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Maximization of x(C−x), slightly generalized

The problem of dividing a constant into two parts so that their product is maximum, discussed
on page 7 of WLiB, can be perceived as a special case of maximizing the product f(x)f(a−x),
where f is a positive, logarithmically concave function.

Let a be a positive real number. Let f(x) be defined and positive for 0 < x < a, and sup-
pose that ln f is concave. We want to maximize the product f(x)f(a−x). We shall show that
the product attains the absolute maximum at x = 1

2 a; moreover, if ln f is strictly concave1,
then it is only at x = 1

2 a that the product has the maximum value.
Define g := ln f . By concavity of g we have

1
2g(x) + 1

2g(a − x) � g
(

1
2 x + 1

2(a − x)
)

= g
(

1
2 a
)
, (1)

that is, g(x) + g(a − x) � 2g
(

1
2 a
)
. Writing F (x) := f(x)f(a − x), we see that F (x) � F

(
1
2 a
)

for 0 < x < a. Now suppose g is strictly convex, and let 0 < x < a, x �= 1
2 a; then x �= a − x,

the inequality in (1) is strict, and consequently F (x) < F
(

1
2 a
)
. Done.

We now examine the behaviour of G(x) := g(x) + g(a − x), and with it the behaviour
of F (x) = eG(x), on the interval 0 < x < a. First note the symmetry G(a − x) = G(x),
and hence F (a − x) = F (x), relative to the midpoint 1

2 a of the interval. Next observe that
g(a − x) is concave because g(x) is concave, thus G is also concave; if g is strictly concave,
then G is strictly concave. We claim that G(x) increases (strictly, if g is strictly concave) for
0 < x � 1

2 a, and, because of the symmetry noted above, (strictly) decreases for 1
2 a � x < a;

from this it will follow that F (x) behaves in the same way. Let 0 < x < y � 1
2 a; we shall

show that G(x) � G(y), where the inequality is strict when g is strictly concave. We can write
y = (1 − λ)x + λ 1

2 a, where λ = (y − x)/
(

1
2 a − x

)
lies in the range 0 < λ � 1. We have

G(y) � (1 − λ)G(x) + λG
(

1
2 a
)

by concavity of G; taking into account that G
(

1
2 a
)

� G(x), with the inequality being strict
if g is strictly concave, we obtain the promised inequality.

In the situation we have just examined the function g is concave on an open interval,
and because of that it is continuous, and so is f . Now assume that we have a function f(x)
that is defined and non-negative on the closed interval 0 � x � a, while it is positive on the
open interval 0 < x < a with ln f(x) concave on this open interval; moreover, assume f(x)
to be continuous at x = 0 and x = a (besides being continuous for 0 < x < a). Define
F (x) := f(x)f(a − x) for 0 � x � a. From what we know about the behaviour of F (x) on
the open interval 0 < x < a, and because of the continuity of F (x), we conclude that

F (0) = lim
x↘0

F (x) = F (a) = lim
x↗a

F (x) = inf
0<x<a

F (x) ,

and that F (x) increases for 0 � x � 1
2 a while it decreases for 1

2 a � x � a (strictly in-
creases/decreases provided ln f is strictly concave on the open interval).

Taking one last look at our slightly generalized maximization problem, suppose that f(x)
is defined, positive, and differentiable on the open interval 0 < x < a, and that ln f is strictly

1A real function g(x) defined on an open interval a < x < b (where possibly a = −∞ and/or b = +∞)

is convex (concave) if g
(
(1− λ)x + λy

)
� (1− λ)g(x)+ λg(y) (resp. g

(
(1− λ)x + λy

)
� (1− λ)g(x) + λg(y))

for any x, y, and λ such that a < x, y < b and 0 � λ � 1, and is strictly convex (strictly concave)

if g
(
(1−λ)x+λy

)
< (1−λ)g(x)+λg(y) (resp. g

(
(1−λ)x+λy

)
> (1−λ)g(x)+λg(y)) for any x, y, and λ such

that a < x, y < b, x �= y, and 0 < λ < 1. It is not quite clear whether strict convexity (concavity), as defined on

page 336, is the same notion as the strict convexity (strict concavity) by the usual definition, the one given here.

For example, it is somewhat peculiar that the Jensen’s inequality, given on pages 336 and 337, is said to hold

for a strictly convex (or concave) function, while it is known to hold for any convex (concave) function.
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concave. Strict concavity of ln f is equivalent to f ′/f being strictly decreasing, and it follows
that the derivative

(
f(x)f(a − x)

)′ = f(x)f(a − x)
(

f ′(x)
f(x)

− f ′(a − x)
f(a − x)

)

is positive for 0 < x < 1
2 a and is negative for 1

2 a < x < a.

