
Quadratrix of Hippias and Viète’s infinite product

Contemplating the arc of the quadratrix of Hippias, from the point C = (0, c) to the
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Figure 1: The quadratrix of Hippias.

point A =
(

2
π c, 0

)
(Figure 1), the factor 2

π reminded me of the Viète’s infinite product
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As you shall see, this was not just an idle reminiscence.

According to the construction of the quadratrix, y = c · (
θ/π

2

)
= 2cθ/π. Since

r = y/ sin θ, we have the polar equation of the point Q on the quadratrix:

r =
2c

π

θ

sin θ
. (1)

We get the cartesian equation by substituting θ = πy/2c into x = r(θ) cos θ :

x = y · cot
( π

2c
y
)

.

Note that the construction is indeterminate at θ = 0; the point A is determined by
continuity, as the limit point of Q(θ) as θ → 0. As a traditional alternative, we may
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Figure 2: The point A = Q(dθ).

invoke infinitesimals and define the point A as Q(dθ) (Figure 2).
When we try to construct a point on the quadratrix at a small angle θ, with a pencil

on paper (or a stick in sand), we find that the intersection point— of the line through
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the origin in the direction θ and the line parallel to the x-axis at the ordinate 2cθ/π —
is ill-defined. Is there a more reliable construction of those points on the quadratrix that
are close to the x-axis? There is such a construction, and it is related to the Viète’s
product.

The quadratrix of Hippias can be used to divide an acute angle into any prescribed
number of equal parts; in particular, it can be used to trisect angles. It can be also
used to bisect angles. This application of the quadratrix, which is a rather exotic curve,
may appear slighly perverse, since we already know how to bisect an angle using only
straightedge and compass; but let us do it, anyway. Looking at Figure 3 we see that,

O A

R

C

θ
1
2
θ

Q = Q(θ)

Q
(
1
2
θ
)

y

1
2
y

m

Figure 3: Bisecting an angle using the quadratrix of Hippias.

given a point Q = Q(θ) on the quadratrix, we obtain the point Q
(
1
2θ

)
by intersecting

the bisector m of the angle ∠OAQ1 by its perpendicular QR laid through the point Q
(this is so because the triangle �RQO is isosceles). We can therefore turn the tables,
and instead of using the quadratix to bisect the angle ∠OAQ, we use the bisection of this
angle to determine the point Q

(
1
2θ

)
on the quadratrix from a known point Q(θ) on it.

When this construction of the point Q
(
1
2θ

)
, for a small angle θ, is carried out by a pencil,

it is much more precise than the defining construction as the intersection point of the
bisector m and the line parallel to the x-axis at half the ordinate of the point Q(θ).

Let P be any point in the plane not on the non-negative half of the x-axis. The point P
has unique polar coordinates (r, θ) with r > 0 and −π < θ < π. Draw the line through
the origin O in the direction 1

2θ, and drop a perpendicular to it from the point P
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Figure 4: The angle-halving transformation f .

to the point f(P) (Figure 4); polar coordinates of the point f(P) are
(
r cos

(
1
2θ

)
, 1

2θ
)
.

1I write ∠OXY to denote the (oriented) angle from OX to OY.
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Starting with a point P , we repeatedly apply the transformation f , producing a sequence
of points P, P1 = f(P), P2 = f

(
f(P)

)
= f2(P), . . . , Pn = fn(P), . . . , which converges
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Figure 5: The sequence of iterated f -transforms of a point P.

to the point on the x-axis with the abscissa r ·(sin θ)/θ (Figure 5), because

cos
θ

2
· cos θ

4
· · · cos

θ

2n
· · · =

sin θ

θ
. (2)

This product formula (one of Euler’s) is easy to prove; we just repeatedly apply the
formula sin α = 2 sin(α/2) cos(α/2):

sin θ

θ
= cos

θ

2
· sin(θ/2)

θ/2

= cos
θ

2
· cos θ

4
· sin(θ/4)

θ/4
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= cos
θ

2
· cos θ

4
· · · cos

θ

2n
· sin(θ/2n)

θ/2n
.

