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We know that Fermat’s two square theorem for integers can be retold, almost verba-
tim, as the corresponding theorem for rationals.1 How about the sums of three squares?

Theorem 1 (The three squares theorem). An integer is a sum of three squares of
integers if and only if it is non-negative and is not of the form 4m(8k + 7) for some
natural numbers m and k.

In particular, twice an odd natural number is always a sum of three integer squares.
The four squares theorem is a straightforward consequence of Theorem 1:

Theorem 2 (Lagrange’s four squares theorem). Every natural number is a sum of four
squares of integers.

Proof. Let n ∈ N. If n is not of the form 4m(8k+7), then it is a sum of three squares,
hence a sum of four squares. If n is of the form 4m(8k+7), then n = (2m)2

(
(8k+6)+1

)
,

where 8k+6 = 2·(4k+3) is a sum of three squares, thus n is a sum of four squares.

How can we use Theorem 1 to derive a characterization of sums of three squares of
rational numbers? In its present form we can’t. First we have to reformulate the theorem
in terms of the prime factorization of a natural number that is not a sum of three squares
of integers. Let n = 4m(8k + 7) for some m, k ∈ N, and let n =

∏
p pep be its prime

factorization.2 The condition on the number of prime factors 2 is clear: e2 must be even.
If on top of that the product of the odd primes in the factorization is ≡ 7 (mod 8), we
have a necessary and sufficient condition. Each odd prime is of the form p = 8k + j,
where j ∈ {1, 3, 5, 7}. The set J := {1, 3, 5, 7}, regarded as a subset of Z/8Z, is the group
(Z/8Z)× of invertible elements of the ring Z/8Z. The group J is an instance of the four-
group: 32 = 52 = 72 = 1, 3·5 = 7, 3·7 = 5, and 5·7 = 3. The product 3i3 ·5i5 ·7i7 , where
i3, i5, i7 ∈ {0, 1}, equals 7 if and only if i3 = i5 = 1 and i7 = 0, or i3 = i5 = 0 and i7 = 1.

1We know this from the essay [2].
2By convention, an index p will always run through the set of all primes.
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For each j ∈ J and every non-zero natural number n set hj(n) :=
∑

p≡j (mod 8) ep(n).
Then we have the following characterization of (non)sums of three integral squares:

Theorem 3 (The three squares theorem, reformulated). A positive integer n is not
a sum of three squares of integers if and only if e2(n) is even, and either (i) h3(n) and
h5(n) are odd and h7(n) is even, or (ii) h3(n) and h5(n) are even and h7(n) is odd.

We have omitted from the formulation of the theorem the trivial observations that
a negative integer is not, while the integer 0 is, a sum of three squares of integers.

Since the condition in Theorem 3 depends only on the parities of the exponents in the
prime factorization, it can be reused for rational numbers, provided that for every posi-
tive rational number r =

∏
p pep(r) and each j ∈ J we define hj(r) :=

∑
p≡j (mod 8) ep(r).

Theorem 4 (The three squares theorem for rationals). A positive rational number r

is not a sum of three squares of rational numbers if and only if e2(r) is even, and either
(i) h3(r) and h5(r) are odd and h7(r) is even, or (ii) h3(r) and h5(r) are even and
h7(r) is odd.

We don’t give the proof, which runs along the same lines as the proof of the Fermat’s
two square theorem for rationals. The following corollary of Theorems 3 an 4 is obvious:

Corollary 5. If an integer is expressible as a sum of three squares of rational numbers,
then it is expressible as a sum of three squares of integers.

---*---*---*---

But we are doing this arse-forward. The well-known proof of the three squares
theorem establishes the sufficiency of the condition stated in the theorem in two stages:
first it shows that a positive integer n that is not of the form 4m(8k+7) for some natural
numbers m and k can be represented as a sum of three squares of rational numbers,3 and
then proceeds to show that n is actually a sum of three squares of integers. The story of
how the latter is achieved is told at the beginning of the MathOverflow discussion [3]:

Serre’s A Course in Arithmetic gives essentially the following proof of the
three-squares theorem, which says that an integer a is the sum of three
squares if and only if it is not of the form 4m(8n + 7): first one shows that
the condition is necessary, which is straightforward. To show it is sufficient,
a lemma of Davenport and Cassels, using Hasse-Minkowski, shows that a is
the sum of three rational squares. Then something magical happens:

Let C denote the circle x2+y2+z2 = a. We are given a rational point p on this
circle. Round the coordinates of p to the closest integer point q, then draw

3This can be proved using the theory of Hasse-Minkowski, about which we won’t have anything to say,

not in this essay.
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the line through p and q, which intersects C at a rational point p′. Round
the coordinates of p′ to the closest integer point q ′, and repeat this process.
A straightforward calculation shows that the least common multiples of the
denominators of the points p, p′, p′′, . . . are strictly decreasing, so this
process terminates at an integer point on C.

Bjorn Poonen, after presenting this proof in class, remarked that he had no
intuition for why this should work. Does anyone have a reply?

[Asked by Qiaochu Yuan Oct 29 2009 at 15:12]

That is, starting at a rational point of the sphere x2 + y2 + z2 = n, we take an en-
chanted walk on the sphere, which reliably leads us to an integral point of the sphere.
The “magic” underlying the walk is explained later on in the discussion:

A few days ago Serre told me about some modest improvements to the
proof, based on Weil’s book Number theory: an approach through history
from Hammurapi to Legendre and on a 1998 letter from Deligne to Serre;
I will paraphrase these below.

According to Weil (p. 292), the “magical” argument is due to an amateur
mathematican: L. Aubry, Sphinx-Œdipe 7 (1912), 81–84. Here is a general-
ization that allows for a clearer proof.

Lemma: Let f = f2 + f1 + f0 ∈ Z[x1, . . . , xn], where fi is homogenous of
degree i. Suppose that for every x ∈ Qn �Zn there exists y ∈ Zn such that
0 < |f2(x−y)| < 1. If f has a zero in Qn, then it has a zero in Zn.

Proof: If x = (x1, . . . , xn) ∈ Qn, let den(x) denote the lcm of the denomina-
tors of the xi. By iteration, the following claim suffices: If x ∈ Qn �Zn and
y ∈ Zn satisfy 0 < |f2(x − y)| < 1, and the line L through x and y intersects
f = 0 in x, x′, then den(x′) < den(x). By restricting to L and choosing a co-
ordinate t on it taking the value 0 at y and integer values exactly on L∩Zn,
we reduce to proving the following: given f(t) = At2 + Bt + C ∈ Z[t] with
zeros x, x′ ∈ Q such that 0 <

∣∣Ax2
∣∣ < 1, we have den(x′) < den(x). Proof:

0 <
∣∣Ax2

∣∣ < 1 implies 0 < |A| < den(x)2, and we have xx′ = C/A, so
den(x) den(x′) � |A| < den(x)2, so den(x′) < den(x).

[Bjorn Poonen Dec 31 2009 at 23:08]

(Note the time stamp. . . it’s the mark of a true mathematician.) This is just a sketch
of a proof, so let us expand it, working out the details. There is an error towards the
end of the above proof sketch: if x and x′ are rational numbers such that xx′ = C/A,
then it does not follow that den(x) den(x′) � |A|, as demonstrated by 2

3
3
4 = 1

2 . Our first
undertaking will be the elimination of this glitch (quite possibly introduced by a too
hasty paraphrasing— it was a New Year’s Eve); we shall show that if x and x′ are the
two zeros of At2 + Bt + C, then the product den(x) den(x′) divides |A|, so it is � |A|.

Every rational number has a unique representation as a reduced fraction x = m/n,
where m and n are integers, n > 0, and gcd(m,n) = 1; we write den(x) := n.

Lemma 6. Let a, b, c be integers, where a �= 0. If the polynomial at2 + bt + c in t has
a rational zero x, then the other zero x′ is rational, and |a| = gcd(a, b, c) den(x) den(x′).
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Proof. Clearly x′ = −b/a − x is rational. Let x = m/n, x′ = m′/n′ be the reduced
representations. Then x and x′ are the zeros of the quadratic polynomial

nn′(t−x)(t−x′) = nn′t2 − (mn′ + nm′)t + mm′ ∈ Z[t] . (1)

We claim that the gcd of the coefficients of this polynomial is 1. Let p be any prime
dividing both nn′ and mm′. Supposing p divides n (the other case, with p dividing n′,
is treated similarly), then p does not divide m, hence divides m′, hence does not divide n′,
and we see that p does not divide mn′ + nm′.

