
Compactness of a Topological Space Via Subbase Covers
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Exercise 1 for §9 of Chapter I in Bourbaki’s General Topology :

Let X be a topological space and S a subbase of the topology of X. If every open cover
of X by sets belonging to S contains a finite subcover, then X is compact.

This result is known as the Alexander subbase theorem. The exercise provides a hint how
to go about proving the theorem. Here we shall approach it from a different direction,
using the following special case of Tychonoff’s theorem:

The product of any family of finite topological spaces is a compact topological space.

We will actually need only the compactness of the product of finite discrete topological
spaces. It is easily seen that this even more special case of Tychonoff’s theorem implies
the special case above: given any finite topological spaces Xι, ι ∈ I, the topology O
of the product space

∏
ι∈I Xι is cruder than (i.e. is a subset of) the topology of the

product of discrete topological spaces on the sets Xι; since (we are assuming that) the
latter topology is compact, the topology O is also compact.

For a start, observe that the exercise becomes trivial if “subbase” is replaced by
“base”. Let B be a base of the topology of X, and suppose that every cover V ⊆ B
of X has a finite subcover. Given any open cover U of X, assemble the set V of all
sets B ∈ B for which there exists an U ∈ U that contains B. Then V ⊆ B covers X,
it has a finite subcover W, and we obtain a finite subset of U that covers X by selecting
(and collecting) for each set B ∈ W a set UB ∈ U that contains B.

Now let S be a subbase of the topology of X, and suppose that every open cover
V ⊆ S of X has a finite subcover. The set B of the intersections of all finite subsets of S
(including the set X, which is by convention the ‘intersection’ of the empty subset of S)
is a base of the topology of X. Suppose that U ⊆ B covers X; to prove X compact it
suffices to prove that U has a finite subcover; this is trivially true if X ∈ U , so suppose
that X /∈ U . Assume, in order to derive a contradiction, that U has no finite subcover.

For each U ∈ U choose a finite FU ⊆ S so that
⋂FU = U; the set FU is nonempty be-

cause U �= X. Equip each FU with the discrete topology, and consider the compact topo-
logical space Φ :=

∏
U∈U FU . First note that every indexed family F = (FU | U ∈ U) ∈ Φ

covers X. Let V be any finite subset of U , and write ΦV :=
∏

v∈V FV . Since

X �= ⋃V =
⋃

V∈V
⋂FV =

⋂
E∈ΦV

⋃
V∈V EV ,
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we must have
⋃

V∈V EV �= X for some E ∈ ΦV , and it follows that the closed subset1

ΨV :=
{
F ∈Φ

∣
∣ ⋃

V∈V FV �= X
}

of Φ is not empty (because the sets FU , U ∈ U �V, are not empty). If V and V ′ are
finite subsets of U and V ⊆ V ′, then evidently ΨV ⊇ ΨV ′ , thus the set

{
ΨV

∣
∣ V is a finite subset of U}

of closed subsets of Φ has the finite intersection property, and by compactness of Φ it fol-
lows that its intersection Ψ∗ is not empty. There exists F ∈ Ψ∗, the family (FU | U ∈ U)
of sets in S covers X while every one of its finite subfamilies fails to cover X, which
contradicts our assumption about the subbase S.

In the above proof we have applied the axiom of choice twice: first to choose for each
U ∈ U a finite subset FU of the subbase S so that

⋂FU = U, and then to derive from the
existence of E ∈ ΦV such that

⋃
V∈V EV �= X the existence of F ∈ Φ (which extends E)

such that
⋃

V∈V FV �= X. We can eliminate the first application of AC (we are going to
show how, in a moment), while it is almost surely impossible to completely get rid of
its second application2 (we won’t go into this).

Let the subbase S, the base B, and the open cover U ⊆ B (with X /∈ U) be as above.
Assume that no finite subset of U covers X. To sidestep the first application of AC, we
let U be the set of all finite subsets F of S such that

⋂F ∈ U ; since X /∈ U , all F ∈ U

are nonempty. Equip each F ∈ U with the discrete topology, and let Φ be the product
topological space

∏
U =

∏
F∈UF . The points of the compact topological space Φ are

indexed families F = (FF | F ∈ U), where FF ∈ F for each F ∈ U. Since every U ∈ U
is the intersection of some finite subset of S, we have

⋃
F∈U FF = X for every F ∈ Φ.

Let V be any finite subset of U, and set

ΨV :=
{
F ∈ Φ

∣
∣ ⋃

E∈V FE �= X
}

.

As in the above proof we show (using AC) that
{
ΨV

∣
∣ V is a finite subset of U

}

is a set of nonempty closed subsets of Φ that has the finite intersection property, so by
compactness of Φ its intersection Ψ∗ is not empty; looking at some point F ∈ Ψ∗ we
then derive a contradiction.

1The set ΨV happens to be also open, which is of no consequence here.
2Mark, however, that AC is applied to a family of nonempty finite sets.
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