As an example, consider the problem of determining the shape of the right triangle with
the largest possible isoperimetric quotient; the answer is, of course, the isosceles right triangle,
but let us prove this.

The shape of a right triangle with sides a, b, and c (where c is the hypotenuse) is determined
by the interior angle α opposite the side a. We can assume that c = 1; then a = sin α, b = cos α,
the perimeter is P (α) = 1 + sin α + cos α, and the area is A(α) = 1

2 sin α cos α. We want to
maximize Q(α) = 4πA(α)/P (α)2 . Since

P (α)2 = (1 + sin α + cos α)2

= 1 + sin2α + cos2α + 2 sin α + 2cos α + 2 sin α cos α

= 2(1 + sinα + cos α + sin α cos α)

= 2(1 + sinα)(1 + cos α) ,

we have
Q(α) = π

sinα

1 + cos α

cos α

1 + sin α
= πf(α)f

(
1
2π − α

)
,

where
f(α) =

sinα

1 + cos α
= tan

(
1
2 α
)
.

Since
f ′(α)
f(α)

=
1

sin α

is strictly decreasing for 0 < α < 1
2π, it follows that Q(α) is unimodal with the unique

maximum at α = 1
4π.

Maximization of x(C−x), generalized slightly more

In this section we seek the maximum of the product f(x1) · · · f(xm), where f is a positive,
logarithmically concave function.

We start on the level where the logarithm of f lives. Let a > 0, let the real-valued
function g(t) be defined and concave for 0 < t < a, and let m � 2 be an integer. For any
x = (x1, . . . , xm), where x1 > 0, . . . , xm > 0 and x1 + · · · + xm = a, define

G(x) := g(x1) + · · · + g(xm) ; (2)

here x = (x1, . . . , xm) is a point in the interior Δ◦ of the (m−1)-simplex Δ with the m vertices
(a, 0, . . . , 0), (0, a, . . . , 0), . . . , (0, 0, . . . , a). By concavity of g we have

1
m g(x1) + · · · + 1

m g(xm) � g
(

1
mx1 + · · · + 1

mxm

)
= g

(
1
m a
)
, (3)

and multiplying this inequality by m we get

G(x) � G(b) , where b =
(

1
m a, . . . , 1

m a
)
. (4)
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If g is strictly concave, and x �= b, then the inequality (3) is strict, and so is the inequality (4).
Thus G attains its absolute maximum at the center b of the simplex Δ, and when g is strictly
convex, the center b is the only point of the open simplex Δ◦ at which the value of G is the
absolute maximum.

Let x be any point in the open simplex Δ◦, and y = (1 − λ)x + λb, 0 � λ � 1, a point of
the line segment [x - -b]; then

G(y) = G
(
(1 − λ)x + λb

)
= g

(
(1 − λ)x1 + λ 1

m a
)

+ · · · + g
(
(1 − λ)xm + λ 1

m a
)

� (1 − λ)g(x1) + λg( 1
m a) + · · · + (1 − λ)g(xm) + λg( 1

m a)

= (1 − λ)G(x) + λG(b)

� (1 − λ)G(x) + λG(x)

= G(x) .

(5)

If g is strictly concave and y �= x (hence x �= b), then G(b) > G(x), λ > 0, λG(b) > λG(x),
the second inequality in (5) is strict, and we have G(y) > G(x). Therefore, if g is strictly
concave, then G(x) is radially unimodal (it strictly decreases along any line segment in Δ◦

starting at the point b.)
We shall show that with g(t) as above (defined and concave for 0 < t < a), the value g(t)

tends to a finite value or decreases to −∞ as t decreases to 0, and the same is true when t in-
creases to a. Choose real numbers a′ and a′′ so that 0 < a′ < a′′ < a, and let �(t) be the linear
function defined on the open interval 0 < t < a such that �(a′) = g(a′) and �(a′′) = g(a′′).
The difference h(t) = g(t) − �(t) is a concave function which has h(a′) = h(a′′) = 0. By con-
cavity of h we have h(t) � 0 for a′ � t � a′′. Let 0 < t � a′ ; then a′ = (1 − λ)t + λa′′ for
a suitable λ with 0 � λ < 1, and therefore 0 = h(a′) � (1 − λ)h(t) + λh(a′′) = (1 − λ)h(t),
whence h(t) � 0 because 1 − λ > 0. Similarly we find that h(t) � 0 for a′′ � t < a. There
exists some c between a′ and a′′ such that h(c) � h(t) for a′ � t � a′′, and since h(c) � 0,
we have h(c) � h(t) for every t in the interval 0 < t < a. Moreover, h(t) increases for 0 < t � c

and decreases for c � t < a, again because of the concavity of h. It follows that if t ↘ 0
(or t ↗ a), then h(t) either decreases to −∞ or converges to a finite limit, and that the same
holds for the function g(t).