It follows that, writing k := sgn(a) gcd(a, b, c), we have a = knn′, b = −k(mn′+nm′),
and c = kmm′.

In the last step of the proof we silently used the following simple fact:

Lemma 7. If a1, . . . , ad are integers with gcd(a1, . . . , ad) = 1, and b1, . . . , bd are in-
tegers such that (b1, . . . , bd) = λ ·(a1, . . . , ad), then |λ| = gcd(b1, . . . , bd).

Proof. Since at least one of the integers ai is not zero, λ is rational; let λ = m/n be its
reduced representation. For every index i the product λai = mai/n is an integer, thus
n divides ai; we conclude that n = 1 and hence λ = m ∈ Z. But then gcd(b1, . . . , bd) =
|λ| gcd(a1, . . . , ad) = |λ|.

One consequence of this lemma is that every point x = (x1, . . . , xd) ∈ Qd has a unique
reduced representation (x1, . . . , xd) = (m1/n, . . . ,md/n) (all denominators are n), where
m1, . . . , md, n are integers, n > 0, and gcd(m1, . . . ,md, n) = 1; we write den(x) := n.
It is clear that den(x) = 1 if and only if x ∈ Zd, and that for all x ∈ Qd and all z ∈ Zd

we have den(x+z) = den(x). If r ∈ Q and x ∈ Qd, then den(rx) divides den(r)den(x).

We are ready to prove the lemma presented in the MathOverflow discussion.

Lemma 8 (Aubry-Davenport-Cassels-Weil-Deligne-Serre). Let d > 0 be a natural num-
ber, and let f = f2 + f1 + f0 ∈ Z[x1, . . . , xd], where fi is homogenous of degree i. Sup-
pose that for every x ∈ Qd � Zd there exists y ∈ Zd such that 0 <

∣∣f2(x− y)
∣∣ < 1.

If f has a zero in Qd, then it has a zero in Zd.

Proof. Let x ∈ Qd be a zero of f . If x ∈ Zd, we are done, so suppose that x /∈ Zd.
We shall prove that f has a zero x′ ∈ Qd with den(x′) < den(x); through iteration, this
will also prove the lemma.

Write n := den(x). There exists y ∈ Zd such that 0 <
∣∣f2(x−y)

∣∣ < 1. Setting
u := x − y, we have den(u) = den(x) = n, hence u = r/n for some r ∈ Zd. The line
in Rd through the points x and y has a parameterization z(t) := y + tr, t ∈ R, where
z(0) = y and z(1/n) = x. The function F (t) := f

(
z(t)

)
is a quadratic polynomial in

the real variable t with integer coefficients: F (t) = At2 + Bt + C with A, B, C ∈ Z.
Since

zi(t)zj(t) = (yi + tri)(yj + trj) = rirj t
2 + (yirj + yjri)t + yiyj ,

we see that A = f2(r) = n2f2(u) �= 0. The polynomial F has the rational zero τ := 1/n,
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so its other zero τ ′ is likewise rational and den(τ) den(τ ′) divides A, whence den(τ ′) �
|A| /den(τ) = |A|/n. Since |A| = n2

∣∣f2(u)
∣∣ < n2, we have den(τ ′) � |A|/n < n. The

point x′ := y + τ ′r is a zero of f , and den(x′) = den(τ ′r) divides den(τ ′), therefore
den(x′) � den(τ ′) < n = den(x).

We did not follow the reasoning of the proof’s sketch in MathOverflow quite faith-
fully: the integral points y + kr, k ∈ Z, do lie on the line L through the points x and y,
but they may not be all the integral points on L. Write s := gcd(r1, . . . , rd) and
q := r/s ∈ Zd; then L ∩ Zd = {y + kq | k ∈ Z}, thus {y + kr | k ∈ Z} is the set
of all integral points on L if and only if s = 1. We used the integral vector r as the
unit step along the line L because this was good enough for our purpose: the important
thing was that with the parameterization z(t) = y + tr we had x = z(1/n), where
den(1/n) = n = den(x).

Let us see what happens if we do use q, instead of r, with the parameterization
z1(t1) := y + t1q of the line L. Now we have the quadratic polynomial F1(t1) :=
f
(
z1(t1)

)
= A1t

2
1 + B1t1 + C1 in t1 with integer coefficients, where A1 = f2(q). Since

z1(t1) = z(t1/s), we have F1(t1) = F (t1/s) = (A/s2)t21 + (B/s)t1 + C, and we see that
A = A1s

2, B = B1s, and C = C1. The two zeros of F1 are τ1 = sτ = s/n and τ ′
1 = sτ ′.

Write n′ := den(τ ′
1), g := gcd(A1, B1, C1), and ϕ :=

∣∣f2(u)
∣∣ (where u = τ1q). Then

ϕ = |A1|τ 2
1 = |A1| s2/n2, hence |A1| = ϕn2/s2, and |A1| = gnn′ (by Lemma 6), hence

n′ = |A1| /gn = (ϕ/gs2)·n. Since gcd(q1, . . . , qd) = 1, we have den(x′) = den(y+τ ′
1q) =

den(τ ′
1q) = den(τ ′

1) = n′, thus

den(x′) = n′ =
ϕ

gs2
·n =

∣∣f2(x−y)
∣∣

gcd(A1, B1, C1) gcd(r1, . . . , rn)2
den(x) . (2)

One piece of information we can extract from (2) is this: if ϕ = j/k is the reduced
representation, then from n′ = jn/kgs2 we see that k divides n; that is, den

(
f2(x−y)

)
divides den(x). We find this slightly surprising, till we remember that x is not just any
rational point, that it is a rational zero of the polynomial f = f2 + f1 + f0. Starting
from this observation, we can prove, in a less roundabout way than above, that for every
zero x ∈ Qd of f , and for any point y ∈ Zd whatsoever, den

(
f2(x−y)

)
divides den(x):

we have the reduced representation x − y = r/n, the parameterization z(t) = y + tr

(of a line if y �= x, of a single point when y = x), and the polinomial F (t) = f
(
z(t)

)
=

At2+Bt+C ∈ Z[t ] of degree at most two, where F (1/n) = f
(
z(1/n)

)
= f(x) = 0; then

f2(x−y) = A/n2 = −B/n−C and hence den
(
f2(x−y)

)
= den(B/n) divides n = den(x).

Let us look at some examples of enchanted walks on the sphere x2 + y2 + z2 = 179,
which contains, up to permutations and sign changes of coordinates, only three essen-
tially different integral points (1, 3, 13), (3, 7, 11), and (7, 7, 9). Given a rational (but not
integral) point x on the sphere we round its coordinates to nearest integers and obtain
the integral point y = round(x) with f2(x−y) � 3

4 (where f2(x, y, z) = x2 + y2 + z2).
We have to produce some interesting starting rational points on the sphere, preferably
with large denominators. To achieve this, we use the following trick: let a be an integral
point on the sphere x2 + y2 + z2 = n; we choose a ‘random’ triple v of integers, lay the
line through the point a in the direction v, and compute the other point

a′ := a − 2
〈a,v〉
〈v,v〉 v
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(〈 , 〉 is the usual scalar product of triples
)

at which the line intersects the sphere. It is
possible that the point a′ is integral; it is even possible (though not very probable) that
a′ = a, if the triple v is orthogonal to the triple a

(
so that 〈a,v〉 = 0

)
. If it happens that

the point a′ is integral, then, well, we try again. Using the anchor point a = (3, 7, 11) and
a vector v with independent random integer coordinates uniformly distributed through
the range [−100 . . 100], I obtained many enchanted walks on the sphere, and selected
three to exhibit here:

(
19769
5915 , 45867

5915 , 61385
5915

)
,

(−3231
947 , 11935

947 , 2765
947

)
,

(−1017
79 , 275

79 , 85
79

)
, (−13, 3, 1) ; (3)

(
68371
8459 , 45227

8459 , 78027
8459

)
,

(
5701
1499 ,−18893

1499 ,−3573
1499

)
,

(−447
257 ,−371

257 ,−3389
257

)
,(−489

77 , 493
77 ,−761

77

)
,

(
51
23 ,−79

23 ,−293
23

)
,

(
29
7 ,−51

7 ,−73
7

)
, (−3, 7, 11) ;

(−5555
645 ,−193

645 ,−6601
645

)
,

(−605
95 ,−193

95 ,−1101
95

)
,

(−349
29 ,−73

29 ,−153
29

)
,(−107

9 ,−41
9 ,−37

9

)
, (−9, 7,−7) .

