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The invitation, eagerly accepted

On the page 80 of “When Least is Best” the author Paul J.Nahin, after describing the envelope-
folding problem, makes the following remark:

This sounds like a simple question, but I don’t think it is. If you don’t agree, then
shut the book right now and try your hand at it before you read what follows.

And that was what I did: I shut the book right then, and tried my hand at the problem.
Below you’ll find the story of my search for a solution.

Geometry of the envelope-folding problem

This is the envelope-folding problem, as formulated in the book:

We are given a right triangle OAB, with perpendicular sides of lengths a and b

meeting at the corner O, as shown in Figure 1. Suppose we fold the right angle
over to place O at some point P on the hypotenuse. This can be done in infinity
of ways. Each such way results in the folded triangle OYX having some area;
our question is: what is the minimum possible area of OYX?
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Figure 1: Geometry of the envelope-folding problem.

We denote the interior angle of the triangle OAB at the vertex A by α and the interior angle
at the vertex B by β, thus α = arctan(a/b), β = arctan(b/a), and α + β = π/2.

Let C be the midpoint of the line segment OP. When we fold the right angle over,
the line segment OC is carried onto the line segment PC. The crease created by the folding is
the perpendicular bisector of the line segment OP; it intersects the side OB of the triangle at
the point X, and the side OA at the point Y. After the folding, the triangle OYX is positioned
as the triangle PYX.

The angle θ = �BOP cannot vary through the full range 0 � θ � π/2, because of the
constraints that the endpoint X of the crease must lie on the side OB of the triangle and
that its other endpoint Y must lie on the side OA. The least possible value of θ is α/2,
when Y = A and AX bisects the interior angle at A, while the largest possible value is
π/2 − β/2 = α/2 + π/4, when X = B and BX bisects the interior angle at B (see Figure 2).
When 0 � θ < α/2 or α/2+π/4 < θ � π/2, one endpoint of the crease lies on the hypotenuse,
as in Figure 3. We therefore seek the minimum area of the triangle OYX with the angle θ

restricted to the interval α/2 = θlo � θ � θhi = α/2 + π/4.
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Figure 2: Foldings at θ = θlo = α/2 and θ = θhi = α/2 + π/4.

Figure 3: An illegal folding.

Let us set up an Euclidean coordinate system with the origin at O, the x-axis along OB,
and the y-axis along OA. We choose t = tan(θ) as the parameter that determines a folding,
because the coordinates of the points P, C, X, and Y are rational functions of t, and so is the
area of the triangle OYX. Our minimization problem has t restricted to the interval

a

b +
√

a2 + b2
= tan

(α

2

)
= tlo � t � thi = tan

(α

2
+

π

4

)
=

a +
√

a2 + b2

b
.

To get the coordinates of the point P, we intersect the line OP, equation y = tx, with
the line AB, equation x/a + y/b = 1:

xP =
ab

at + b
, yP =

abt

at + b

The coordinates of the point C are one half the coordinates of the point P: xC = 1
2xP,

yC = 1
2yP. Next we compute the coordinates xX and yY of the intersection points X and Y of

the orthogonal bisector of the line segment OP, equation

y − yC = − 1
t

(
x − xC

)
,

with the coordinate axes:

xX =
1
2
ab

1 + t2

at + b
, yY =

xX

t
=

1
2

ab
1 + t2

t(at + b)
.

Finally, the area A of the triangle OYX is

A =
1
2
xXyY =

1
8
a2b2 (1 + t2)2

t(at + b)2
.
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Seeking the minimum

At this point it is expedient to introduce the ‘shape parameter’ w = b/a = tan(β) = 1/tan(α)
of the triangle OAB. Since we are assuming a non-degenerate triangle OAB, the shape pa-
rameter w is a strictly positive real number, 0 < w < +∞ (the values w = 0 and w = +∞
correspond to the two opposite degenerate cases). If we so wish, we can further restrict w to
the range 0 < w � 1, because if w > 1 we simply swap the sides OA and OB of the trian-
gle OAB, which changes w to 1/w < 1; if the area of the triangle OYX attains the minimum at
θ = θopt = θopt(w), hence at t = topt = topt(w) = tan

(
θopt(w)

)
, then θopt(w) = π/2−θopt(1/w)

and topt(w) = 1/topt(1/w).
With the use of the shape parameter w, the area of the triangle OYX can be expressed as

A =
1
8

b2 (1 + t2)2

t(t + w)2
.