With n increasing to infinity, θn = θ/2n converges to 0 and (sin θn)/θn converges to 1
(this is true for any nonzero complex number θ). Polar coordinates of the point Pn are
(rn, θ/2n), where

rn = r · cos θ

2
· cos θ

4
· · · cos

θ

2n
= r · sin θ

θ
· θ/2n

sin(θ/2n)
,

thus all points Pn lie on the quadratrix with the polar equation (1), where the parame-
ter c is π

2 r · (sin θ)/θ.
To compute the factors cos(θ/2n) in the Euler’s product (2), we use the formula

cos(α/2) =
√

1
2(1+ cos α), which we rewrite as 2 cos(α/2) =

√
2 + 2 cos α, to get the

following recurrence relations for cn = 2cos(θ/2n):

c0 = 2cos θ , cn+1 =
√

2 + cn .

The Euler’s product formula is then

sin θ

θ
=

c1

2
· c2

2
· · · cn

2
· · · .
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Taking θ = 1
2π, we get the Viète’s infinite product. With θ = 1

6π we obtain an infinite
product formula for 3/π that is a worthy companion to the Viète’s product:

3
π

=

√
2 +

√
3

2
·
√

2 +
√

2 +
√

3
2

·

√
2 +

√
2 +

√
2 +

√
3

2
· · · .

The partial products r0 = 1, r1, r2, . . . of the Viète’s product are the distances from the
origin of the points C, f(C), f2(C), . . . (Figure 6), which march, in ever smaller steps,
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Figure 6: The Viète’s infinite product visualized.

downwards along the quadratrix (with the parameter c = 1), approaching the point A.
How fast do rn converge to 2/π? Since

rn =
2
π

π
2 /2n

sin
(

π
2 /2n

) =
2
π

(
1 +

π2

24
2−2n + O(2−4n)

)
,

each iteration divides the relative error by four, approximately, which means that we
gain roughly six decimal places of precision with every ten iterations. Numerical checks
are in agreement with this estimate: π

2 r5 = 1.000 401 . . . , π
2 r15 = 1.000 000 000 382 . . . ,

π
2 r25 = 1.000 000 000 000 000 365 . . . , π

2 r35 = 1.000 000 000 000 000 000 000 348 . . . .

We pause here to look back at Euler’s product formula (2). Suppose we are faced
with the task of proving that it holds for every complex number θ, but we do not hit at
once on the idea of using the formula sin α = 2 sin(α/2) cos(α/2). How can we go about
proving the formula (2)? One way to do it is to gather pieces of information about the
function σ(z) of complex variable defined as the infinite product

σ(z) =
∞∏

n=1

cos
z

2n
, z ∈ C ,

until we know enough about it to prove Euler’s product formula. First, σ(z) is an entire
function because the product converges uniformly on compact subsets of the complex
plane: if K is a compact subset of C, then there exists a positive constant MK so that∣∣cos(z/2n)−1

∣∣ � MK/22n for every z ∈ K. Second, σ(z) is an even function of z. Third,
σ(z) satisfies the conditions

σ(0) = 1 , σ(2z) = σ(z) cos z for every z ∈ C ,
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and it is the only even entire function that satisfies these conditions. To prove the latter,
we substitute σ(z) =

∑∞
n=0 snz2n into the conditions, expand the right hand side of the

functional equation, and by equating coefficients at z2n obtain the recurrence relations

s0 = 1 , (22n−1) · sn = linear combination of sn−1, . . . , s1, s0 for n > 0 ,

where the coefficients of linear combinations are known rational numbers. And that’s it:
we have all we need. We simply verify that the even entire function σ(z) = (sin z)/z
satisfies the conditions: σ(0) = limz→0(sin z)/z = 1, so certainly σ(2·0) = 1 = σ(0) cos 0,
and σ(2z) = σ(z) cos z for a nonzero z because sin 2z = 2 sin z cos z. Done.
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