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Wikipedia’s article “Nonagon” gives the following approximate construction of a reg-
ular nonagon1 (Figure 1): D is the midpoint of OB, |BE| = |BD|, F and G are the
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Figure 1: The approximate construction of a regular nonagon in Wikipedia.

midpoints of the arcs AB resp. AC, and it is clear from the figure how the points H, J,
K, U, and V, in this order, are constructed. The angle α = �OVU .= 39.999 068◦ is very
close to the desired 40◦ angle. The indicated construction of nonagon’s vertices ticks
off seven sides whose central angles are α, while the remaining two sides have central
angles (360◦ − 7α)/2 .= 40.003 260◦ . If we tick off α nine times, the remaining angle is
360◦ − 9α .= 0.008 382◦ .= 30.17′′; as long as |OA| � 683.5mm, the remaining gap is less
that 0.1mm, which is certainly good enough for drawing purposes. Notice that we can
halve even this small error by using the angle β = 60◦ − 1

2α
.= 40.000 466◦ instead of

α = 2 · 1
2α. Since β is larger then 40◦, nine angles β overshoot 360◦ by 9β − 360◦ .=

0.004 191◦ .= 15.09′′, which gives an overlap less than 0.1mm for |OA| � 1367mm.

1The construction is presented by an attractive animation.
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It is clear from the construction that the points A, B, . . . , J, K have coordinates
in Q

(√
2
)
, thus also tan

(
1
2α

)
= yK/xK ∈ Q

(√
2
)
. And indeed, tan

(
1
2α

)
= 9/

√
2 − 6,
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Figure 2: The approximate construction from Wikipedia, simplified.

which suggests the simpler construction of the angle 1
2α shown in Figure 2. This sim-

plified construction is somewhat cumbersome, because we must carry out the geometric
computation of |AT| with care, lest we march off the piece of paper on which we are
doing the construction. Moreover, the segment AT is short in comparison with the
line segments we have to add and subtract to obtain it, so the relative drawing error
(caused by imprecise use of compasses etc.) is uncomfortably large. To remedy this,
we rewrite 9/

√
2 − 6 as the fraction 3/

(
4 + 3

√
2
)
, which is realized by the construction
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Figure 3: Another simplification ot the approximate construction from Wikipedia.

in Figure 3. Now the overall relative drawing error is the same as the relative error of
a single transfer of a segment length. We are still not satisfied with the construction,
since it rather spreads away from the starting square OABQ. Rewriting, once more,
3/

(
4+3

√
2
)

as 3
4/

(
1+ 3

4

√
2
)
, we in effect scale up the square by factor four, as shown in
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Figure 4: Yet another simplification ot the approximate construction from Wikipedia.

Figure 4: C is the midpoint of AB, D is the midpoint of CB, ED is parallel to OA, and
|OF| = |OE|. Figure 4 does not show the whole construction; one also has to construct
the square and the two midpoints, but these auxiliary constructions are omitted, since
they would only clutter up the figure. However, suppose that we have the points O, A,
D, and E already pre-constructed, say on graph paper as in Figure 5 (where the point E
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Figure 5: A construction of the angle 1
2α on graph paper.

has been moved to a more convenient position); then all it remains to construct is
the point F. Now, it’s a safe bet that this construction cannot be simplified any further.

What thought processes led to the construction in Wikipedia? Of this I have not the
slightest idea. It is highly improbable that someone hit upon 9/

√
2− 6 as a surprisingly

good approximation of tan(20◦) and then devised the attractive construction of the angle
1
2α = arctan(9/

√
2−6) in the article “Nonagon”, because surely one would prefer to give

some simpler construction suggested by the number 9/
√

2 − 6 = 3/(4 + 3
√

2), possibly
even the graph-paper construction of Figure 5—which is what I would do.

It is fruitless to speculate about the origins of the construction in Wikipedia. What
we can do is this: having seen one approximate graph-paper construction of the 20◦ an-
gle, we may search for more constructions of this sort. We need not restrict ourselves
to that one angle, we may seek good approximations of any of the angles 40◦, 20◦, 10◦,
and 5◦; in each case we can then construct the angle 40◦ = 60◦−20◦ = 30◦+10◦ = 45◦−5◦

to the same accuracy as the angle we have actually aproximated.

