the cyclicity is not the same thing as the cyclomatic number. If 
X is a set of n >~ 3 vertices, let E be the hypergraph consisting of edges X\{x}  for all 
x ~ X ;  then 7(E) = ½n(n -- 3) + 1 and #(E) = n - 2. For  another example take a hy- 

pergraph E = {a, b, c}, where I(bnc)\al = m, I(anc)\bl = n, and I(anb)\cl = p, with m, 
n, p > 0; in this case 7(E) = 1, while #(E) = min(m, n, p). The two examples demon- 
strate that the difference ~,(E) - #(E) is not bounded in either direction. 

The cyclicity and the cyclomatic number do not differ only in value, they also 
behave differently. For  example, the cyclicity is preserved under blowups, while the 
cyclomatic number is not. To describe what we mean by a blowup of a hypergraph, let 
E be a hypergraph and a a surjective function mapping a finite set W onto the span of 
E. The inverse image fl(E) of the hypergraph E, consisting of the inverse images 
fl(e) = a- l (e )  of the edges eeE,  is then a blowup of E. It is obvious that the maximal 
edges of the hypergraph E bijectively correspond to their counterparts in fl(E), and the 
same is true for joints. Star articulation degrees of corresponding joints are the same, 
and so are then the cyclicities of E and fl(E). The cyclomatic number, however, may 
change when a hypergraph is blown up, as is evident from the second example given 
above. 

On the other hand, the cyclicity and the cyclomatic number are also similar 
in certain respects: both depend only on the maximal edges, both decrease on 
subhypergraphs, and both are additive on compositions. The cyclicity satisfies 
7(E) = 7(Max(E)) by definition, and it is shown in [1] that the cyclomatic number 
also has this property. 

We have seen that the cyclicity decreases on subhypergraphs (Theorem 4). So does 
the cyclomatic number; since this is not mentioned in [1], it will not hurt to prove it 
here. Notice that the maximum weight of a subforest of the intersection graph of E is 
the same as the maximum weight of a tree on the set of nodes E, provided we allow 
a tree to have arcs of weight 0, which we do. 

Theorem 15. I f  F is a subhypergraph orE, then #(F) <. #(E). 
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Proof. We can assume, without loss of generality, that E is a simple hypergraph and 
that F := E[U], where U = (UE)\{u} for some vertex u E UE. (It does not matter that 
E[U] might not be simple.) Write S := StE(u). The mapping S ~ S[U] :s ~--,s\{u} is 
bijective and S[U] has no edge in common with E(U), so E[U] is a disjoint union of 
E(U) and S[U]. Let T be a maximum weight tree for E, i.e., w(T) = wE. Since the 
mapping E ~ E[U] :e ~--~e\{u} is a bijection, it maps the tree T on nodes E to a tree 
T '  on nodes E[U]. We have 

NE) = ~ l e t -  IUEI - w(Z),  
e~E 

/~(EI-U]) ~ ~ le'l - I ~ E [ U ] I -  w(T'). 
e' eE[Ul 

Going from the former to the latter, we lose [ S[ in the first term (i.e. the sum) and gain 
1 in the second. Since the graph induced by the tree T on the set of nodes S is a forest, 
we gain at most I SI - lin the third term. All in all we have a net deficit (possibly zero), 
meaning that /~(E[U])  ~</~(E). [] 

Another property shared by the cyclicity and the cyclomatic number is additi- 

vity on compositions of hypergraphs. Let E~ and E2 be hypergraphs with dis- 
joint spans, and let ¢p be a bijection of a subedge gl of E1 onto a subedge g2 of 
E2. Given these data, we identify in the hypergraph E~wE2 each vertex u in g~ with 
the vertex ¢p(u) in g2, thus obtaining a hypergraph E, the composition of E~ and 
E2. Hypergraphs E1 and E2 are embedded into E as partial hypergraphs, still 
denoted E1 and E2, in such a way that E = EIUE2 and that (UE1)n(UE2) =: g 
is a subedge of both E1 and E2; we will observe composition only in this 
'internal' form, and will say that it is over g. If E is a composition of 
simple hypergraphs E1 and E2 over g, then E need not be simple; there are three 
possibilities: 

(a) g is a proper subedge of both E1 and E2:E1 and E2 have no edge in common and 
E is simple; 

(b) g is an edge of, say, E1 and is a proper subedge of E2: in this case 
Max(E) = (El\{g})wE2, a disjoint union; 

(c) g is an edge of both E1 and E2; now E is simple. 
We will now prove additivity first for the cyclicity and then for the cyclomatic number 
of a hypergraph. 

Proposition 16. I f  a hypergraph E is a composition of hypergraphs Ex and E2, then 
~(E) = ~(EI) + ~(e~). 