It is instructive to look at the the values of ϕ, g, and s
(
introduced in the discussion of

“den
(
f2(x−y)

)
divides den(x)” above

)
associated with the steps of these three walks:

(
1894
5915 , 2, 1

)
,

(
316
947 , 1, 2

)
,

(
20
79 , 5, 2

)
;

(
1499
8459 , 1, 1

)
,

(
514
1499 , 2, 1

)
,

(
77
257 , 1, 1

)
,

(
23
77 , 1, 1

)
,

(
7
23 , 1, 1

)
,

(
2
7 , 2, 1

)
;

(
38
129 , 2, 1

)
,

(
29
95 , 1, 1

)
,

(
9
29 , 1, 1

)
,

(
2
9 , 2, 1

)
;

the triples are (ϕ, g, s). We see that there are points on the three walks at which g > 1
and/or s > 1. Also note that at the starting point x of the third walk, den

(
f2(x−y)

)
is a proper divisor of den(x).

At each step of an enchanted walk, the coordinates of a rational point are rounded
to nearest integers using the “banker’s rounding”, with which a rational number lying
precisely halfway between consecutive integers is always rounded to an even integer.
At a rational point on the sphere which has at least one coordinate of the form k + 1

2 ,
k ∈ Z, we have at least two, possibly four or eight, different choices of rounding the
point. But are there any such points? There aren’t. Suppose u2 + v2 +

(
k + 1

2

)2 = n,
where u and v are rational numbers while k and n are integers. Then (2u)2 + (2v)2 =
4n − (2k+1)2 ≡ 3 (mod 4). If x and y are integers, then x2 + y2 is congruent to 0, 1,
or 2 modulo 4; therefore, if m is an integer ≡ 3 (mod 4), the equation x2 + y2 = m has
no integral solutions, hence has no rational solutions by (the corollary to) the Fermat’s
two square theorem for rationals.

Note that we are not required to round the coordinates of a rational point x on the
sphere to nearest integers in order to obtain the integral point y, since what we actually
need to make a magic step is

∣∣f2(x−y)
∣∣ < 1; for example, if x =

(
i+ 1

3 , j + 1
3 , k− 1

3

)
with

i, j, k ∈ Z, then we have the following candidates for y : (i, j, k) = round(x), (i+1, j, k),
(i, j +1, k), and (i, j, k−1). We have chosen to always round the coordinates because
this operation is simple to describe (and always does the job).

As I have already mentioned, I generated quite a few enchanted walks on the sphere
x2 + y2 + z2 = 179. I observed lengths of walks, trying to come up with some predictor
of the expected length of a walk, knowing only the denominator of its starting point.
I was surprised to find that a significant proportion—mostly between 7.5% and 8.5% —
of walks had length 1, that is, they stepped directly from a rational point to an integral

6



point. Here are three such one-step walks
(
generated using an integer vector v with inde-

pendent random coordinates uniformly distributed through the range [−1000 . . 1000]
)
:

(−614201
702013 , 1844631

702013 , 9188867
702013

)
, (−1, 3, 13) ;

(
5869209
825257 , 2066327

825257 , 9120881
825257

)
, (7, 3, 11) ;

(
10154653
1509809 , 13716531

1509809 , 10806223
1509809

)
, (7, 9, 7) .

I was rather mystified by this strange phenomenon, until I thought of looking at details
of such one-step walks, and then the mystery disappeared: I found that round(x) = x′

for all such walks with large enough den(x). There also exist magic steps from x to
round(x) with a not-so-large den(x); for example, the last step of the walk (3) is from
x =

(−1017
79 , 275

79 , 85
79

)
to round(x) = (−13, 3, 1).

So, one way to finish an enchanted walk is to hit a rational point on the sphere that
is close enough to an integral point on the sphere, and then to take the last step to
that integral point. ‘Close enough’ means the following: let Q :=

(−1
2 . . 1

2

)3 be the open
unit cube centered at the origin; then a rational point x on a sphere x2 + y2 + z2 = n

(which is assumed to possess rational points) is ‘close enough’ to an integral point y

on the sphere if x ∈ y + Q. There are 48 + 48 + 24 = 120 integral points on the
sphere x2 + y2 + z2 = 179; the proportion α of the surface area 4π ·179 of the sphere
that lies inside the cubes a + Q for integral points a on the sphere is small, but not
extremely small: α

.= 0.0618. This is smaller than 0.075 (the lower end of the range
from 7.5% to 8.5%), which is understandable because the procedure which ‘randomly’
generates rational points on the sphere does not distribute them uniformly across the
sphere— far from uniformly, in fact.

The other way of making the last step of an enchanted walk is from a ‘sharpshooter’
point, which is a rational non-integral point x on the sphere that rounds to an integral
point y not on the sphere such that the line through the points x and y hits the sphere
at an integral point x′. There are only finitely many sharpshooter points x on any
sphere x2 + y2 + z2 = n: the distance r of the integral point y = round(x) from the
origin must be in the range

√
n − 1

2

√
3 < r <

√
n + 1

2

√
3 (while r �= √

n), and at the
same time x must lie on the line connecting the point y to an integral point on the
sphere; since there are only finitely many possible integral points y satisfying the stated
conditions, and also the set of integral points on the sphere is finite, there are only
finitely many possibilities for x. For example, our sphere x2 + y2 + z2 = 179 possesses
207456 sharpshooter points. It would be unpractical to list all of them, but we can
exhibit at least a few, together with their targets:

(−31
3 ,−25

3 , 5
3

)
,

(−19
3 , 31

3 , 17
3

)
,

(−715
729 ,−2867

729 ,−9295
729

)
: (1, 3, 13) ;

(−5
3 , 35

3 , 19
3

)
,

(
11
3 , 23

3 , 31
3

)
,

(−3565
737 ,−3505

737 ,−8499
737

)
: (3, 7, 11) ;

(−25
3 ,−25

3 ,−19
3

)
,

(
11
3 , 11

3 , 37
3

)
,

(−5005
753 ,−5005

753 ,−7169
753

)
: (7, 7, 9) .

For each of the three target points on the right we listed the only two sharpshooter points
with the least possible denominator (which is 3 in all cases) and the only sharpshooter
point with the largest possible denominator. We see that if the denominator of a rational
point x on the sphere is greater than 753, and a single magic step gets us from x to an
integral point on the sphere, then that integral point is round(x).
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Is 3 always the least denominator > 1 of a rational point on a sphere x2 +y2+z2 = n

(where n is a positive integer, and the sphere is assumed to contain rational points. . . )?
The least denominator cannot be 2, because no rational point on the sphere can have
any of the three coordinates of the form k+ 1

2 , k ∈ Z. (What is more, denominators of all
rational points on the sphere are odd integers; indeed, if (m1,m2,m3) /n is the reduced
representation of some rational point (x, y, z), and n is even, then the denominator of the
fraction (m2

1 +m2
2 +m2

3)/n
2 is divisible by 4 while the numerator isn’t, thus x2 + y2 + z2

is not an integer.) The answer to our question is “yes”; even more is true:

If a sphere x2 + y2 + z2 = n, where n is a positive integer, contains rational points, then
for every positive integer j it contains a rational point x with den(x) = 3j .

I leave this as an entertaining problem for the reader, with the following hint: starting
at an integral point on the sphere, take a walk around the sphere, with each step made
in a direction wisely chosen from the set {−1, 1}3.