We shall locate the value of t at which the area A attains the minimum by studying the
stationary points of the function

f(t) =
(1 + t2)2

t(t + w)2

of the real variable t.
The diagram of f(t) (for w = 3/4) is shown in Figure 4. Staring a second or two at the for-

�w 0
t

Figure 4: The diagram of f(t), for w = 3/4. The marked interval is tlo � t � thi.

mula for f(t), we notice that f(t) → −∞ when t↘−∞ or t↗−w or t↘−w or t↗0, and that
f(t) → +∞ when t↘0 or t↗+∞ (just as the diagram suggests), therefore f(t) attains an ab-
solute maximum in each of the two intervals t < −w and −w < t < 0 (where ’absolute’ is
meant relative to the part of the function on that interval), and it attains an absolute minimum
in the interval 0 < t. We conclude that f(t) has at least three distinct stationary points.

The derivative of f(t),

f ′(t) =
(1 + t2)(t3 + 3wt2 − 3t − w)

t2(t + w)3
,

has at most three real zeros, namely the zeros of the cubic factor in the numerator. It follows
that f(t) has precisely three distinct real zeros, and so does the cubic factor. Let us denote the
three zeros, in increasing order, by t1, t2, and t3 ; then t1 < −w < t2 < 0 < t3. The numbers
t1, −w, t2, 0, and t3 partition the t-axis into six open intervals (the leftmost and rightmost
ones are unbounded); the signs of the derivative f ′(t) on these intervals are, left to right,
+, −, +, −, −, +. In particular, we see that f(t) > f(t3) for t > 0, t �= t3.
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Minimum found, with a twist

To determine t1, t2, and t3, we must solve the cubic equation

t3 + 3wt2 − 3t − w = 0 .

Since this equation has three distinct real roots, Cardano’s formula is of no use; we have
a specimen of casus irreducibilis on our hands. However, there is a neat trigonometric trick
which works just in such a case, and we are going to use it.

For starters we ‘depress’ our cubic equation. We introduce a new unknown u by t = u−w,
to obtain the equation

u3 − 3(1 + w2)u + 2w(1 + w2) = 0

without a quadratic term. Next we introduce another unknown v such that u = mv, where
the multiplier m is chosen so that the resulting equation will have the form 4v3 − 3v = c

(after a suitable rearranging, of course). The desired multiplier is m = 2
√

1 + w2, and the
resulting equation is

4v3 − 3v = − w√
1 + w2

= − b√
a2 + b2

= − cos(α) = cos(α + π) .

Finally, we set v = cos(ϕ), get the equation

cos(3ϕ) = cos(α + π) ,

and its solutions,

ϕk = ±α + π

3
+ k

2π

3
, k any integer .

Substituting these solutions all the way back, we get solutions of the cubic equation we have
started with:

t1 = 2
√

1 + w2 cos
(α

3
+ π

)
− w ,

t2 = 2
√

1 + w2 cos
(α

3
+

π

3

)
− w ,

t3 = 2
√

1 + w2 cos
(α

3
− π

3

)
− w .

We have assigned the indices of t1, t2, t3 correctly, since t1 = −2
√

1 + w2 cos(α/3)−w < −w

and t3 − t2 = 4
√

1 + w2 sin(π/3) sin(α/3) > 0.
Now, let us look at the two diagrams in Figure 5: the diagram of

t3(w) := 2
√

1 + w2 · cos
(

arctan(1/w)
3

− π

3

)
− w

for 0 � w � 1, and the diagram of

θ3(α) := arctan
(
t3

(
1

tan(α)

))

for π/4 � α � π/2, this one with both α and θ3 measured in degrees. (The value t3(0)
has no geometric meaning by itself, it is just the limit of values t3(w) when w↘0. Similarly
θ3(π/2) has no geometric meaning, it is just a limit.) And here we make a surprising discovery:
the diagram of θ3(α) is a straight line! To be precise, it looks like a straight line; if it really is
a straight line, then it is the diagram of α/3+π/6, because θ3(π/4) = π/4 and θ3(π/2) = π/3.
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Figure 5: Diagrams of t3(w) for 0 � w � 1 (left) and of θ3(α) for π/4 � α � π/2 (right).

If this is true, then t3 = tan(α/3 + π/6); since w = cos(α)/ sin(α) and
√

1 + w2 = 1/ sin(α),
the following identity must hold:

tan
(α

3
+

π

6

)
=

1
sin(α)

(
2 cos

(α

3
− π

3

)
− cos(α)

)
.