Now we consider a real-valued function f(t), defined and non-negative for 0 � t � a,
where f(t) > 0 and g(t) := ln f(t) is defined and concave for 0 < t < a. We know that g(t),
and hence f(t), is continuous for 0 < t < a, and that the limits f(0+) = limt↘0 f(t) and
f(a−) = limt↗a f(t) exist; we are assuming that f(t) is continuous at t = 0 and t = a,
i.e. that f(0) = f(0+) and f(a) = f(a−). For any point x = (x1, . . . , xm) of the closed
simplex Δ define

F (x) := f(x1) · · · f(xm) .

Then F is continuous on the closed simplex Δ, and F (x) = eG(x) for every point x of the
open simplex Δ◦, with G(x) defined as in (2). From what we know of the behaviour of
the function G, we conclude that F (x) � F (b) for every point x of the simplex Δ (where b is
the center of the simplex), and that F (x) < F (b) if x �= b and g is strictly concave. Moreover,
for any point x �= b of the simplex Δ, F (y) decreases along the line segment [b - -x], and it
strictly decreases along this line segment when g is strictly concave.

The AM-GM inequality says that for any integer m � 1 and any non-negative real numbers
x1, . . . , xm we have

x1 + · · · + xm

m
� m

√
x1 · · · xm ,
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where the equality holds if and only if x1 = · · · = xm. We obtain the AM-GM inequality as
a special case of the inequality F (x) � F (b), as follows. We choose f(t) = t; ln f(t) = ln t

is strictly concave for t > 0. The AM-GM inequality is trivially true if m = 1 or all xi are 0,
so assume that m � 2 and some xi is positive, whence a := x1 + · · · + xm > 0. Then the
inequality F (x) � F (b) reads as

x1 · · · xm �
(

1
m a
)m

,

where the equality holds if and only if x1 = · · · = xm = 1
m a; but this statement is clearly

equivalent to the AM-GM inequality.

As in the preceding section, we give an example: determine the shape of a tetrahedron
with a right-angled corner which maximizes the isoperimetric quotient. As in the previsous
section the answer is ‘obvious’, namely the isosceles right-angled tetrahedron (the three sides
emanating from the right-angled corner have equal lengths).

Let the vertices of the tetrahedron be the origin O of the Euclidean coordinate system
Oxyz, and the points A = (x, 0, 0), B = (0, y, 0), and C = (0, 0, z) on the coordinate axes,
where the coordinates x, y, z are positive. Denote by a, b, c, and d the areas of the triangles
(in the same order) OBC, OAC, OAB, and ABC. We know that a, b, c, and d are positive,
and that a2 + b2 + c2 = d2; since the isoperimetric quotient is invariant under scaling, we can
assume that d = 1. For those bodies in a three-dimensional Euclidean space that have a surface
area S and a volume V , the isoperimetric quotient is defined as

Q := 36π
V 2

S3

In our case the surface area is S = 1+a+ b+ c. To compute the volume, we first determine x,
y, and z from a = 1

2 yz, b = 1
2 xz, c = 1

2 xy ; we have abc = 1
8 (xyz)2, thus 1

2 xyz =
√

2abc, and
x =

(
1
2 xyz

)/
a =

√
2bc/a, y =

√
2ac/b, z =

√
2ab/c. The volume is V = 1

3 ax = 1
3

√
2abc,

and the isoperimetric quotient is

Q(a, b, c) = 8π
abc

(1+ a+ b+ c)3
.