---*---*---*---

When we tried to figure out a characterization of the sums of three rational squares,
it was very obliging of the group J to turn out to be a four-group, which made possible
to reformulate the condition in Theorem 1 to the one in Theorem 3, which then led to
Theorem 4 and Corollary 5. Were we just lucky, or what? Actually, there was no luck
involved. For any quadratic form4 with integer coefficients the following two conditions
are equivalent:

	 if an integer is the form’s value for some rational arguments, then it is also the
form’s value for some integer arguments;

	 the set of all form’s values for integer arguments is describable in terms of parities
of exponents in the prime factorization, and of the sign, of an integer.

Moreover, when a quadratic form satisfies (either one of) these two conditions, then the
set of all form’s values for rational arguments has the same description in terms of prime
factor parities (and the sign) as the set of all form’s values for integer arguments.

This is all rather vague, so let us precisely define relevant notions5 and then properly
formulate (and prove) the above assertions.

Every non-zero rational number r has a unique prime factorization

r = sgn(r)
∏
p

pep(r) ,

where sgn(r) ∈ {−1, 1}, and the exponents ep(r) are integers, only finitely many of them
non-zero. (We have already used this factorization.) A non-zero rational number is an
integer if and only if all exponents in its prime factorization non-negative.

4In this essay, “a form” is synonimous with “a homogenous polynomial”.
5Be warned that some notions and notation appearing in this essay are provisional, made up on the

spot solely for the needs of the essay.
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We shall say that two rational numbers r and s have the same prime factor
parities,6 and write r pfpar s, if either r = s = 0, or both r and s are non-zero and

sgn(r) = sgn(s) and ep(r) ≡ ep(s) (mod 2) for every prime p .

The relation pfpar is an equivalence relation on Q, and its restriction to integers is an
equivalence relation on Z. For any non-zero rational number r, the integer

core(r) := sgn(r)
∏
p

pep(r) mod 2

is called the square-free core of the number r; we also define core(0) := 0. Note that
for every non-zero rational number r, the integer core(r) is the unique square-free integer
that has the same prime factor parities as r. The set core(Q) = core(Z), which consists
of the square-free integers and the integer 0, is the set of ‘canonical’ representatives of
equivalence classes of the equivalence relation pfpar (and also of the restriction of pfpar
to integers).

The following facts are self-evident and need no proving:

Lemma 9. Let r and s be rational numbers. The following conditions are equivalent
to each other:

	 r pfpar s;

	 r = t2s for some non-zero rational number t;

	 m2r = n2s for some non-zero integers m and n;

	 core(r) = core(s).

If r is a non-zero rational number, then r/core(r) is a square of a rational number;
if n is a non-zero integer, then n/core(n) is a square of an integer.

We shall say that a property � of rational numbers (or, a property σ of integers)
depends only on prime factor parities if r pfpar s implies �(r) ⇐⇒ �(s) for all
r, s ∈ Q (resp. m pfpar n implies σ(m) ⇐⇒ σ(n) for all m, n ∈ Z). We shall say that
a set R of rational numbers (or, a set S of integers) is describable in terms of prime
factor parities if the property r ∈ R of a rational number r (resp. the property n ∈ S

of an integer n) depends only on prime factor parities.7

A set of rational numbers (or, of integers) is describable in terms of prime factor
parities if and only if it is a union of equivalence classes of the equivalence relation pfpar
(resp. of the restriction of pfpar to integers). And here are more self-evident facts:8

6This is quite a mouthful, and still it does not tell it all, since we should say “have the same prime

factor parities and the same sign”. We shall always have to add “and the same sign” under our breath.

And besides that, parities are of course not of prime factors themselves but of their exponents in a prime

factorization. Blech. . . Well, we’ll somehow manage to live with it for a while.
7A subset of integers is of course also a subset of rationals, so we have an ambiguity here. We could

remove the ambiguity by saying “R ⊆ Q is describable etc. in Q” and “S ⊆ Z is describable etc. in Z”,

or something like that. However, we let it be, since we will always know what we are talking about.
8I apologize for this surfeit of trivia. It is better to have these facts, however trivial, out in the open,

than to implicitly use them wrong way up in some heedless “it is obvious that. . . ” conclusion.
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Lemma 10. A set R of rational numbers is describable in terms of prime factor parities
(1) if and only if for every r ∈ Q and every t ∈ Q�{0}, r ∈ R implies t2r ∈ R,
(2) if and only if for every r ∈ Q and every k ∈ Z�{0}, r ∈ R is equivalent to k2r ∈ R.

A set S of integers is describable in terms of prime factor parities if and only if for
every n ∈ Z and every k ∈ Z�{0}, n ∈ S is equivalent to k2n ∈ S.

One consequence of the characterization (1) is that for any subset Q of Q the set
{t2q | q ∈ Q, t ∈ Q�{0}} is the least subset of Q that contains Q and is describable in
terms of prime factor parities.

Lemma 11. A set R of rational numbers (or, a set S of integers) is describable in
terms of prime factor parities if and only if there exists a subset T of core(Q) (= core(Z))
such that R = {r ∈ Q | core(r) ∈ T} (resp. S = {n ∈ Z | core(n) ∈ T}), in which case
T = core(R) ⊆ R (resp. T = core(S) ⊆ S).

Now we can precisely define what it means that a set R of rational numbers has the
same description in terms of prime factor parities (and the sign . . . ) as a set S

of integers: it means that there exists a subset T of core(Z) such that

S = {n ∈ Z | core(n) ∈ T} and R = {r ∈ Q | core(r) ∈ T} ;

we shall write this as S ∝R.9 The set T = core(S) = core(R) in the definition embodies
the common “description in terms of prime factor parities” of the sets S and R.

To give an example, we describe the core set T := core(ImZ g) for the three squares
form g = x2 + y2 + z2. An integer n belongs to T if and only if

	 n = 0, or

	 n = 2m, where m is a product of distinct odd primes, or

	 n is a product of distinct odd primes, where either h3(n) �≡ h5(n) (mod 2) or
h3(n) ≡ h5(n) ≡ h7(n) (mod 2).

In the last case above hj(n) is the count of distinct primes ≡ j (mod 8) that divide n.

Here comes the last installment of prime-factor-parities trivia:

Lemma 12. Let S ⊆ Z and R ⊆ Q.
If S ∝ R, then both S and R are describable in terms of prime factor parities, and

S = Z ∩ R, R = {n/k2 | n ∈ S, k ∈ Z�{0}} = {t2n | n ∈ S, t ∈ Q�{0}}.
If R is describable in terms of prime factor parities, then Z∩R ∝ R. If S is describ-

able in terms of prime factor parities, then S ∝ {n/k2 | n ∈ S, k ∈ Z�{0}}.
If Z ∩ R = S and R = {t2n | n ∈ S, t ∈ Q�{0}}, then S ∝ R.

And now for something completely different. (◦◦�)

9Sorry, just grabbed the first remotely suitable symbol that came to hand. Some notation in this

essay is provisional, remember.
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Let d ∈ N, d > 0, and let g ∈ Z[x1, . . . , xd] be a quadratic form.
We shall say that g is a QZQZQZ-form if every integer that is a value of g at some rational

point x ∈ Qd is also a value of g at some integral point y ∈ Zd.10

We shall write ImZ g := g(Zd) and ImQ g := g(Qd).
Since r ∈ ImQ g and t ∈ Q�{0} imply t2r ∈ ImQ g, the set ImQ g is describable in

terms of prime factor parities. Since n ∈ ImZ g and k ∈ Z�{0} imply k2n ∈ ImZ g, the
set ImZ g is describable in terms of prime factor parities if and only if it passes the
desquaring test: for all n ∈ Z and all k ∈ Z�{0}, k2n ∈ ImZ g implies n ∈ ImZ g.

Clearly ImZ g ⊆ Z ∩ ImQ g. Moreover, ImQ g = {n/k2 | n ∈ ImZ g, k ∈ Z � {0}} =
{t2n | n ∈ ImZ g, t ∈ Q � {0}}.

The folowing result relates QZ-ness of quadratic forms with integer coefficients to
describability in terms of prime factor parities.

Lemma 13. Let d ∈ N, d > 0. For any quadratic form g ∈ Z[x1, . . . , xd] the following
three properties are equivalent to each other:

	 g is a QZ-form;

	 ImZ g passes the desquaring test;

	 ImZ g ∝ ImQ g.