Conversely, if the above identity holds, then θ3(α) = α/3 + π/6. So, let’s try to prove that
we really have an identity here. First notice that cos(α/3 − π/3) = sin(α/3 + π/6); this is
encouraging. Put ϕ = α/3 + π/6; then α = 3ϕ − π/2, cos(α) = sin(3ϕ), sin(α) = − cos(3ϕ),
the purported identity becomes

sin(ϕ)
cos(ϕ)

=
2 sin(ϕ) − sin(3ϕ)

− cos(3ϕ)
,

and can be proved using the identities cos(3ϕ) = 4 cos3(ϕ) − 3 cos(ϕ), cos2(ϕ) = 1 − sin2(ϕ),
and sin(3ϕ) = 3 sin(ϕ) − 4 sin3(ϕ):

− sin(ϕ) cos(3ϕ) = sin(ϕ) cos(ϕ)
(
3 − 4 cos2(ϕ)

)
= sin(ϕ) cos(ϕ)

(
4 sin2(ϕ) − 1

)
,

cos(ϕ)
(
2 sin(ϕ) − sin(3ϕ)

)
= sin(ϕ) cos(ϕ)

(
4 sin2(ϕ) − 1

)
.

It is now easy to verify that θ3(α) = α/3 + π/6 lies within the bounds θlo and θhi,

θ3(α) − θlo =
(α

3
+

π

6

)
− α

2
=

π − α

6
,

θhi − θ3(α) =
(α

2
+

π

4

)
−

(α

3
+

π

6

)
=

α + π/2
6

,

and we conclude that θopt = θ3.
At last we have the solution of the envelope-folding problem: the area of the triangle OYX

is minimized at θ = θopt, where

θopt = θopt(α) =
α

3
+

π

6
.

The linear relation between θopt and α can be rewritten as a proportional relation between the
‘deviations’ θopt − π/4 and α − π/4 of the angles θopt and α from one half of the right angle:

θopt − π

4
=

1
3

(
α − π

4

)
.

How about the minimum area of the triangle OYX? Let us introduce the ‘normalized’
area p of the triangle OYX, relative to the area of the triangle OAB, as

p := A�OYX

/
A�OAB =

1
4

w
(1 + t2)2

t(t + w)2
.
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Taking t = topt, we get p = pmin. We want to know how pmin depends on the angle α; this de-
pendence is invariant with respect to complementing the angle α, i.e. pmin(π/2−α) = pmin(α).
As we have done above, we put ϕ = α/3 + π/6, and determine how the components of the
formula for pmin (the above formula for p with t = topt) depend on ϕ:

w =
cos(α)
sin(α)

= − sin(3ϕ)
cos(3ϕ)

,

1 + t2opt =
1

cos2(ϕ)
,

topt + w =
sin(ϕ)
cos(ϕ)

− sin(3ϕ)
cos(3ϕ)

= − sin(2ϕ)
cos(ϕ) cos(3ϕ)

= − 2 sin(ϕ)
cos(3ϕ)

.

Plugging these into the formula for pmin we obtain the desired formula for pmin = pmin(α):

pmin = − 1
16

sin(3ϕ) cos(3ϕ)(
sin(ϕ) cos(ϕ)

)3 = − 1
4

sin(6ϕ)
sin3(2ϕ)

=
1
4

sin(2α)
sin3

(
2
3α + 1

3π
) .

The diagram of the function pmin(α) is shown in Figure 6.

20 40 60 80
Α

0.05

0.10

0.15

0.20

0.25

pmin

Figure 6: The normalized minimum area pmin(α).

The lemniscate rationale

In the envelope-folding construction, shown in Figure 1, we started with a point P on the
hypotenuse AB and constructed the triangle OYX that folds over onto the triangle PYX.
Clearly, if we know the triangle OYX, we can reconstruct the point P, which happens to lie
on the hypotenuse.

Now we do the following: we vary the triangle OYX, keeping its area constant, and observe
the trajectory of the point P. Naturally, we no longer constrain the point P to stay on the
hypotenuse, so we’d better think the hypotenuse away; we shall think it back into the fray
later on, when the time is ripe. With the hypotenuse out of the way, we have a very large
piece of paper possessing a right-angle corner to play with, namely the whole first quadrant of
the Oxy coordinate system, as shown in the left panel of Figure 7. To simplify the situation
further, we draw the perpendicular UV to the line segment OP through the point P, with the
endpoint U on the x-axis and the other endpoint V on the y-axis. The area of the triangle OVU
is four times the area of the triangle OYX, thus varying the triangle OVU, while keeping its
area constant, produces precisely the same trajectory of P as does varying the triangle OYX,
keeping its area constant.
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Figure 7: Folding the right angle of the first quadrant.

Let P be the point (x, y) in the interior of the first quadrant, and let (r, θ) be its polar co-
ordinates (Figure 7, right panel). We have cos(θ) = x/r = r/xU, hence xU = r2/x. Similarly,
yV = r2/y, and the area of the triangle OVU is

A =
1
2
xUyV =

r4

2xy
=

(x2 + y2)2

2xy
=

r2

sin(2θ)
.

