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Abstract

These notes gather in one place proofs that several variations on the theme
of compactness, which differ for general topological spaces, happen to coincide for
metric spaces. We prove that the following topological properties of a metric space
are equivalent to each other: compactness (every open cover has a finite subcover);
paracompactness (every continuous real-valued function on the space is bounded);
sequential compactness (every sequence has a cluster point); limit point compact-
ness (every infinite set has a limit point); countable compactness (every countable
open cover has a finite subcover). We also prove the classical characterization of
compactness of a metric space in terms of its uniform structure: a metric space is
compact if and only if it is complete and totally bounded.

1 Metric spaces: some basic notions and facts

A metric space is a structure (M,d), where M is a set and d is a function M×M → R

that satisfies the following conditions, for all x, y, z ∈ M :

(1) d(x, y) � 0;

(2) d(x, y) = 0 if and only if x = y ;

(3) d(x, y) = d(y, x);

(4) d(x, z) � d(x, y) + d(y, z).

The four properties have names: (1) d is non-negative; (2) d is definite; (3) d is sym-
metric; (4) d satisfies the triangle inequality. Elements of M are usually called points.
For any two points x and y the number d(x, y) is called the distance between x and y,
while the function d is called the distance function, or the metric.

Note that the property (1) is redundant, it is a consequence of the other three
properties: 2d(x, y) = d(x, y) + d(y, x) � d(x, x) = 0.

It is customary, in mathematical discussions, that when we refer to a mathematical
structure sitting on a set A, we mention only the underlying set A, provided this cannot
cause confusion. Metric spaces are no exception in this regard, so we shall occasionally
talk of a metric space M, where M will be in fact just the underlying set of all points
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of a metric space, whereas we will silently assume that the set M is accompanied by
a distance function d.

Let (M,d) be a metric space.

Given x ∈ M and r > 0, the open ball with center x of radius r is the set

B(x, r) :=
{
y ∈M

∣∣ d(x, y) < r
}

,

and the closed ball with center x of radius r is the set

B(x, r) :=
{
y ∈M

∣∣ d(x, y) � r
}

.

We shall also say that an open/closed ball of radius r is an open/closed r-ball.

If y is a common point of open balls B(x1, r1) and B(x2, r2), then the intersection
of the two balls contains the open ball B(y, s), where s is the smaller of the numbers
r1 − d(x1, y) > 0 and r2 − d(x2, y) > 0. The intersection of any two open balls is there-
fore the union of the open balls contained in it, which means that the collection B
of all open balls of the metric space M is a basis of some topology O = O(d) on the
set M ; the open sets (the members of O) of this topology are the unions of all possible
collections of open balls. We shall often refer to the topological space (M,O) as the
topological space M (associated with the metric space M).

For any point x ∈ M, the collection of all open balls centered at x is a basis of (open)
neighborhoods of the point x in the topological space M ; indeed, if V is any neighbor-
hood of x, then V contains an open set U which contains an open ball B(y, r) which
contains the point x, whence V contains the open ball B

(
x, r−d(x, y)

)
centered at x.

Moreover, if R is any set of positive real numbers with inf R = 0, then the collection of
open balls B(x, r) with r ∈ R is a basis of neighborhoods of the point x; since there are
countable sets R with the requisite property, it follows that the topological space M is
first countable.

The topological space M is Hausdorff: if x and y are distinct points, then the open
balls B(x, r) and B(y, r) with r = 1

2d(x, y) are disjoint.

The set of all real numbers, equipped with the distance function |x−y|, is a metric
space. The topology of this metric space is the usual topology of the real line.

Every open ball is an open set by definition. Also, every closed ball B(x, r) is
a closed set. To prove the latter, let y ∈ M be any point outside the closed ball B(x, r);
then the open ball B(y, s), where s := d(x, y) − r > 0, is a subset of the complement
M � B(x, r) of the closed ball, because every point z ∈ B(y, s) satisfies the inequalities
d(x, z) � d(x, y)− d(y, z) > d(x, y)− s = r. This proves that M �B(x, r) is open, hence
B(x, r) is closed.