Proof. Each of the three properties is equivalent to ImZ g = Z ∩ ImQ g.

The quadratic forms x2, x2 + y2, and x2 + y2 + z2 are QZ-forms. If m is a nonzero
integer, when precisely is the form mx2, or m(x2 + y2), or m(x2 + y2 + z2), a QZ-form?
The following proposition provides an answer to this kind of questions.

Proposition 14. Suppose S ⊆ Z contains a non-zero integer, and let m be a non-
zero integer. The set mS is describable in terms of prime factor parities if and only if
the set S is describable in terms of prime factor parities and m is square-free and coprime
to every non-zero integer in core(S), and in such a case core(mS) = m core(S).

Proof. The assertion of the proposition is true for the set S if and only if it is true for
the set S �{0}, thus we can assume that 0 /∈ S and S �= ∅.

Suppose that mS is describable in terms of prime factor parities. Let k be any
non-zero integer; for every integer n we have the chain of equivalences

n ∈ S ⇐⇒ mn ∈ mS ⇐⇒ mnk2 ∈ mS ⇐⇒ nk2 ∈ S ,

which proves that S is describable in terms of prime factor parities. There exists in S

an integer n0 of the least absolute value among the integers in S (note that n0 �= 0);
then mn0 has the least absolute value among the integers in mS, so it must be square-
free, since otherwise a desquaring of mn0 in mS would give an integer in mS of smaller
absolute value than mn0; this proves that m is square-free. Consider any n ∈ core(S);
we have to prove that m and n are coprime. Suppose, to the contrary, that a prime p

10QZ: as on Qd so on Zd. See? Pronounced same as “quiz”.
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divides both m and n; desquaring mn ∈ mS in mS gives us mn/p2 ∈ mS, which is
impossible, because mn/p2 is no longer divisible by p, so it is not divisible by m.

Now suppose that S is describable in terms of prime factor parities and that m is
square-free and coprime to all integers in core(S). Let k be any non-zero integer.
Since k2S ⊆ S, we have k2 ·mS ⊆ mS. Suppose that k2n ∈ mS; we have to show
that n ∈ mS . There exist n′ ∈ core(S) and a non-zero integer j so that k2n = mn′j2.
Since m and n′ are square-free and coprime, it follows that mn′ = core(mn′j2) =
core(k2n) = core(n), thus n = mn′l2 for some non-zero integer l, which proves that
n ∈ mS because n′l2 ∈ S. We have proved that mS is describable in terms of prime
factor parities. Elements of m core(S) ⊆ mS are fixed by core( ), thus m core(S) is
a subset of core(mS). To prove the opposite inclusion, let n ∈ S; in order to show
that core(mn) ∈ m core(S), just note that n = n′j2 for n′ = core(n) and for some
non-zero integer j, whence core(mn) = core(mn′j2) = mn′ = m core(n).

We have excluded the trivial cases when S ⊆ {0} or m = 0, because they behave
differently. If S ⊆ {0} (

that is, S = ∅ or S = {0}), then S is certainly describable in
terms of prime factor parities, and so is mS = S for every integer m. If m = 0, then
mS ⊆ {0} for every S ⊆ Z.

The central result of Proposition 14 can be rephrased as follows. For any set T

of integers we denote by P (T ) the set of all prime divisors of non-zero integers in T .
Suppose S ⊆ Z contains a non-zero integer and is describable in terms of prime factor
parities, and let m be a non-zero integer; then mS is describable in terms of prime factor
parities if and only if m is ± a product of distinct primes not in P

(
core(S)

)
.

If g is a QZ-form and m is a non-zero integer, then ImZ mg = m ImZ g, so we must
look at T = core(ImZ g) to determine the integers m for which mg a QZ-form. With
g = x2 we have T = {0, 1} and P (T ) = ∅, and we see that mg is a QZ-form if and only if
m is square-free. When g = x2 + y2, we know from the Fermat’s two square theorem
that P (T ) consists of the prime 2 and the primes ≡ 1 (mod 4), thus the form mg is
QZ if and only if m is ± a product of distinct primes ≡ 3 (mod 4). And finally, when
g = x2 + y2 + z2, the three squares theorem tells us that 2p ∈ T for every odd prime p,
so P (T ) is the set of all primes, whence the form mg is QZ if and only if m = ±1.

Let us look at some more QZ-forms.

The form g = x2+2y2 is QZ by Lemma 8 since 0 < g
(
x−round(x), y−round(y)

)
� 3

4

for every rational non-integral point (x, y). In order to determine S = ImZ g we consider
the ring R = Z

[√−2
]

of algebraic integers of the field K = Q
(√−2

)
. The norm of an

algebraic integer a + b
√−2 is g(a, b), so the ring R is norm-Euclidean, hence a PID.

The rational prime 2 factors in R as 2 = −(√−2
)2, where

√−2 is a prime of R (that is,
2 is ramified), every rational prime p ≡ 1, 3 (mod 8) is the product p = ππ of a pair
of non-associated conjugate primes π and π of R (p splits), while the rational primes
≡ 5, 7 (mod 8) are also primes of R (they are inert). From this we obtain the following
description of the set S in terms of prime factor parities: an integer n belongs to S

if and only if either n = 0, or n > 0 and ep(n) is even for every prime p ≡ 5, 7 (mod 8).
The set P

(
core(S)

)
consists of the prime 2 and all primes ≡ 1, 3 (mod 8), therefore mg

is a QZ-form, for a non-zero integer m, if and only if m is ± a product of distinct primes
≡ 5, 7 (mod 8).
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The form g = x2 + 3y2 is a QZ-form; we can show this by slightly augmenting the
proof of Lemma 8. For every rational non-integral point (x, y) there exists an integral
point (a, b) with |x−a| � 1

2 and |y−b| � 1
2 so that 0 < q(x−a, y− b) � 1, with the

equality if and only if both x and y are exactly halfway between successive integers.
Starting at a rational point on an ellipse x2 + 3y2 = n (n a positive integer), we walk
an enchanted walk, which either ends in an integral point on the ellipse, or gets stuck
in a point of the form (x, y) =

(
a+ 1

2 , b+ 1
2

)
with a, b ∈ Z. In the latter case we can

still step to an integral point on the ellipse, provided we make this last step with care:
if the integer a + b is odd, we step along the line through the points (x, y) and (a, b),
and if a + b is even, we step along the line through the points (x, y) and (a, b+1).
For example, consider the point

(
5
2 , 3

2

)
=

(
2+ 1

2 , 1+ 1
2

)
on the ellipse x2 + 3y2 = 13:

Since the sum 2+1 is odd, we step from the point
(

5
2 , 3

2

)
through the point (2, 1) to the

integral point (−1,−2) on the ellipse; on the other hand, if we round the point
(

5
2 , 3

2

)
to

the integral point (2, 2), the step in the direction of this other point lands us in another
halfway point

(
7
2 , 1

2

)
on the ellipse.

Why this works? We’d better begin with considering an arbitrary quadratic form
g ∈ Z[x1, . . . , xd]. We associate with the quadratic form g the bilinear form with integer
coefficients 〈x,y〉g := g(x + y) − g(x) − g(y). Suppose we have a point x ∈ Qd with
g(x) = n ∈ Z, and let v ∈ Qd be a vector that is not a zero of g. For every t ∈ Q the
point z(t) := x + tv lies on the line L laid through the point x in the direction v, and

g
(
z(t)

)
= g(x) + 〈x,v〉g t + g(v)t2 .

The equation g
(
z(t)

)
= n has two rational roots, t = 0 and t = τ := −〈x,v〉g /g(v).

There are two points (possibly identical) y on the line L that satisfy the equation
g(y) = n: one is x = z(0), and the other one is

x′ := z(τ) = x − 〈x,v〉g
g(v)

v .

The bilinear form associated with the quadratic form g(x1, x2) = x2
1 + 3x2

2 is
〈
(x1, x2) , (y1, y2)

〉
g

= 2 ·(x1y1 + 3x2y2) .

Suppose that a point x ∈ Q2 satisfies g(x) = n, with n a positive integer, and that it
has both coordinates halfway between integers. We can always choose a point y ∈ Z2 so
that x1 = y1 + 1

2 , x2 = y2 + 1
2σ with σ ∈ {−1, 1}, and the sum y1 + y2 is an odd integer.