First we shall look for approximations t of tan(ϕ), ϕ = 40◦, 20◦, 10◦, 5◦, of the form

t =
k + σ

√
m2 + n2

p + τ
√

q2 + r2
,

where k and p are integers, factors σ and τ take values in {−1, 0, 1}, and m, n, q, r are
positive integers such that m2 + n2 and q2 + r2 are not squares of integers; moreover,
we require the denominator to be positive (and then also the numerator of a good
enough approximation will be positive). We put an upper bound M on |k|, m, n, |p|,
q, and r, and then search for the most accurate approximation, where the accuracy of
an approximation t of tan(ϕ) is defined as |arctan(t) − ϕ|. Choosing M = 25, the best
approximation is found for the angle ϕ = 40◦, and it is

t40 =
−10 +

√
212 + 242

9 +
√

62 + 162
=

−10 + 3
√

113
9 + 2

√
73

,

with the error ε40 := arctan(t40) − 40◦ .= −0.000 118′′ . Figure 6 shows the graph-paper
construction of the angle β = arctan(t40).

The angle β is a rather accurate approximation of 40◦. But, just how surprising is the
accuracy of this approximation? The precision (i.e. the number of reliable decimal digits)
of the approximation is − log10

(|ε40| /40◦
) .= 9.09. To achieve this precision we have

3



β

16

6
9

10

21

24

Figure 6: An approximate graph-paper construction of the 40◦ angle.

to know the numbers 10, 21, 24, 9, 6, and 16, and besides that, we also have to know
how the angle β is constructed out of these numbers. All in all we have to know 10 digits
(among other things) to construct the angle 40◦ to precision of 9 digits. According to
this comparison the accuracy we have achieved is anything but surprising. However,
counting the digits that are actually needed to write the six numbers is a very crude
estimate of the amount of information (measured in decimal digits2) that is contained in
these numbers. Let us introduce d(n) := log10(n+1) to measure the number of effective
decimal digits of a positive integer n (the ceiling of d(n) is the number of digits needed
to write n in decimal notation); we also define d(n1, . . . , nk) := d(n1) + · · · + d(nk),
the number of effective digits in a sequence n1, . . . , nk of positive integers. The number
of effective digits in the sequence of six numbers from which the angle β is constructed
is d(10, 21, 24, 9, 6, 16) .= 6.86, which is more than two digits short of the 9.09 digits
of precision. In this comparison we have not accounted for the information present in
the structure of the construction; the extent of this information is hard to estimate,
and it may well amount to more than two decimal digits.3 Because of the uncertainty
(and vagueness) of our estimates we cannot tell whether the accuracy of the construction
is in any sense ‘surprisingly good’ or not.

One nice thing that can be said about the construction of the angle β is that anybody
who can count to 24 can do it. Let us compare this to the simple-minded graph-paper
construction that approximates tan(40◦) by a fraction m/n of positive integers and is at
least as accurate as the construction of β. Let ε := |β−40◦| = |ε40|, tlo := tan(40◦−ε)
(tlo = t40), and thi := tan(40◦ + ε). The simplest fraction lying in the closed interval
[tlo . . thi ] is s40 = 48797/58154,4 and the error is δ40 := arctan(s40) − 40◦ = 0.000 101′′ .
The approximation arctan(s40) of 40◦ is precise to − log10

(|δ40| /40◦
) .= 9.15 digits,

while the number of effective digits in the fraction s40 is d(48797) + d(58154) .= 9.45,

2Instead of the usual binary digits, better known as “bits”.
3I have only very vague ideas of how to define the information content of the structure of geometric

constructions, and each of these ideas leads to absurdly large values. By the way, I feel that already the

fact that we base our construction on six numbers somehow accounts for log10 6
.
= 0.78 decimal digits,

before the construction proper even starts.
4Let 0 < x < y. The simplest fraction m/n in the closed interval [x . . y ] has n the smallest positive

integer for which there is at least one fraction k/n in the interval, while m = �nx�. The fraction m/n is

the simplest in the sense that if m1/n1 is any fraction in the interval, then n1 � n and m1 � m. When

n > 1, the fraction m/n is the only fraction of the form k/n in the interval. (To prove the last assertion,

consider the Farey series of order n, consisting of all fractions p/q, 0 � p � q � n, gcd(p, q) = 1.)
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so in this case we can safely claim that s40 is an underachiever as an approximation.
Moreover, anyone actually carrying out the construction of the angle arctan(s40) would
have a great deal of counting to do.

Let us glance back, at the graph-paper construction of the angle 1
2α (Figure 5).

If we do not double 1
2α, but instead use it to approximate 40◦ by 60◦ − 1

2α, then the
approximation is precise to 4.93 digits, while the number of effective digits in numbers
used by the construction is d(3, 4, 3, 3) = 2.51 digits. With the ballpark estimate of
the information contained in the structure of the construction as being worth 1.5 digits,
the construction is still ‘under-informed’ by almost a whole digit, so the precision of this
construction may be considered as ‘moderately surprising’.