A warning is in order here: the closure of the open ball B(x, r) is always contained
in the closed ball B(x, r), but it may not be the whole closed ball; also, the interior of
the closed ball B(x, r) always contains the open ball B(x, r), but may not coincide with
it. To see how this can happen, let X be any set, and let d(x, x) = 0 for x ∈ X, and
d(x, y) = 1 for distinct x, y ∈ X; this defines the standard discrete metric space
on X. Suppose that X has at least two points, pick an x ∈ X and note that the
open ball B(x, 1) = {x} is a closed set, while the closed ball B(x, 1) = X �= B(x, 1) is
an open set.
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Let S be a subset of a metric space M, and let dS be the restriction of d : M×M → R

to S×S → R. Then (S, dS) is a metric space, called the metric subspace induced
on S by the metric space (M,d), or shorter, the metric subspace S of the metric
space M . If x ∈ S and r > 0, we denote by BS(x, r) the open ball centered at x

of radius r in the metric subspace S; clearly BS(x, r) = B(x, r) ∩ S. Denote by OS

the collection of all open sets of the topology of the metric subspace S. Let x ∈ M

and r > 0; then B(x, r) ∩ S ∈ OS : if y ∈ B(x, r) ∩ S, then with s := r − d(x, y)
we have B(y, s) ⊆ B(x, r) and hence BS(y, s) = B(y, s) ∩ S ⊆ B(x, r) ∩ S. Since
the mapping PM → PS : X �→ X ∩ S preserves arbitrary unions, it follows that
OS = {U ∩ S | U ∈ O}, that is, the topological space (S,OS) is the subspace of the
topological space (M,O).

A subset S of a metric space M is said to be α-spaced (in M), where α > 0,
if d(x, y) � α for any two distinct points x, y ∈ S, and it is said to be spaced out
(in M) if it is α-separated for some α > 0. A metric space M is said to be uniformly
discrete if the set M is spaced out in the metric space M . Any standard discrete metric
space is of course uniformly discrete. Recall that a topological space is said to be discrete
if every one-point set is open, or equivalently, if every subset is open. The topology of
a uniformly discrete metric space is discrete. Keep in mind that the converse is not true:
a metric space that is not uniformly discrete may have a discrete topology; an example
is the metric subspace {2−n | n ∈ N} of R (with the usual metric).

Let f be a function A → B, where A is either a topological space or a metric
space, and the same is true of B. If A is a metric space, we replace it by the associated
topological space, and likewise we do with B. Then, if f is a continuous function from the
topological space A to the topological space B, we regard it as continuous function from
the space A to the space B as they were originally given. For example, the continuity
of a function f : M → M ′ from a metric space (M,d) to a metric space (M ′, d′) is
described in epsilon-deltics as follows: f is continuous at x ∈ M if and only if for every
ε > 0 there exists δ > 0 so that d(x, y) < δ implies d′(f(x), f(y)

)
< ε for every y ∈ M ;

f is continuous if and only if it is continuous at every x ∈ M.

Any three points x, y, z of a metric space (M,d) satisfy the inequality
∣∣d(x, y) − d(x, z)

∣∣ � d(y, z) ,

which is a consequence of symmetry and triangle inequality satisfied by the distance
function: d(x, y) � d(x, z) + d(z, y) = d(x, z) + d(y, z), d(x, z) � d(x, y) + d(y, z).
It follows that with a point x fixed, the function M → R : y �→ d(x, y) is continuous.

Let A be a nonempty subset of a metric space M. For every point x ∈ M we define
the distance of x from A as

d(x,A) := inf
{
d(x, a)

∣∣ a ∈ A
}

.

The distance d(x,A) is a non-negative real number, where d(x,A) = 0 if and only if
every neighborhood of x contains a point in A, that is, if and only if x belongs to the
closure of the set A. Suppose that A is closed and x /∈ A; then d(x,A) > 0, and
a little thought shows that d(x,A) is the largest r > 0 such that the open ball B(x, r) is
contained in the open set M �A. The function M → R : x �→ d(x,A) is continuous, for
any nonempty A ⊆ M, because it satisfies the inequality

∣∣d(x,A) − d(y,A)
∣∣ � d(x, y)
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for all x, y ∈ M. To prove the inequality, let x, y ∈ M, and let a be any point in A. Then
d(x,A) � d(x, a) � d(x, y) + d(y, a), hence d(x,A) − d(x, y) � d(y, a), and we conclude
that d(x,A) − d(x, y) � d(y,A) because a ∈ A is arbitrary. We have the inequality
d(x,A) − d(y,A) � d(x, y), and switching the roles of the points x and y we obtain the
inequality d(y,A) − d(x,A) � d(x, y).