We step from the point x in the direction v := (1, σ) to the other point x′ satisfying
g(x′) = n, where

x′ = x − 2

(
y1 + 1

2

)
+ 3

(
y2 + 1

2σ
)
σ

1 + 3σ2
· (1, σ) = x −

(
1
2(y1 + 3σy2) + 1

)
· (1, σ) ;
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since y1 + 3σy2 is an odd integer, the vector subtracted from the point x has both
coordinates halfway between integers, thus the result x′ is an integral point.

What is the description of the set ImZ g in terms of prime factor parities?
In order to answer this question we introduce the quadratic form g1 := x2 +xy + y2,

and show that ImZ g = ImZ g1. Indeed, for all x, y ∈ Z we have

x2 + 3y2 = (x− y)2 + (x− y)(2y) + (2y)2 ,

which proves the inclusion ImZ g ⊆ ImZ g1. On the other hand, if at least one of the
two integers x and y —say y —is even, then

x2 + xy + y2 =
(
x+ 1

2y
)2 + 3

(
1
2y

)2
,

while if both x and y are odd, then

x2 + xy + y2 =
(

1
2(x− y)

)2 + 3
(

1
2(x+ y)

)2 ;

this proves the opposite inclusion. The form g1 satisfies the condition stated in Lemma 8,
so it is a QZ-form, hence ImZ g1 is describable in terms of prime factor parities. The iden-
tity ImZ g = ImZ g1 provides an independent verification of the fact that g is a QZ-form.

We seek the description of S = ImZ g1 = ImZ g in the ring R = Z[ω ] of algebraic
integers of the field Q(ω) = Q

(√−3
)
, where ω = 1

2

(
1+i

√
3
)

generates the multiplicative
group of the six units of R. The norm of a + bω ∈ R (a, b ∈ Z) is g1(a, b), the ring R

is norm-Euclidean, hence a PID. The rational prime 3 ramifies as 3 = −(2ω − 1)2,
every rational prime ≡ 1 (mod 6) splits, while the rational prime 2 and all rational
primes ≡ −1 (mod 6) are inert. An integer n therefore belongs to S if and only if either
n = 0, or n > 0 and ep(n) is even for p = 2 and for every prime p ≡ −1 (mod 6).
We have P

(
core(S)

)
= {p ∈ P (N) | p = 3 or p ≡ 1 (mod 6)}, thus mg is a QZ-form,

for a non-zero integer m, if and only if m is ± a product of distinct primes from the set
{p ∈ P (N) | p = 2 or p ≡ −1 (mod 6)}.

Our last example is the form g = x2 + y2 + 2z2. We have the same problem with
this form as we had with the form x2 + 3y2: an enchanted walk can get stuck in a point
x =

(
y1 + 1

2 , y2 + 1
2 , y3 + 1

2

)
with y1, y2, y3 ∈ Z. And as before, we can still make the

last step to an integral point: we step from the point x in the direction of the point
(y1, y2, y3) if y1 + y2 is odd, and in the direction of the point (y1, y2 +1, y3) if y1 + y2 is
even. The proof that this works is similar to the one for the form x2 + 3y2.

Let g1 = x2 + y2 + z2; we claim that ImZ g = S, where S := {n ∈ Z | 2n ∈ ImZ g1}.
The identity

2 ·(x2 + y2 + 2z2) = (x− y)2 + (x+ y)2 + (2z)2

proves that ImZ g ⊆ S. To prove the other inclusion, assume that n is an integer such
that 2n = x2 + y2 + z2 for some integers x, y, and z. Either all three integers x, y, z are
even, or two are odd and one is even; in either case, two are of the same parity —we can
assume that these two are x and y —while the third one —that is, z —is even. But then
the identity

x2 + y2 + z2 = 2 ·
((

1
2(x+ y)

)2 +
(

1
2(x− y)

)2 + 2
(

1
2z

)2
)

shows that n ∈ ImZ g. The relationship of the set ImZ g to the set ImZ g1 implies that
ImZ g is describable in terms of prime factor parities, and hence that g is a QZ-form.
This is a consequence of the following simple, simply proved proposition:
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Proposition 15. If S ⊆ Z is describable in terms of prime factor parities and m is any
integer, then S ′ := {n ∈ Z | mn ∈ S} is describable in terms of prime factor parities.

Proof. For every integer n and every non-zero integer k we have

n ∈ S ′ ⇐⇒ mn ∈ S ⇐⇒ mnk2 ∈ S ⇐⇒ nk2 ∈ S ′ .

As we did with the form x2 + 3y2, we have independently verified that x2 + y2 + 2z2

is a QZ-form. Moreover, we have the following result:

Theorem 16. An integer can be represented as x2 + y2 + 2z2 for some integers x, y,
and z if and only if it is non-negative and is not of the form 22j+1(8k + 7) for some
natural numbers j and k.

Since every prime is representable as x2 + y2 + 2z2 for some x, y, z ∈ Z, the form
m ·(x2 + y2 + 2z2), where m is a non-zero integer, is QZ if and only if m = ±1.

Note that with the forms g = x2 + y2 + 2z2 and g1 = x2 + y2 + z2 we have not only
ImZ g = {n ∈ Z | 2n ∈ ImZ g1}, but also ImZ g1 = {n ∈ Z | 2n ∈ ImZ g}. The identity

2(x2 + y2 + z2) = (x− y)2 + (x+ y)2 + 2z2

proves the inclusion ImZ g1 ⊇ {n ∈ Z | 2n ∈ ImZ g}; to prove the opposite inclusion,
observe that if n ∈ Z and 2n = x2 + y2 + 2z2 for some x, y, z ∈ Z, then x and y are of
the same parity, whence

n =
(

1
2(x− y)

)2 +
(

1
2 (x+ y)

)2 + z2 .

This symmetric relationship between the forms g and g1 is not a spurious coincidence:

Lemma 17. Suppose S ⊆ Z is describable in terms of prime factor parities. Let m be
a non-zero integer, and set S ′ := {n ∈ Z | mn ∈ S}. Then S = {n ∈ Z | mn ∈ S ′}.

Proof. Writing S ′′ := {n ∈ Z | mn ∈ S ′}, we have, for every integer n,

n ∈ S ′′ ⇐⇒ mn ∈ S ′ ⇐⇒ m2n ∈ S ⇐⇒ n ∈ S .

By Theorem 16 every odd natural number is representable as x2 + y2 + 2z2 for some
integers x, y, and z. This simple observation gives us the following three-squares-double-
square theorem:

Theorem 18. Every natural number can be represented as x2
1 +x2

2 +x2
3 +2x2

4 for some
integers x1, x2, x3, and x4, where we can additionally require that x1 = 0 or x1 = 1.
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The quadratic form g = x2
1 +x2

2 +x2
3 +2x2

4 is trivially a QZ-form because ImZ g = N.
The quadratic form x2

1 + x2
2 + x2

3 + x2
4 is QZ for the same reason.

---*---*---*---

In the (draft) paper [1] there is the Main Theorem, namely Theorem 4; it is a gen-
eralization of Theorem 2 in [1] which is (essentially) the same as Lemma 8 in this essay.

Theorem 4. Let (R, | |) be a normed ring not characteristic 2 and q/R

a Euclidean quadratic form. Then q is an ADC-form.

The notions appearing in the theorem are defined in [1] as follows. Normed rings first:

Let R be a commutative, unital ring. We write R• for R \ {0}.
A norm on R is a function | | : R• → Z+ such that

(N1) ∀x ∈ R, x ∈ R× ⇐⇒ |x| = 1, and

(N2) ∀x, y ∈ R, |xy| = |x| |y|.
When convenient, we extend | | to R by putting |0| = 0.

By a normed ring, we shall mean (here) a pair (R, | |) where | | is a norm
on R. Note that a normed ring is necessarily an integral domain. We denote
the fraction field by K. The norm extends uniquely to a homomorphism of
groups (K×, ·) → (

Q>0, ·) via
∣∣x
y

∣∣ = |x|
|y| .