Proof. We may assume that E1 and E 2 a r e  simple, since this does not affect the 
generality of the proof. Let g be the common subedge over which E1 and E2 are 
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composed. Take any join-graphs G1 and G 2 of E 1 and E2 ,  respectively, choose an 
edge hi :-' g in E~ and an edge h2 ~ g in E2, and construct a graph G, as follows. 
In case (a) (of the three cases (a), (b), and (c) mentioned in the text) add to a graph 
G1uG2 the arc{hi, h2}. In case (b) remove from the graph GIUG2 the node g and 
reconnect its neighbours to the node h2. Finally, in case (c) take for G the union 
G~uG2. The cyclomatic number of the graph G is in all three cases the sum of the 
cyclomatic numbers of G~ and G2. As a consequence of Corollary 11 it suffices to 
show that G is a join-graph of Max(E); we will do this only for case (a), since the 

argument can be easily adapted to the other two cases. We show first that G joins 
Max(E) = E. Any two edges of E l ,  o r  o f  E2, are joined in G1 or in G2, respectively, so 
are also joined in G. Otherwise, if el is an edge of E1 and e2 an edge of E2, then 
elope2 c_ g = hitch2, hence elope2 _ elC~hl and elr~e2 c_ e2c~h2; if we now join ex to 
hi in Gi, pass along the arc {h~, ha} to h2, then join h2 to e2 in E2, we have joined et to 
e2 in G. It remains to verify the minimality of G. We cannot remove from G the arc 
{hl, h2}, because the nodes hi and ha are not connected, much less joined, in the 
remaining graph. If a is an arc of, say, G~, then its end-nodes are not joined in the 
graph G\{a}, since otherwise the shortest path joining the ends of a in G\{a} would lie 
entirely within the graph G~\{a}, which is impossible in view of the minimality 

of G 1 . [ ]  

Proposition 17. I f  a hypergraph E is a composition of hypergraphs E1 and E2, then 
fl(E) --/A(E1) + fl(E2). 

Proof. If E1 and E 2 a r e  composed over g, we can assume that Elc3E 2 = {g},  for 
otherwise we can take F1 := Max(E1)w{g}, 1:2 := Max(E2)w{g}, and F := FieF2 
instead of El, E2, and E, without affecting the premises or the conclusion of the 
proposition. Comparing the expression for #(E) (given in the introduction) with that 
for #(El)  + #(E2), we find that they are equal if and only if the weight we is the sum of 

the weights wE~ and wE2. 
Let Tx and T2 be maximum weight trees on E~ and E2, respectively. 

Then T : =  TlWT2 is a tree on E, and W E l + W E 2 = w ( T 1 ) + w ( T 2 ) =  
w(T) <. wE. 

Conversely, let T be a maximum weight tree on E. Removing (for a moment) 
the node g from the tree T yields a forest of subtrees S~ . . . .  ,S, rooted at 
the neighbours of the node g in the tree T. If each subtree Sj has all nodes either 
in Ei\{g} or in E2\{g}, then clearly T = TIuT2,  where T~ is a tree on E1 and 
T2 is a tree on E2, and we have the opposite inequality 
w~ + we2 >~ w(TO + w(T2) = w(T) = wE. Otherwise, some subtree S i contains an 
arc {eb e2}, with the node e2 farther from the root of Sj than the node e~, which 
crosses, say, from e~ e E~\{g} to e2 e E2\{g}. Since el c~e2 ~ g, we have ex c~e2 c_ gc~e2. 
Remove from the tree r the arc {e~, e2}, then add the arc {g, e2}; the result is again 
a tree on E, which has one crossing less than T. The weight could have only increased, 
hence has remained the same. [] 
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8. Conclusions 

We introduced and examined the acyclicity of a hypergraph, an extension of 
the cyclomatic number of a graph. We associated with a hypergraph circulant graphs 
and join-graphs, which have the cyclomatic number equal to the cyclicity of the 
hypergraph. From the structure theorem and the construction theorem for join- 
graphs we gained an insight into the meaning of the summands in the formula for 
cyclicity. 

We have seen two extensions of the cyclomatic number of a graph to hypergraphs. 
Let us show how to construct other similar 'cyclicity measures', i.e., functions from 
hypergraphs to non-negative integers which for graphs give the usual cyclomatic 
number and are zero precisely on acyclic hypergraphs. Let a map hypergraphs to 
non-negative integers, giving zero on acyclic hypergraphs, and define another function 
£a  from hypergraphs to non-negative integers by 

Z'~(E):= ~ ~(Stt(u)). 
ucUE 

Then Y, ct(E) is zero on every hypergraph E in which all stars Stdu) of vertices u e UE 
are acyclic; in particular, £~ is zero on graphs and acyclic hypergraphs. Now, if fl is 
a cyclicity measure, then fl + k" 2~ is again a cyclicity measure, for any non-negative 
integer k. 

To give an example, consider 2~3,. We have 

Sv(E) = ~'.(6e(f) - 1) ' l f l  + IUEI, 
f 

wherefruns through all joints and maximal edges, and possibly some other subedges. 
A hypergraphs E has ,~v(E) = 0 precisely when all of its vertices have acyclic stars. 
Using 2~3,, we obtain two infinite sequences of cyclicity measures ), + k.2~, and 
p + k" 2~V, for k = 0, 1, 2 . . . . .  An interesting one is 

(p + Z,v)(E) = ~ ( 6 E ( f ) -  1) ' l f l  - wE. 
f E~P(E) 

For a simple hypergraph E the first part of the right-hand side, the sum, is the 
weight of any join-graph of E. The fact that the whole expression is always non- 
negative leads us to enquire whether every maximum weight tree is a part of some 
join-graph. This is indeed so. It can be shown, by a reasoning similar to that in the 
proof of the structure theorem for join-graphs, that every arc of a maximum weight 
tree is an articulated pair, and that for every jo in t f the  set of all arcs {el, e2} of the tree 
with elc~ez = f  is a part of a tree set overfi The construction theorem then gives the 
rest. 

A possible future direction of research on cyclicity measures would be to study 
classes of cyclicity measures satisfying additional conditions, say some stronger form 
of additivity. One of the aims could be to discover simple conditions determining 
a unique cyclicity measure. 
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