A subset of a metric space M is said to be compact if it is a compact subset of
the topological space M. That is, a subset K of M is compact if and only if every
cover of K by open subsets of M has a finite subcover. A metric space M is said to be
compact if the set M of all its points is compact. We know that a subset of a topological
space is compact if and only if the topological subspace on the subset is compact. Since
a metric subspace has the topology of the topological subspace, it follows that a subset
of a metric space is compact if and only if the the metric subspace on the subset is
compact. In a metric space as well as in a topological space, compactness of a subset is
an intrinsic property of the subspace structure on the subset.

The following properties of compact subsets of a metric space and of compact metric
spaces are straight rip-offs of the corresponding properties of compact subsets of a topolo-
gical space and of compact topological spaces.

A family of subsets of a set A is said to have the finite intersection property if the
intersection of every finite subfamily is nonempty.1 As a special case, every nonempty
chain of nonempty subsets of a set has the finite intersection property. A metric space M

is compact if and only if every family of closed subsets of M that has the finite inter-
section property has a nonempty intersection; this is essentially just a contrapositive
rewording of the definition of compactness of a metric space.

Every closed subset of a compact metric space is compact. Since metric spaces are
Hausdorff (when regarded as topological spaces), a compact subset of a metric space is
always closed.

If M is a nonempty compact metric space, and if f : M → R is a continuous function,
then there exist points a, b ∈ M such that f(a) � f(x) and f(b) � f(x) for every x ∈ M.
Every continuous real-valued function on a compact metric space M is bounded.2

2 Lebesgue number and pseudocompactness

Let U be an open cover of a metric space M. A Lebesgue number of U is any positive
real number ε which has the property that for every x ∈ M there exists U ∈ U such that
B(x, ε) ⊆ U . An open cover of a metric space may not have a Lebesgue number. Are
there metric spaces with the property that every open cover has a Lebesgue number?

Lemma 1 (Lebesgue number lemma). Every open cover of a compact metric space has
a Lebesgue number.

We shall prove a (seemingly) stronger assertion, with a (seemingly) weaker premise.3

1In particular, the intersection of the empty subfamily, which is by convention the whole set A, must

be nonempty. The empty set does not have a family of subsets possessing the finite intersection property.
2This follows from the preceding assertion if M �= ∅, and is trivially true if M = ∅.
3The premise of Lemma 2—that a given metric space is pseudocompact — is in fact equivalent to

compactness of the metric space, but we do not know that yet.
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A topological space X is said to be pseudocompact if every continuous real-valued
function on X is bounded. Every compact topological space is pseudocompact.

Lemma 2. Every open cover of a pseudocompact metric space has a Lebesgue number.

Proof. Assuming that M is a pseudocompact metric space, let U be an open cover of M.
If M ∈ U or M = ∅, then the conclusion is trivially true, so we assume that M /∈ U
and M �= ∅, whence U �= ∅ and M �U �= ∅ for every U ∈ U .

First we show that the distance function is bounded, that is, that there exists D > 0
so that d(x, y) � D for all x, y ∈ M. Fix a point x0 ∈ M. Since the distance d(x0, x)
is a continuous function of x ∈ M, it is bounded, thus there exists C > 0 so that
d(x0, x) � C for all x ∈ M, and hence d(x, y) � d(x0, x)+d(x0, y) � 2C for all x, y ∈ M.

Now we define on M the real-valued functions fU , U ∈ U , and f :

fU (x) := d(x, M �U) , f(x) := sup
{
fU(x)

∣∣ U ∈ U}
.