Next are Euclidean quadratic forms:

Let (R, | |) be a normed ring of characteristic different from 2. By a qua-
dratic form over R, we mean a polynomial q ∈ R[x] = R[x1, ..., xn] which is
homogenous of degree 2. A quadratic form q on a normed ring (R, | |) is Eu-
clidean if for all x ∈ Kn\Rn there exists y ∈ Rn such that 0 < |q(x− y)| < 1.

Finally, here are ADC-forms, introduced as a special case of ADC-extensions:

Let R ↪→ S be an extension of [integral] domains, and let q/R be a quadratic
form. We say that S/R is an ADC-extension for q if: for all d ∈ R, if there
exists x ∈ Sn such that q(x) = d, there exists y ∈ Rn such that q(y) = d.
If R is a domain with fraction field K, we say that q is an ADC-form if the
extension K/R is an ADC-extension for q.

The prefix ADC is the acronym for Aubry-Davenport-Cassels. (QZ-forms of this essay
are ADC-forms over the ring R = Z.)

When I tried to undestand the proof of the Main Theorem, I found it rather messy,
so I decided to tidy it up.

First of all, there are at least two typos in it: “1
2

(
q(x + y) − q(x) − q(x)

)
” should

be “1
2

(
q(x + y) − q(x) − q(y)

)
”, and “x = x′

d ” should be “x = x′
t ”; there may well be

other typos — I did not look very closely at the computations in the proof, because,
as it turned out, I did not need to.
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Then there is this unnecessary fuss about avoiding rings of characteristic 2. The use
of the factor 1

2 in the definition of the bilinear form x · y := 1
2

(
q(x + y) − q(x) − q(x)

)
is unavoidable if we insist on recovering the quadratic form from the bilinear form as
q(x) = x · x; but, why should we want to do this, what would it be good for? What we
do need, for the purposes of the proof, is the bilinearity of 〈x, y〉 := q(x+y)−q(x)−q(y),
and we need it only to show that for any x, y ∈ Rn and t a formal variable, the expression

q(x+ ty) = q(x) + 〈x, ty〉 + q(ty) = q(x) + 〈x, y〉 t + q(y)t2

is a polynomial in t of degree at most 2 with coefficients in R, and, in particular, with
the coefficient q(y) at t2.

The proof of the Main Theorem concludes with a contradiction. Searching back
through the proof, I could not find a clear announcement of a reasoning by contradiction,
and could not quite see how the contradiction proves what it is purported to prove.
Musing about the missing announcement for a while, I eventually figured it out:

We intend to prove that |t| = 1. Assume, to the contrary, that |t| > 1; then
x = x′

t does not belong to Rn, by the choice of t. Applying the Euclidean
hypothesis . . .

After that the proof proceeds as in the paper.
I am not a great fan of proofs by contradiction. Sometimes there is no other way to

prove something, or better said, there is no known other way; however, most proofs by
contradiction can be straightened out, so that instead of reasoning about imagined prop-
erties of an impossible situation, one that does not exist (which might be an intensely
surreal experience), we reason about situations that do exist, about their quite real
properties. So it came naturally to me to try to disentangle the proof by contradiction
of the Main Theorem. Here is what I came up with:

Let d ∈ R, and suppose that q(x) = d for some x ∈ Kn. If x ∈ Rn, then we
are done, so suppose that x /∈ Rn. Represent x as a fraction x = x′/t with
x′ ∈ Rn and t ∈ R�{0}, where |t| is as small as possible.

Applying the Euclidean hypothesis with x, there exists y ∈ R such that
0 <

∣∣q(x−y)
∣∣ < 1. [We go on from here to construct] a point x1 = X/T ∈ Kn

with X ∈ Rn, T ∈ R � {0}, and |T | < |t|, which satisfies q(x1) = d;
if x1 = x′

1/t1 is a fraction with x′
1 ∈ Rn, t1 ∈ R� {0}, and with the least

possible |t1|, then |t1| � |T | < |t|. If still x1 /∈ Rd, we go on and construct
another point x2 ∈ Kn satisfying q(x2) = d, such that for any representation
x2 = x′

2/t2 with x′
2 ∈ Rn, t2 ∈ R�{0}, and the least possible |t2|, we have

|t2| < |t1|. And so on. The sequence x, x1, x2, . . . of points in Kn satisfying
d = q(x) = q(x1) = q(x2) = · · · must eventually end with a point x∗ ∈ Rn

satisfying q(x∗) = d.

Why, but this is an enchanted walk all over again! Moreover, the straightened-up proof
nowhere uses the assumed property (N1) of the norm | |.

I still had to figure out the construction of the point x1 = X/T . There are two points
on the line in Kd laid through the points x and y that satisfy the equation q(z) = d,
namely the point z = x and some other point (which, in general, might coincide with
the point x, though in our case it does not); what else could x1 be but that other
point? I did not try to wade through calculations in the proof of the Main Theorem,
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instead I attempted to reproduce the reasoning in the proof of Lemma 8 in the present
more general situation. There was one obstacle to this plan: the proof of Lemma 8
uses Lemma 6, which heavily relies on existence of primes, greatest common divisors,
relative primality. . . I somehow had to do without all this. Then I recalled the simpler
of the two proofs of the fact that den

(
f2(x−y)

)
divides den(x) (on page 5 of this essay):

this is true because f2(x−y) = A/n2 = −B/n − C, where n = den(x). Equivalently,
f2(x−y) ·n = A/n = −B − Cn is an integer — and the analogous reasoning is valid in

any integral domain. With this insight, the final piece of the jigsaw puzzle clicked into
place, and the reworked proof was completed.

To present the new proof, we’d better start afresh.

Let R be a commutative ring with unity 1 �= 0.
A discrete multiplicative norm on R (shorter, a norm on R) is a mapping

‖ ‖ : R → N that satisfies the following two conditions, for all x, y ∈ R:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖xy‖ = ‖x‖‖y‖.
(
The norm is discrete because it takes values in N, and it is multiplicative because it

satisfies the condition (ii). Besides that, ‖ ‖ is a norm —and not a seminorm—because
it satisfies the condition (i).

)
Since ‖1‖‖1‖ = ‖1 ·1‖ = ‖1‖ �= 0, we have ‖1‖ = 1, thus

‖ ‖ is a homomorphism of multiplicative monoids, and as such it maps every unit of R

to the only invertible element 1 of the multiplicative monoid N. (But note that there
may be also nonunits of R whose norm is 1.)

Let ‖ ‖ be a discrete multiplicative norm on R.
If x and y are any non-zero elements of R, then ‖xy‖ = ‖x‖‖y‖ �= 0, thus xy �= 0; the

ring R is an integral domain. Let K be the field of fractions of R. The given norm ‖ ‖
on R extends in a unique way to a mapping ‖ ‖ : K → Q�0 satisfying the condition (ii)(
which then also satisfies the condition (i)

)
; if x = a/b with a, b ∈ R and b �= 0, then

‖x‖ = ‖a‖ / ‖b‖.
Let d > 0 be a natural number. Let x ∈ Kd.
We define

δ(x) := min
{‖b‖ ∣∣ b ∈ R�{0}, bx ∈ Rd

}
. (4)

Since there exist nonzero elements b of the ring R such that bx ∈ Rd, and since the
norm ‖ ‖ is discrete, the set in (4) in which the minimum is sought is a nonempty
set of non-zero natural numbers, thus δ(x) is a well-defined non-zero natural number.
In particular, when d = 1, (4) defines δ(x) for x ∈ K = K1.

We can characterize δ(x) as follows: x can be represented as a fraction x = a/b with
a ∈ Rd and b ∈ R�{0}, and δ(x) is the least possible ‖b‖ for such representations of x.
By the definition of δ(x), x has at least one representation with ‖b‖ = δ(x); any such
representation of x will be said to be reduced.

If x ∈ Rd, then δ(x) = 1. If x ∈ Kd and y ∈ Rd, then δ(x+y) = δ(x), because
for every nonzero b ∈ R, the product bx is in Rd if and only if the product b(x+y)
is in Rd. If x ∈ K and y ∈ Kd, then clearly δ(xy) � δ(x)δ(y); in particular, if x ∈ K

and y ∈ Rd, then δ(xy) � δ(x).

