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Let E be a finite-dimensional real vector space, of dimension n > 0.

We shall resort to two devious tricks: we shall make E into an Euclidean space,
and we shall make use of the topology of E. For the first, we choose a basis — any
basis —of E, define the scalar product x·y := x1y1 + · · ·+xnyn, where xk and yk are the
coordinates of the vectors x resp. y in the chosen basis, and define the norm ‖x‖ :=

√
x2

(where x2 = x·x). The topology is the standard topology of E; here, we define it as the
smallest topology that makes all linear functionals E → R continuous (where R carries
the topology of the real line). Some properties of the topological space E:

� If E ′ is another finite-dimensional real vector space equipped with the standard
topology, then every linear (or affine) mapping E → E ′ is continuous.

� Every linear (or affine) isomorphism E → R
n is a homeomorphism of E onto

the product topological space.

� For any norm on E, the topology of the corresponding metric space is the
standard topology of E.

� If E ′ is a vector subspace of E, then E ′ is a closed subset of E, and the standard
topology of E ′ is the same as the subspace topology induced from E.

� A subset X of E is compact if and only if it is closed and bounded; boundedness
of X means that the norm (no matter which one) is bounded on X.

We could go on, listing more properties, but these will more than suffice.

First, existence of separating hyperplanes.

Let C be a closed convex subset of E, and y ∈ E � C. Then there exists an affine
functional f on E such that f(x) � 0 for every x ∈ C, while f(y) > 0.

If C is empty, we choose for f the constant functional 1, and are done; so from
now on we assume that C �= ∅. There exists y ∈ C that is closest to y, that is,
α := ‖y−y‖ � ‖y−x‖ for all x ∈ C. (Pick x0 ∈ C. The set C0 of all x ∈ C satisfying
‖x−y‖ � ‖x0−y‖ is nonempty and compact, thus the continuous function ‖x−y‖
of x ∈ C0 attains a minimum α at some y ∈ C0, and this α is also the minimum of ‖x−y‖
over all x ∈ C. The point y is unique: if x1, x2 ∈ C, and ‖y−x1‖ = ‖y−x2‖ = α, then

∥∥∥∥y − x1 +x2

2

∥∥∥∥
2

= α2 − 1
4
‖x1−x2‖2 � α2
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implies x1 = x2.) Set a := y− y �= 0. We claim that

a ·(x− y) � 0 for every x ∈ C . (1)

Let x ∈ C, and let 0 < λ � 1. The point xλ := y + λ(x− y) belongs to C, therefore
(y−xλ)2 � α2 = a2. Since y − xλ = a − λ(x−y), we have

(
a − λ(x−y)

)2 = a2 − 2λa ·(x−y) + λ2(x−y)2 � a2 ,

and hence
a ·(x− y) � λ

2
(x− y)2 .

In the limit λ → 0 we obtain (1). Since a · (y−y) = a2 > 0, we have the required affine
functional f(x) := a ·(x−y).

Next, convex cones and some of their properties.

A convex cone in E is a subset C of E with the following properties:

(c0) 0 ∈ C,

(c1) if x ∈ C and λ � 0, then λx ∈ C,

(c2) if x, y ∈ C, then x+ y ∈ C.

Evidently, every convex cone is a convex subset of E.
Since the properties of a convex cone are closure rules, the set of all convex cones

in E is a closure system on PE (it is closed under arbitrary intersections). Each
subset X of E generates the smallest convex cone cone(X) containing the set X. Since
the closure rules (c0), (c1), (c2) are finitary (accidentally, the closure rule (ck) is k-ary),
the closure operator cone( ) is finitary: for every subset X of E

cone(X) =
⋃{

cone(Z)
∣∣ Z ∈ PfX

}

(where PfX denotes the set of all finite subsets of X). It is easy to show that cone(X)
is the set of all linear combinations, with non-negative coefficients, of elements of X.

Let X ⊆ E and y ∈ cone(X). The point y is in cone(Z) for some finite subset Z of X,
therefore there exists an inclusion-minimal finite set Z with this property.

Carathéodory’s theorem for cones. If X is a subset of E and y ∈ cone(X),
while y /∈ cone(X�{x}) for every x ∈ X, then X is a set of linearly independent vectors.

The point y lies in the convex cone generated by some finite subset of X that cannot
be a proper subset of X, hence is the set X itself. It follows that y =

∑
x∈X λxx with

λx > 0 for every x ∈ X. Suppose that
∑

x∈X αxx = 0 for some αx ∈ R (x ∈ X), not all
of them 0; we can assume that αx0 > 0 for some x0 ∈ X (for otherwise we reverse the
signs of all αx). Let us express y as a linear combination y − μ0 =

∑
x∈X(λx −μαx)x;

for all small enough μ > 0 the coefficients of this linear combination are non-negative,
and there is the largest such μ, namely μ = μmax = min{λx/αx | αx > 0} � λx0/αx0 ,
for which at least one coefficient is zero, contrary to the assumptions.

We have the following useful consequence of the theorem: for every subset X of E,
the convex cone generated by X is the union of convex cones generated by the linearly
independent subsets of X.
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If X is finite, then cone(X) is a closed subset of the topological space E.

Since X has only finitely many linearly independent subsets, and since the union of
finitely many closed sets is a closed set, it suffices to prove the assertion in the special
case of a linearly independent X. The set X is a basis of the vector subspace EX of E

spanned by X; let {x∗ | x ∈ X} be the dual basis. Then

cone(X) =
{
y ∈ EX

∣∣ x∗(y) � 0 for every x ∈ X
}

is a closed subset of the closed subspace EX of E, hence is a closed subset of E.

Let E∗ be the dual vector space of E. The relation f(x) � 0 between f ∈ E∗ and
x ∈ E determines a contravariant Galois connection (Ξ,Φ) : PE∗ � (PE)op, where

Ξ(F ) =
{
x ∈ E

∣∣ f(x) � 0 for every f ∈ F
}

, F ⊆ E∗ ,

Φ(X) =
{
f ∈ E∗ ∣∣ f(x) � 0 for every x ∈ X

}
, X ⊆ E .

The composite ΞΦ is a closure operator on PE, while the composite ΦΞ is a closure
operator on PE∗. For every subset F of E∗, the set Ξ(F ) is a convex cone in E, and
for every subset X of E, the set Φ(X) is a convex cone in E∗.

If X is a finite subset of E, then ΞΦ(X) = cone(X).

If f ∈ Φ(X), and λx � 0 for every x ∈ X, then f
(∑

x∈X λxx
)

=
∑

x∈X λxf(x) � 0,
whence ΞΦ(X) ⊇ cone(X).

To prove the opposite inclusion, assume that y ∈ E � cone(X); we shall prove that
y ∈ E � ΞΦ(X) by exhibiting a linear functional f ∈ Φ(X) such that f(y) > 0. Put
a := y−y, where y is the point of the closed convex subset cone(X) of E that is closest
to y. We know that a · (x−y) � 0 for every x ∈ cone(X), and that a · (y−y) = a2 > 0.
We are almost there: all it remains to show is that the constant term −a·y of the affine
functional f(x) := a ·x − a ·y is 0. This is easy: because the origin 0 and the point 2y

belong to cone(X), we have −a ·y = f(0) � 0 and a ·y = f(2y) � 0.

Exchanging the roles of E and E∗, we get

Farkas’ lemma for cones. If F is a finite subset of E∗, then ΦΞ(F ) = cone(F ).
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