We have fU (x) � D for all U ∈ U and all x ∈ M, and hence f(x) � D for all x ∈ M.
Each of the functions fU satisfies the inequality

∣∣fU(x) − fU (y)
∣∣ � d(x, y). Thus for all

x, y ∈ M and any U ∈ U we have fU(x) � fU(y) + d(x, y) � f(y) + d(x, y), whence
f(x) � f(y) + d(x, y); since also f(y) � f(x) + d(x, y), the function f satisfies the
inequality

∣∣f(x) − f(y)
∣∣ � d(x, y) for all x, y ∈ M and is therefore continuous. Every

x ∈ M belongs to some U ∈ U , so we have f(x) � fU (x) > 0. It follows that the function
1/f is continuous, thus it is bounded from above, hence the function f is bounded from
below by some positive constant α. Choose any positive ε < α (say ε := 1

2α); we claim
that ε is a Lebesgue number of U . Let x ∈ M ; then there exists U ∈ U such that
fU(x) > ε, whence B(x, ε) ⊆ U.

Pseudocompact metric spaces are not the only metric spaces whose every open cover
has a Lebesgue number; for example, every uniformly discrete metric space has this
property, and infinite uniformly discrete metric spaces are not pseudocompact.

Let (M,d) and (M ′, d′) be metric spaces; we shall write open balls in the latter
metric space as B′( , ).

A function f : M → M ′ is said to be uniformly continuous if for every ε > 0 there
exists δ > 0 such that d(x, y) < δ implies d′(f(x), f(y)

)
< ε for all x, y ∈ M. The notion

of uniform continuity of functions between metric spaces is not topological, meaning
that it canot be expressed in terms of topologies of metric spaces. However, it is clear
that every uniformly continuous function is continuous.

We have already met examples of uniformly continuous functions: for any nonempty
A ⊆ M the function M → R : x �→ d(x,A) is uniformly continuous; with A = {a} we
have the function x �→ d(a, x) as a special case. Also the function f in the proof of
Lemma 2 is uniformly continuous.

Lemma 3. Let M and M ′ be metric spaces. If every open cover of M has a Lebesgue
number, then every continuous function M → M ′ is uniformly continuous.
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Proof. Let f : M → M ′ be continuous, and let ε > 0. For each x ∈ M set4

Ux := f∗
(
B′(f(x), 1

2ε
))

.

The collection U of open sets Ux ⊆ M, x ∈ M, covers M. There exists a Lebesgue
number δ of the cover U . Suppose that x, y ∈ M and d(x, y) < δ. There exists
a point x̂ ∈ M for which B(x, δ) ⊆ Ux̂, which means that d′(f(x̂), f(z)

)
< 1

2ε for every
z ∈ B(x, δ). In particular, d′(f(x̂), f(x)

)
< 1

2ε and d′(f(x̂), f(y)
)

< 1
2ε, and it follows

that d′(f(x), f(y)
)

� d′(f(x̂), f(x)
)

+ d′(f(x̂), f(y)
)

< 1
2ε + 1

2ε = ε.

Since a compact metric space is pseudocompact, we have the following corollary:

Theorem 4 (Heine-Cantor). If M is a compact metric space and M ′ is a metric space,
then every continuous function M → M ′ is uniformly continuous.

3 Sequential compactness

Let A be any set. A sequence in A is a function x : N → A, which is usually written
as (xn | n ∈ N).5 Given a sequence x in A, a subsequence of the sequence x is
any sequence in A of the form x ◦ ν =

(
xν(m) | m ∈ N

)
, where ν is a strictly increasing

function N → N. If x is a sequence in A and S is a subset of A, we write6

x∗(S) = {n ∈ N | xn ∈ S} .

If x is a sequence of points in a metric space M, and if y ∈ M and r > 0, then we write

Lx(y, r) := x∗(B(y, r)
)

=
{
n∈N

∣∣ d(y, xn) < r
}

.

In a topological space X, a point y is said to be a cluster point of a sequence x

if for every neighborhood V of the point y the set x∗(V ) is infinite; therefore, in a metric
space, a point y is a cluster point of a sequence x if and only if for every ε > 0 the set
Lx(y, ε) is infinite.7 It is clear that any cluster point of a subsequence of a sequence x

is also a cluster point of the sequence x.

Lemma 5. In a metric space M, a point y is a cluster point of a sequence x if and
only if some subsequence of x converges to y.