By the AM-GM inequality,

1
3(a + b + c) � (abc)1/3 =: u ,

where the equality holds if and only if a = b = c = u. Then we have the inequality

Q(a, b, c) � 8π
abc(

1 + 3(abc)1/3
)3 = 8π

(
u

1 + 3u

)3

,

which is an equality if and only if a = b = c = u. Note that

u

1 + 3u
=

1
3
− 1

3(1 + 3u)

is an increasing function for u > −1
3 . Now u6 = a2b2c2, where a2 + b2 + c2 = 1, is the largest

when a2 = b2 = c2 = 1/3, thus umax = 1/
√

3, and we have

Q(a, b, c) � 8π

(
umax

1 + 3umax

)3

= Q
(
1/
√

3, 1/
√

3, 1/
√

3
)

,

where the equality holds if and only if a = b = c = 1/
√

3, that is, if and only if x = y = z.
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Jensen’s inequality

In the preceding section we used Jensen’s inequality for a concave function, together with the
necessary and sufficient conditions for the inequality to be strict when the function is strictly
concave. The formulation of Jensen’s inequality in Appendix B of WLiB lacks the criteria
for strict inequality (equivalently, for equality), though it assumes that the function is strictly
convex (or strictly concave). For this reason we shall spell Jensen’s inequality out in full, this
time only for a (strictly) convex function, and shall also provide a proof.

Jensen’s inequality. Let Y be a nonempty interval of real numbers (i.e. a nonempty
convex subset of the real line), and let f be a real-valued function defined and convex on Y .
Let n � 1 be an integer. If c1, . . . , cn are any non-negative real numbers which sum up to 1,
and x1, . . . , xn are any real numbers lying in the interval Y , then

f(c1x1 + · · · + cnxn) � c1f(x1) + · · · + cnf(xn) . (6)

Moreover, if f is strictly convex, then the inequality (6) is an equality if and only if those
numbers xi, whose corresponding coefficients ci are nonzero, are all equal to each other.

Proof by induction on n. In the case n = 1 the above assertion is trivially true.
Consider the case n > 1. If ci = 0 for some i, then we have a case (n−1), and the assertion

for this case, which is true by induction hypothesis, is at the same time the assertion for our
case n with ci = 0.

It remains to prove the assertion assuming that all ci are nonzero. Then

0 < c1 + · · · + cn−1 = 1 − cn < 1 ,

and we have

f(c1x1 + · · · + cnxn) = f

(
(1 − cn)

c1x1 + · · · + cn−1xn−1

1 − cn
+ cnxn

)

� (1 − cn)f
(

c1

1−cn
x1 + · · · + cn−1

1−cn
xn−1

)
+ cnf(xn)

� (1 − cn)
(

c1

1−cn
f(x1) + · · · + cn−1

1−cn
f(xn−1)

)
+ cnf(xn)

= c1f(x1) + · · · + cn−1f(xn−1) + cnf(xn) ,

(7)

where the first inequality holds because f is convex, and the second inequality holds by
induction hypothesis

Suppose f is strictly convex. The first and the last expressions of the derivation (7) are
equal if and only if both inequalities in the derivation are equalities. The first inequality is an
equality if and only if

c1x1 + · · · + cn−1xn−1

1 − cn
= xn (8)

because f is strictly convex, and the second inequality is an equality if and only if

x1 = · · · = xn−1 , (9)

this by induction hypothesis. The conjuction of conditions (8) and (9) is equivalent to

x1 = · · · = xn−1 = xn .

Done.
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The AM-QM inequality without tears

The direct proof of AM-QM inequality in Appendix B of WLiB is quite unnecessarily compli-
cated. Why not give the well-known elegant2 proof?

The AM-QM inequality. For any integer n � 1, if c1, . . . , cn are positive real numbers
summing up to 1, and x1, . . . , xn are any real numbers, then

∣∣c1x1 + · · · + cnxn

∣∣ �
√

c1x
2
1 + · · · + cnx2

n , (10)

where the inequality is an equality if and only if x1 = · · · = xn.

Write
A := c1x1 + · · · + cnxn , B := c1x

2
1 + · · · + cnx2

n .

The quadratic polynomial

t2 − 2At + B = c1(t − x1)2 + · · · + cn(t − xn)2 (11)

is nonnegative for all real t, therefore its discriminant A2 −B is non-positive, that is, A2 � B,
or equivalently,

|A| �
√

B , (12)

which is the AM-QM inequality (10).
The inequality in (12) is an equality if and only if the discriminant is 0, if and only if

the quadratic polynomial (11) has a zero, if and only if x1 = · · · = xn.
Done.

The AM-QM inequality is a special case of Schwarz inequality.