If C > 0 is a real constant, then the condition A(r, θ) = C gives us the polar equation

r2 = C sin(2θ) , 0 < θ <
π

2

of the trajectory �C of the point P. With the range of θ extended to the closed interval
0 � θ � π/2, the formula for the trajectory gives the origin at the two ends θ = 0 and
θ = π/2; we add the origin to �C to obtain a closed curve �C . This closed curve �C is
(one half of) the lemniscate of Bernoulli, rotated by π/4 from its ‘standard’ position (where it
has the polar equation r2 = C cos(2θ)). The contour diagram of the function A(x, y) on the
interior of the first quadrant (Figure 8) is a family of ‘open-ended’ lemniscates �C , where each

0 1

Figure 8: The contour diagram of A(x, y), with the lines at levels (k · 0.1)2, k = 1, 2, 3, . . . .

lemniscate is a scaled image
√

C�1 of the single ‘unit lemniscate’ �1. Each point (x0, y0) in
the interior of the first quadrant belongs to precisely one lemniscate �C0 with C0 = A(x0, y0).
The open region LC =

{
(x, y)

∣∣ x > 0, y > 0, A(x, y) < C
}

is the union of lemniscates �C′

with 0 < C ′ < C. The boundary of LC (as a subset of the first quadrant, and also as a subset
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of the whole plane) is the ‘closed’ lemniscate �C , so the closure of LC is

LC = LC ∪ �C =
{
(x, y)

∣∣ x > 0, y > 0, A(x, y) � C
} ∪ {

(0, 0)
}

.

We shall call LC an open —and LC a closed — lemniscate ‘petal’. The closed lemniscate
petal LC is the union of the closed line segments [O--P] = OP, while its interior LC is the
union of the open line segments (O--P), for all points P of the lemniscate �C .

We shall calculate the direction angle τ = τ(θ) of (the tangent to) a lemniscate �C at the
point P = P (θ). For this we need the general formula. Suppose we are given a curve in the
Euclidean plane with a polar equation r = r(θ). Regarding the plane as the plane of complex
numbers, the point on the curve is z(θ) = r(θ)eiθ, and the direction angle at this point is

τ(θ) = arg
(
z′(θ)

)
= arg

((
r′(θ) + ir(θ)

)
eiθ

)
= arg

(
r′(θ) + ir(θ)

)
+ θ .

For the lemniscate �C we have

r =
√

C sin(2θ) ,

r′ = cos(2θ)
√

C/sin(2θ) ,

arg(r′ + ir) = arg
(
cos(2θ) + i sin(2θ)

)
= 2θ ,

τ = 2θ + θ = 3θ ;

see Figure 9. Since τ ′(θ) = 3 > 0, the closed lemniscate petal LC is a strictly convex set.

O

P

θ 3θ

�C

Figure 9: The direction angle of a tangent to a lemniscate.

We are ready for the punch line. We are back with our right triangle OAB. Suppose

O

A

B

Popt

θopt

3θopt

α

�

Figure 10: The optimal folding is determined by the lemniscate touching the hypotenuse.

that the minimum folded area occurs at a point Popt inside the hypotenuse AB, hence in the
interior of the first quadrant. Let � be the lemniscate through the point Popt and let L be
the corresponding closed lemniscate petal. The hypotenuse intersects L in the single point Popt,
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because A(P) > A(Popt) for every point P �= Popt on the hypotenuse while A(Q) � A(Popt) for
every point Q in L� {O}, so the hypotenuse is the tangent of � at Popt ; the situation is shown
in Figure 10. From the figure we see that 3θopt = α+π/2, i.e. that θopt = α/3+π/6. We have
shown that the minimum folded area is attained at θ = α/3 + π/6, provided it is attained at
some θ in the range 0 < θ < π/2. To prove that such θ in fact exists, put θ∗ = α/3 + π/6;
we have π/6 < θ∗ < π/3. Let P∗ be the point at which the ray from the origin in the
direction θ∗ intersects the hypotenuse, let �∗ be the lemniscate through the point P∗ and
let L∗ be the corresponding closed lemniscate petal. Then the hypotenuse is the tangent
of �∗ at P∗ because its direction angle is 3θ∗, thus every point P �= P∗ on the hypotenuse
lies outside L∗ whence A(P) > A(P∗), which proves that the minimum folded area occurs at
the point P∗ on the hypotenuse.

This result explains the simple form of the formula for θopt we have found in the preceding
section; it also gives an independent solution to the envelope-folding problem.
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