4Let A and B be sets, and let f be a function A → B. For any sets X ⊆ A and Y ⊆ B we denote by

f∗(X) the set {f(x) | x∈X} (
usually written f(X)

)
and by f∗(Y ) the set {x∈X | f(x) ∈ Y } (

usually

written f−1(Y )
)
, and in this way define functions f∗ : PA → PB and f∗ : PB → PA. The mapping

A �→ PA is the object part of a covariant functor Set → Set which sends each function f to the

function f∗, and it is also the object part of a contravariant functor Setop → Set which sends f to f∗.
5In a topological context, “sequence” without a qualification usually means “infinite sequence”. When

we occasionally stumble upon some finite sequence, we say that it is finite.
6Recall that x∗(S) denotes the inverse image of the set S by the function x : N → A.
7Requiring that the set Lx(y, r)— or the set x∗(V ) in the preceding statement — must be infinite

is peculiar to sequences; it just so happens that the cofinal subsets of the directed set N (with the usual

ordering) are precisely the infinite subsets of N. In a more general setting, if X is a topological space

and D is a directed set, then a point y ∈ X is said to be a cluster point of a net x : D → X if for every

neighborhood V of y the set x∗(V ) is cofinal in D.
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Proof. Suppose that y is a cluster point of x. We construct a function ν : N → N,
as follows. We set ν(0) := 0. Let m > 0 and suppose that we have already determined
ν(k) for 0 � k < m. Since Lx(y, 1/k) is infinite, it contains natural numbers n > ν(m−1);
we let ν(m) be the least such n. It is clear that ν is strictly increasing and that xν(m) → y

as m → ∞.
Suppose that y is the limit of a subsequence

(
xν(m) | m ∈ N

)
of x. Given any r > 0,

we have d
(
y, xν(m)

)
< r for all but finitely many m, which shows that the set Lx(y, r)

is infinite.

The set of all cluster points of a sequence x is called the limit set of the sequence x

and is written as Lim x or Limn∈N xn.

Lemma 6. If x is a sequence of points in a metric space M, then

Lim x =
⋂
n∈N

cl
{
xk

∣∣ k ∈ N, k � n
}

.

Proof. If y is any point in M, then

y is a cluster point of x ⇐⇒ (∀n)(∀ε> 0)(∃k � n)
(
d(y, xk) < ε

)

⇐⇒ (∀n)
(
y ∈ cl{xk | k � n})

⇐⇒ y ∈ ⋂
n cl{xk | k � n} .

A metric space M is called sequentially compact if every sequence of points in M

has a cluster point.

Lemma 7. Every compact metric space is sequentially compact.

Proof. Let x be a sequence of points in a compact metric space. Then Lim x =⋂
n cl{xk | k � n} is the intersection of a nonempty chain of nonempty closed sets,

hence is not empty.

Lemma 8. If M is a nonempty sequentially compact metric space, and f is a contin-
uous real-valued function on M, then there exist points a, b ∈ M so that f(a) � f(x)
and f(b) � f(x) for all x ∈ M. Consequently, a sequentially compact metric space is
pseudocompact.

Proof. Let β = supx∈M f(x), with the supremum taken in the extended real line. There
exists a sequence of points (xn) so that f(xn) → β as n → ∞. Some subsequence

(
xν(m)

)
converges to a point b, and still f

(
xν(m)

) → β as m → ∞. By continuity of f we have
also f

(
xν(m)

) → f(b) as m → ∞, which shows that β = f(b) < ∞. By the same
reasoning applied to −f there is a point a so that −f(a) � −f(x) for all x ∈ M.

Let A be a subset of a metric space M, and r > 0; we write

N(A, r) :=
⋃
a∈A

B(a, r) =
{
x ∈ M

∣∣ d(x, a) < r for some a ∈ A
}

,

and call the set N(A, r) (which is an open subset of M) the r-neighborhood of A.
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A subset S of a metric space M is said to be totally bounded if for every ε > 0
there exists a finite subset C of M so that S ⊆ N(C, ε); the metric space itself is said to
be totally bounded if the set M is totally bounded.

Lemma 9. A subset S of a metric space M is totally bounded if and only if the metric
subspace S of M is totally bounded.