In our second (and last) attempt at finding a graph-paper construction approximat-
ing one of the angles ϕ = 40◦, 20◦, 10◦, 5◦, we seek the approximation of t = tan(ϕ) in
the form

t =
p

k + σ
√

m2 + n2 + τ
√

q2 + r2
,

where p, m, n, q, r are positive integers no larger than some prescribed upper bound M ,
k is an integer with |k| � M , while σ, τ = ±1. As before, we choose M = 25; this time
we get the most accurate approximation for angle ϕ = 10◦,

t10 =
6

−24 +
√

152 + 222 +
√

192 + 252
=

6
−24 +

√
709 +

√
986

,

and the error is ε10 := arctan(t10) − 10◦ .= 0.000 073′′ . The corresponding graph-paper
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Figure 7: An approximate graph-paper construction of the 10◦ angle.

construction of the angle γ = arctan(t10) is shown in Figure 7.

To conclude this essay, we allow ourselves a little digression. Ian Stewart gives in his
Galois Theory (third edition) the approximate construction for

√
π,5 due to Ramanujan;

it is shown in Figure 8. The construction runs as follows. Let AB be the diameter of
a circle with the center O. Bisect AO at M, trisect OB at T. Draw the perpendicular
to AB at T, meeting the circle at P. Draw |BQ| = |TP|, and join AQ. Draw OS, TR
parallel to BQ. Draw |AD| = |AS|, and |AC| = |RS| with AC tangential to the circle

5Squaring the circle somehow goes hand-in-hand with the angle trisection, and in particular, with

the construction of the regular nonagon. And no, we won’t try to double the cube.
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Figure 8: Srinivasa Ramanujan’s approximate squaring of the circle:
|BX| : |OB| =

√
355/113 .=

√
π.

at A. Join BC, BD, CD. Draw |BE| = |BM|, draw EX parallel to CD. Then the square
on BX has approximately the same area as the circle.

In the Ramanujan’s construction the ratio |BX| : |OB| =
√

355/113 appears as if
by magic; there are no numbers in the construction (if we are prepared to ignore the
bisection and the trisection), the ratio is conjured up out of the construction’s structure.
Let us concoct, for comparison, a graph-paper construction of the same ratio. Noting
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Figure 9: An almost-graph-paper construction of the ratio |BX| : 1
2 |AB| =

√
355/113.

that 113 = 72 + 82 and 355 = 32 + 112 + 152, we arrive at the construction shown in
Figure 9, which is quite transparently building the required ratio from the numbers 2·7,
2 · 8, 3, 11, and 15. (The last step of the construction, the one that determines the
point X, requires drawing the parallel to a line which is askew —neither horizontal nor
vertical — so we have here only an almost-graph-paper construction.)

And here is another construction6 of
√

355/113 (this one is not on graph paper).

6It is the last one, I promise.
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Noting that √
355
113

=

√√√√3 +

(
1
2

)2

1+
(

7
8

)2 ,

we geometrically compute the expression on the right hand side as in the left panel of
Figure 10: A, B, . . . , F are vertices of a regular hexagon, G is the midpoint of EF,
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Figure 10: Another construction of the ratio |BX| : |OA| =
√

355/113 (left panel),
and a construction of the ratio |BX| : |OA| =

√
22/7 (right panel).

|FH| = 1
4 |FG|, |EJ| = |EH|, |FK| = |FG|, and KX is parallel to CE; we have then

|BX| : |OA| =
√

355/113. The point J lies below and very close to the midpoint of OD;
if we move J to the midpoint of OD, we obtain a simpler construction, shown in the
right panel of Figure 10, of the ratio

√
22/7.

How this construction came about? Well, I got this bright idea of rewriting 355/113
as 3 + 16/113, and since I already knew that 113 = 72 + 82, the rest naturally followed.
I very much doubt that the construction is original; almost surely I only re-discovered it.
MathWorld article “Circle squaring” has this to say about approximate circle squarings
that produce the approximation 355/113 of π

(
or the approximation

√
355/113 od

√
π

)
:

Ramanujan (1913–1914), Olds (1963), Gardner (1966, pp. 92–93), and Bold
(1982, p. 45) give geometric constructions for 355/133 = 3.1415929 . . . .

The references are below. Gardner’s book is currently unavailable (I ordered it, in the
hope that it will eventually reappear), while the rest are out of print or otherwise out
of my reach.
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