Schwarz inequality. For any integer n � 1, if c1, . . . , cn are any positive real numbers,
and x1, . . . , xn, y1, . . . , yn are any real numbers, then

∣∣c1x1y1 + · · · + cnxnyn

∣∣ �
√

c1x2
1 + · · · + cnx2

n ·
√

c1y2
1 + · · · + cny2

n (13)

where the inequality is an equality if and only if there exist real numbers λ and μ, not both 0,
such that λx1 = μy1, . . . , λxn = μyn.

Schwarz inequality is derived from non-negativity of the (at most) quadratic polynomial

c1(y1t − x1)2 + · · · + cn(ynt − xn)2 .

When c1 + · · · + cn = 1 and y1 = · · · = yn = 1, Schwarz inequality is the AM-QM inequality.

The triangle inequality is a consequence of Schwarz inequality.

Triangle inequality. For any integer n � 1, if c1, . . . , cn are any positive real num-
bers, and x1, . . . , xn, y1, . . . , yn are any real numbers, then√

c1(x1+y1)2 + · · · + cn(xn+yn)2 �
√

c1x
2
1 + · · · + cnx2

n +
√

c1y
2
1 + · · · + cny2

n

where the inequality is an equality if and only if there exist non-negative real numbers λ and μ,
not both 0, such that λx1 = μy1, . . . , λxn = μyn.

2There are those who would sneer at the proof as being ‘slick’.
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Which is larger, eπ or πe?

Section 5.1 of WLiB. The third paragraph on page 141 begins:

Start by defining the function h(x) =
(
ln(x)/x

)
(thinking of this definition is the

“hard” part of the problem!).

The function (ln x)/x need not be snatched out of thin air: we can ‘discover’ it by manipulating
the problem into a more solver-friendly form. First, we generalize the particular question
“Which is larger, eπ or πe?” to “Given real numbers x, y > 0, which is larger, xy or yx?”.
Since raising positive reals to the power 1/(xy) is a strictly increasing function, the inequality
xy < yx is equivalent to the inequality x1/x < y1/y; taking logarithms, and remembering that
lnx, defined on positive reals numbers x, is strictly increasing, we obtain another equivalent
inequality,

lnx

x
<

ln y

y
.

And here we have it, the function h(x) = (ln x)/x. Observing the sign of the first derivative

h′(x) = (ln x)′
1
x

+ (ln x)
( 1

x

)′
=

1 − ln x

x2
,

we see that h(x) strictly increases when 0 < x � e, and strictly decreases when x � e,
thus h(x) attains the maximum 1/e at x = e, and nowhere else, and hence x1/x = eh(x)

atains the maximum e1/e at x = e, and nowhere else. It follows that if x, y � e, then
xy < yx iff x < y, and if x, y � e, then xy < yx iff x > y. In particular, we get the answer to
the original question:

πe < eπ .

The function x1/x strictly increases to 11/1 = 1 for 0 < x � 1, then strictly increases to
e1/e for 1 � x � e, and after that strictly decreases for x � e, approaching 1 as x → +∞.
Thus, if 0 < x � 1 and y > 1, then xy < yx ; we can see this directly, since xy � 1 < yx.
When 1 < x < e and y > e, we can gain no information from what we know about the
behaviour of h(x) that would help us compare xy with yx. There is a unique bijection
j : (1 . . e ] → [e . . +∞) such that j(x)1/j(x) = x1/x for every x, 1 < x � e. If 1 < x < e

and y > e, then xy < yx iff j(x) > y ; alas, this is of some help only if we intend to compare
xy with yx for many y > e, but for some fixed x, 1 < x < e, since then we have to compute j(x)
(which is quite a task) only once, to be used in many comparisons.

We can use what we have learned about the behaviour of x1/x to easily solve the following
problem: find all integer solutions x, y, with 0 < x < y, of the equation xy = yx. Rewriting the
equation as x1/x = y1/y, we see that we must have x < e and y > e. The only two integers less
that e are 1 and 2, and we cannot have x = 1 because y1/y > 1 for y > 1, thus x = 2 is the only
possibility. Testing integers y = 3, 4, . . . we find that 41/4 = 21/2 (that is, j(2) = 4), and we
have the answer: 24 = 42 is the only solution. If we try to solve this problem as an arithmetic
problem about integers, we soon find ourselves sinking into the quicksand of comparing the
counts of primes appearing as factors in xy and yx,3 or doing something similarly futile.