Proof. Clearly, if the subspace S is totally bounded, then S is totally bounded as
a subset of M. Conversely, assume that the subset S is totally bounded in M, and let
ε > 0. There exists a finite subset C of M so that S ⊆ N

(
C, 1

2ε
)
. Removing, if necessary,

from C all points c for which B
(
c, 1

2ε
)

is disjoint with S, we can assume that B
(
c, 1

2ε
)

intersects S for every c ∈ C. For each point c ∈ C choose a point c′ ∈ B
(
c, 1

2ε
) ∩ S and

let C ′ := {c′ | c ∈ C} ⊆ S; then S ⊆ N(C ′, ε) ∩ S = NS(C ′, ε).

Lemma 10. Every pseudocompact metric space is totally bounded.

Proof. Let M be a metric space. Suppose that for some ε > 0 the space M cannot be
covered by finitely many ε-balls. Since M is certainly not empty, we can pick a point
c0 ∈ M. The ball B(c0, ε) is not the whole space, so we can choose a point c1 outside
the ball. The union of the balls B(c0, ε) and B(c1, ε) is still not the whole space, so we
can choose a point c2 outside this union. Continuing in this way, we produce a sequence
of points (cn | n ∈ N) with the property that d(cn, cm) � ε when m �= n.8

For each n ∈ N we define a real-valued function fn on M, setting

fn(x) := max
(
0, n ·

(
1 − 4

ε
d(cn, x)

))
for x ∈ M .

Then fn(cn) = n, and fn(x) = 0 whenever x is not in the open ball Bcn := B
(
cn, 1

4ε
)
.

All functions fn are continuous, and their sum f(x) :=
∑

n∈N
fn(x) is well defined at

every point x because at most one term fn(x) is not zero. Moreover, for every n the
restriction of f to the ball B

(
cn, 3

4ε
)

is the same as the restriction of fn to this ball.
Let x be any point in M. The ball Bx := B

(
x, 1

4ε
)

meets at most one of the balls Bcn ;
when it meets none, the restriction of f to Bx is identically zero. If Bx meets Bcn ,
then the restriction of f to Bx coincides with the restriction of fn to Bx because
Bx ⊆ B

(
cn, 3

4ε
)
, and is therefore continuous (on the subspace Bx, of course). Since

the open subsets Bx, x ∈ M, cover the space, and since the restriction of f to each Bx

is continuous, f itself is continuous. However, f is not bounded.

Lemma 11. Every pseudocompact metric space is compact.

Proof. Let M be a pseudocompact metric space, and let U be an open cover of M.
By Lemma 2, U has a Lebesgue number δ. By Lemma 10, M is totally bounded,
so it can be covered by a collection of open balls B(c, δ), c ∈ C, for some finite set C of
points. But every one of the balls B(c, δ), c ∈ C, is contained in some open set Uc ∈ U ,
and we have a finite subcover {Uc | c ∈ C}.

8That is, the points cn are all distinct and the set {cn | n ∈ N} is ε-spaced.
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We have come a full circle. Let us sum up the results of this section.

Proposition 12. The following three properties of a metric space M are equivalent
to each other:

� M is compact;

� M is sequentially compact;

� M is pseudocompact.

Proof. Follows from Lemmas 7, 8, and 11.

4 Limit point compactness

Let X be a topological space and S a subset of X.
A point y ∈ X is said to be a limit point (or accumulation point) of S if every

neighborhood of y contains a point in S that is different from y. The set of all limit
points of the set S is called the derived set of S and is usually denoted by S ′; we shall
write it der S.

The subset S is closed in M if and only if derS ⊆ S; moreover, cl S = S ∪ der S.
Since y ∈ X is a limit point of S ⊆ X if and only if every neighborhood of y intersects
the set S�{y}, that is, if and only if y belongs to the closure of the set S�{y}, we have
derS =

{
y ∈ X

∣∣ y ∈ cl(S�{y})}. If y is a limit point of a subset of the set S, then it is
clearly also a limit point of the set S; told differently, der is an increasing endofunction
of the set PX partially ordered by inclusion: if T ⊆ S ⊆ X, then der T ⊆ der S.

Lemma 13. Let M be a metric space, and S ⊆ M. A point y ∈ M is a limit point of S

if and only if every neighborhood of y contains infinitely many points of S.

Proof. If a neighborhood of y contains infinitely many points of S then it certainly
contains a point in S that is different from y, which proves the “if” implication.