The following theorem is a bare-bones reincarnation of the Main Theorem in “ADC-
Extensions”, formulated as a generalization of Lemma 8:
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Theorem 19. Let R be an integral domain with a discrete multiplicative norm ‖ ‖,
extended to a multiplicative norm (still denoted ‖ ‖) on K, the field of fractions of R.
Let d > 0 be a natural number, and let f = f2 + f1 + f0 ∈ R[x1, . . . , xd],11 where fi is
homogenous of degree i. Suppose that for every x ∈ Kd �Rd there exists y ∈ Rd such
that 0 <

∥∥f2(x−y)
∥∥ < 1. If f has a zero in Kd, then it has a zero in Rd.

Proof. Let x ∈ Kd be a zero of f ; if x ∈ Rd, we are done, so assume that x /∈ Rd.
There exists y ∈ Rd such that 0 <

∥∥f2(x−y)
∥∥ < 1. Let x − y = v/a be a reduced

representation, so that ‖a‖ = δ(x−y) = δ(x). For any t ∈ K set z(t) := y+tv; we have
z(1/a) = x. For any t ∈ K set F (t) := f

(
z(t)

)
= At2 + Bt + C, where the coefficients

A = f2(v) �= 0, C = f(y) and B = f(y+v) − A − C are in R; τ := 1/a is a zero of F .
Let τ ′ be the other zero of F . Since τ τ ′ = C/A, we have τ ′ = C/τA = C/(A/a), where
A/a = −B − Ca ∈ R and ‖A/a‖ =

∥∥f2(v/a)a
∥∥ =

∥∥f2(x−y)
∥∥‖a‖ < ‖a‖ = δ(x), thus

δ(τ ′) � ‖A/a‖ < δ(x). The point x′ := z(τ ′) is a zero of f and has δ(x′) = δ(y+τ ′v) =
δ(τ ′v) � δ(τ ′) < δ(x). If the zero x′ of f is still not in Rd, we repeat the procedure and
construct another zero x′′ of f with δ(x′′) < δ(x′), and so on. The sequence x, x′, x′′, . . .
of zeros of f eventually ends with a zero x∗ ∈ Rd of f

(
which has δ(x∗) = 1

)
.

In the course of reworking the proof of the Main Theorem in [1] into the proof
of Theorem 19, we overcame the instinctive revulsion caused by integral domains of
characteristic two, we unburdened the definition of a norm on a ring of the superfluous
property (N1), and we also somewhat simplified the calculations. Yet, contemplating the
proof of Theorem 19, we cannot but notice that it is still wasting time doing unnecessary
things — it starts with a reduced representation of the first point of the enchanted walk,
and later on consistently replaces fractions representing further points on the walk with
reduced representations of the points. I suspect that most mathematicians suffer from
this obsessive compulsion —of always considering fractions in a reduced form —which
they acquired through their dealings with integers and rationals, and later on with
UFDs an their fields of fractions.12 Let’s, for once, suppress this urge (to replace every
fraction in sight with a reduced one), in order to find out whether we are still able to
walk an enchanted walk.

We intend to begin the proof with representing the initial zero x ∈ Kd �Rd of f

as a fraction a/b with a ∈ Rd and b ∈ R�{0}—as any such fraction. Then we will take
a magic step to another zero x′ = a′/b′ of f , where a′ ∈ Rd, b′ ∈ R�{0}, and ‖b′‖ < ‖b‖.
If the point x′ will not be in Rd, we will take another step to a zero x′′ = a′′/b′′ of f ,
where a′′ ∈ Rd, b′′ ∈ R � {0}, and ‖b′′‖ < ‖b′‖. And so on. At no time during this
enchanted walk will we insist on reduced fractions. We will eventually arrive at a zero
x∗ ∈ Rd of f , represented as a fraction x∗ = a∗/b∗ with a∗ ∈ Rd and b∗ ∈ R � {0},
which perhaps will not evidently represent a point in Rd, meaning that b∗ will not be
a unit of R.

Ok, we have a plan; let’s carry it out.

11Here x1, . . . , xd are formal variables.
12The obligatory plonking of 1

2
in front of g(x+y)−g(x)−g(y) is another instance of such compulsive

obsessive behavior.
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Proof (Second proof of Theorem 19). Let x ∈ Kd be a zero of f ; if x ∈ Rd, we are
done, so assume that x /∈ Rd.

There exist a ∈ Rd and b ∈ R � {0} such that x = a/b, and there exists y ∈ Rd

such that 0 <
∥∥f2(x−y)

∥∥ < 1. We have x − y = v/b, where v = a − by ∈ Rd. For
any t ∈ K set F (t) := f(y + tv) = At2 + Bt + C, where the coefficients A = f2(v) =
f2(x−y)b2 �= 0, C = f(y), and B = f(y +v) − A − C are in R; τ := 1/b is a zero
of F because x = y + v/b. Let τ ′ be the other zero of F . Since τ τ ′ = C/A, we have
τ ′ = C/τA = C/(A/b), where A/b = −B − Cb is in R; since also A/b = f2(x−y)b,
we have ‖A/b‖ =

∥∥f2(x−y)
∥∥‖b‖ < ‖b‖. The point x′ := y + τ ′v is a zero of f , and

it can be represented as x′ = a′/b′, where b′ = A/b ∈ R� {0}, a′ = b′y + Cv ∈ Rd,
and ‖b′‖ < ‖b‖.

If the zero x′ of f is not yet in Rd, we repeat the procedure and construct another
zero x′′ = a′′/b′′ of f , where a′′ ∈ Rd, b′′ ∈ R�{0}, and ‖b′′‖ < ‖b′‖. And so on. The
sequence x, x′, x′′, . . . of zeros of f eventually ends with a zero x∗ ∈ Rd of f .

We have obtained a sequence x = a/b, x′ = a′/b′, x′′ = a′′/b′′, . . . of zeros of f ,
where b′ = f2(x− y) · b, b′′ = f2(x′− y′) · b′, . . . . We can now clearly see the inner
workings of the magic that guides enchanted walks.

---*---*---*---

A remark concerning the property (N1) of a norm as stated in [1].

We define an Euclidean norm on an integral domain R, whose field of fractions is K,
to be a discrete multiplicative norm ‖ ‖ on R (extended to a multiplicative norm on K)
which satisfies the additional condition

(iii) for every x ∈ K there exists y ∈ R such that ‖x−y‖ < 1.

An Euclidean norm on R always has the property (N1), that is, it maps non-zero non-
units of R to natural numbers greater than 1. Indeed, let ‖ ‖ be an Euclidean norm
on R, and let a be any non-zero non-unit of R. The inverse a−1 ∈ K is not in R. There
exists b ∈ R such that r := a−1 − b has ‖r‖ < 1. Since a−1 /∈ R, r is a non-zero element
of K, thus ar = 1 − ab is a non-zero element of R, whence 1 � ‖ar‖ = ‖a‖‖r‖ < ‖a‖.

We can adapt the ploy of approximating the inverse of a non-zero non-unit of an
integral domain R by an element of R, to obtain a more general result.

Let ‖ ‖ be a discrete multiplicative norm on R. Let d > 0 and m > 0 be natural
numbers; a Euclidean form over

(
R, ‖ ‖), of degree m in d variables, is a homogenous

polynomial g ∈ R[x1, . . . , xd] of degree m which has the property that for every point x in
Kd�Rd there exists a point y in Rd such that 0 <

∥∥g(x−y)
∥∥ < 1. Suppose there exists

a Euclidean form g over
(
R, ‖ ‖) (in some number d of variables, of some degree m);

then the norm ‖ ‖ has the property (N1). Indeed, let a be any non-zero non-unit of R.
Put x :=

(
a−1, 0, . . . , 0

)
= a−1e1 ∈ Kd �Rd. Since g is Euclidean, there exists y ∈ Rd

so that 0 <
∥∥g(x−y)

∥∥ < 1, whence 0 <
∥∥g(e1 −ay)

∥∥ < ‖a‖m; since
∥∥g(e1 −ay)

∥∥ is
an integer, we have ‖a‖m > 1 and therefore ‖a‖ > 1.

Though in Theorem 19 we do not explicitly assume the property (N1), the presence
of the Euclidean quadratic form f2 implies it.
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