3Correction: there is a nice solution just along these lines. Here goes. We must have x > 1, since x = 1 in

xy = yx imply y = 1, contradicting x < y. If p is a prime, if pe is the highest power of p dividing x, and if pf

is the highest power of p dividing y, then ey = fx, whence f = (y/x)e � e. It follows that y is divisible

by x, say y = xz, where z > 1 is an integer. From xxz = (xz)x we find, by extracting x-th roots and dividing

by x, that xz−1 = z. Estimating xz−1 =
(
1 + (x−1)

)z−1
from below by the first two terms of the binomial

expansion, we obtain z = xz−1 � 1+ (z−1)(x−1) � 1+ (z−1) = z, where both inequalities must be equalities.

Since the first inequality is an equality if and only if z = 2 (otherwise z > 2 and there are further nonzero

terms in the binomial expansion), and the second inequality is an equality if and only if x = 2, we conclude

that x = 2, y = 4 is the only solution of xy = yx in integers 0 < x < y.
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In Z.A.Melzak’s “Companion to Concrete Mathematics”, section 2.1 in Volume II opens
with a nice short proof of the fact that e1/e � x1/x for every x > 0, with equality iff x = e.
Here is how it goes. Since (et)′′ = et > 0 for all real t, the diagram of the exponential
function et is strictly above any of its tangets except at the point of contact; in particular,
considering the tangent at the point (0, 1), we get the inequality

et � 1 + t ,

which holds for every real t, with equality iff t = 0.4 Now, given any x > 0, take t = x/e − 1,
multiply both sides of the inequality by e, then raise them to the power 1/x.

Let us visualize possible sequences of simple steps that transform the inequality et � 1+ t,

1 e
�x�

1

e1� e

x1� x

(A) e1/e � x1/x (x > 0).

e
�x�

ee

ex

xe

(B) ex � xe (x � 0).

e
�x�

e

x

e ln�x�

(C) x � e ln(x) (x > 0).

e
�x�

1

x�e

ln�x�

(D) x/e � ln(x) (x > 0).

1
�t�

1

t

ln�t� � 1

(E) t � ln(t) + 1 (t > 0).

e
�x�

e

ex�e

x

(F) ex/e � x (any real x).

1
�t�

e

et

et

(G) et � et (any real t).

1
�t�

1

et�1

t

(H) et−1 � t (any real t).

1
�t�

1

1� t

et

(I) et � 1 + t (any real t).

Figure 1: Some morphs of the inequality e1/e � x1/x (for x > 0, with equality iff x = e).

and some other inequalities, to the inequality e1/e � x1/x. The nine plates in Figure 1 display
4We can also prove this inequality as follows: put f(t) = et − 1 − t; then f(0) = 0, f ′(t) = et − 1 < 0 for

t < 0, and f ′(t) > 0 for t > 0.
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diagrams of nine ‘morphs’ of the inequality e1/e � x1/x, that is, of nine inequalities equivalent
to it; Figure 2 has the diagram of one more morph, namely of the inequality 1/e � ln(x)/x,

�t�
1 e

1

e
ln�x�

x

(J) 1/e � ln(x)/x (x > 0)

Figure 2: One more morph of the inequality e1/e � x1/x.

that we obtained by analyzing the behaviour of the function (lnx)/x. In Figure 3 we have
another sort of diagram, which represents simple transitions between the ten inequalities.

( I) (H) (G) (F) (A)

(E) (D) (C) (B)

(J)
t �→ t−1 e · ( ) t �→ x/e ( )1/x ln( )

t �→ x/e e · ( ) e( )

( )1/(ex)inv inv inv ( )e

Figure 3: Metamorphoses of the inequality (A) e1/e � x1/x.

Some transitions are omitted from this diagram, say (J)
xe·( )−−−−→ (C) and (J)

x·( )−−−→ (D), also all
the transitions that are inverses of the shown one-way transitions. A two-way arrows labeled
by inv represents a transition from an inequality between two strictly increasing (continuous)
functions to the opposite inequality between their inverses; having the diagram of one of the
two inequalities that are related in this manner, we obtain the diagram of the other inequality
by exchanging the coordinate axes.

The (not so) amazing identity

In section 6.2 of WLiB (page 206), the derivation of the fact that the factor in parentheses on
the right hand side of the equality

Tθ = TD

(√
2

sin
(
45◦− 1

2θ
)

√
1− sin θ

)

is 1, for every θ in the range 0 � θ < 90◦, takes up half a page. It can be considerably
shortened by observing that

1 − sin θ = 1 − cos(90◦− θ) = 2 sin2
(
45◦− 1

2θ
)
.
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