The “only if” implication. Let y be a limit point of S, and let V be a neighbor-
hood of y. We pick a point x0 ∈ S ∩ V , x0 �= y. Having a point xn �= y for some n ∈ N,
we pick a point xn+1 ∈ S ∩ V ∩ B

(
y, d(y, xn)

)
, xn+1 �= y. The infinitely many different

points x0, x1, . . . , xn, . . . of the set S all lie in the neighborhood V .

A sequence of points in a set A is a function N → A, so it makes sense to say that a
sequence x is injective if xn �= xm whenever n �= m.

Lemma 14. If every injective sequence in a metric space M has a cluster point, then
every sequence in M has a cluster point (i.e. M is sequentially compact).

Proof. Assuming the premise, let x be any sequence of points in M. Let X be the set
{xn | n ∈ N}, and for each z ∈ X set Jz := {n ∈ N | xn = z}.

If X is finite, then Jz is infinite for some z ∈ X, and this z is a cluster point of x.
Suppose X is infinite. For each z ∈ X let ι(z) be the smallest natural number in Jz ,

and let I := {ι(z) | z ∈ X}. The mapping ι : X → N is injective, thus I is an infinite set
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of natural numbers, and there exists a unique strictly increasing function ν : N → N for
which I = {ν(n) | n ∈ N}. The subsequence

(
xν(m)

)
of x is injective (it is a bijection

of N onto X), so by assumption it has a cluster point, which is also a cluster point of
the sequence x.

A metric space M is said to be limit point compact if every infinite subset of M

has a limit point.

Lemma 15. A metric space M is limit point compact if and only if it is sequentially
compact.

Proof. Suppose M is limit point compact, and let x be an injective sequence of points
in M. The infinite set {xn | n ∈ N} has a limit point, which is a cluster point of the
sequence x by Lemma 13.

Suppose M is sequentially compact. Let S ⊆ M be infinite. There is an injective
sequence x of points in S; x has a cluster point y ∈ M. For every ε > 0 the set Lx(y, ε)
is infinite, and so is the set of points

{
xn

∣∣ n ∈ Lx(y, ε)
} ⊆ S ∩B(y, ε). This shows that

y is a limit point of S.

5 Countable compactness

A topological space X is said to be countably compact if every countable open cover of
X has a finite subcover. It is obvious that compactness implies countable compactness.

Lemma 16. Every countably compact topological space is limit point compact.

Proof. Let X be a topological space. Suppose that some infinite subset S of X has no
limit point in X. Choose a countably infinite subset T of S. The subset T , too, has
no limit point, thus every point x ∈ X has a neighborhood which does not contain any
point in T �{x}. Let t ∈ T ; every point of X not in T �{t} has a neighborhood disjoint
with T � {t}, so the set Ut := X �

(
T � {t}) is open. Clearly U := {Ut | t ∈ T} is

a countable open cover of X; since Ut ∩T = {t}, a finite subset of U covers only finitely
many points in T , so it does not cover X, whence X is not countably compact.9

Lemma 17. A metric space is countably compact if and only if it is compact.

Proof. If a metric space is countably compact, then it is compact by Lemmas 16 and 15,
and by Proposition 12. The opposite implication is obvious.

9Once we have the countable set T lacking a limit point, we construct a countable cover that does

not have a finite subcover. However, to choose a countable subset T of an infinite set S we have to

invoke some species of the axiom of choice, e.g. the axiom of dependent choice.
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6 Complete metric spaces

A sequence x of points in a metric space is said to be a Cauchy sequence (or a fun-
damental sequence) if for every ε > 0 there exists a natural number n so that
d(xj , xk) < ε for any two natural numbers j, k � n. A metric space M is said to
be complete if every Cauchy sequence in M converges.

Lemma 18. The following three properties of a sequence x of points in a metric space M

are equivalent to each other:

(i) x is a Cauchy sequence;

(ii) for every ε > 0 there exists n ∈ N so that d(xn, xm) < ε for all m ∈ N, m � n;

(iii) for every ε > 0 there exists n ∈ N so that the set Lx(xn, ε) is cofinite in N.

Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) are obvious.
(iii) =⇒ (i) Let ε > 0. There exists n ∈ N so that the set Lx

(
xn, 1

2ε
)

is cofinite in N,
thus there is m ∈ N so that every natural number k � m belongs to Lx

(
xn, 1

2ε
)
. Then for

any two natural numbers j, k � m we have d(xj , xk) � d(xn, xj) + d(xn, xk) < ε.

Compare the property (iii) to the notion of the limit y of a convergent sequence x:
for every ε > 0 the set Lx(y, ε) is cofinite in N. Slightly rewording the property (iii),
we see that a sequence x is Cauchy if and only if for every ε > 0 the set Lx(y, ε) is cofinite
in N for some term y of the sequence x; instead of a ‘fixed target’ y ∈ M of a convergent
sequence x, there is a ‘moving target’ y ∈ {xn | n ∈ N} of a Cauchy sequence x.

Lemma 19. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Suppose that a sequence x converges to a point y. Let ε > 0. The set Lx

(
y, 1

2ε
)

is cofinite in N. Pick an n ∈ Lx

(
y, 1

2ε
)
; then Lx(xn, ε) ⊇ Lx

(
y, 1

2ε
)

is cofinite in N.

Lemma 20. If y is a cluster point of a Cauchy sequence x in a metric space M, then
the sequence x converges to the point y.

Proof. Let ε > 0. For some n ∈ N the set X := Lx

(
xn, 1

3ε
)

is cofinite in N. Since
the set Y := Lx

(
y, 1

3ε
)

is infinite, there exists m ∈ X ∩ Y . For every k ∈ X we have
d(y, xk) � d(y, xm) + d(xm, xn) + d(xn, xk) < ε, thus Lx(y, ε) ⊇ X is cofinite in N.

We know that the metric subspace on a closed subset of a compact metric space M

is always compact, and that every compact subset of a metric space M is closed in M.
Therefore, if the metric space M itself is compact, then a metric subspace S of M is
compact if and only if S is a closed subset of M. Analogous statements hold for complete
metric spaces.

Proposition 21. A metric subspace on a closed subset S of a complete metric space is
complete. If the metric subspace on a subset S of a metric space M is complete, then S

is closed in M .
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Proof. Suppose that S is a closed subset of a complete metric space M, and let x be
a Cauchy sequence in the subspace S. Then the sequence x is Cauchy in M, it converges
in M to some point y that belongs to the closed subset S of M, hence converges in S to
the point y ∈ S.

Now suppose that the metric subspace S is complete, and that S ⊆ M is closed.
Let y be a point in the closure (taken in the metric space M) of the subset S. There
exists a sequence x in S that in M converges to y. The sequence x is a Cauchy sequence
in M, so it is also a Cauchy sequence in the complete metric subspace S, and therefore
converges to some point z ∈ S. But then x also converges in M to the same point z,
hence y = z ∈ S, because a convergent sequence in the metric space M has a unique
limit. This proves that S is closed in M .

Lemma 22. Every sequentially compact metric space is complete and totally bounded.

Proof. Let M be a sequentially compact metric space.
Suppose x is a Cauchy sequence in M ; then x has a cluster point, which is by

Lemma 20 the limit of the sequence x.
By Proposition 12, the metric space M is pseudocompact, hence by Lemma 10 it is

totally bounded.

Lemma 23. Every complete and totally bounded metric space is sequentially compact.

Proof. Let M be a complete, totally bounded metric space, and let x be a sequence of
points in M. We choose some sequence (εn) of positive numbers that converges to 0.

Since M is totally bounded, there exists for each n ∈ N a finite subset Cn of M

so that M is covered by the εn-balls with centers at points in Cn, which implies that⋃
c∈Cn

Lx(c, εn) = N. For some point c0 ∈ C0 the set Lx(c0, ε0) is infinite. Since

Lx(c0, ε0) =
⋃

c∈C1

Lx(c0, ε0) ∩ Lx(c, ε1) ,

there is a point c1 ∈ C1 such that the set Lx(c0, ε0) ∩ Lx(c1, ε1) is infinite. Proceeding
in this way, we obtain a sequence (cn) of points, where for each n ∈ N we have cn ∈ Cn

and the set Kn :=
⋂n

k=0 Lx(ck, εk) is infinite; then there exists a strictly increasing func-
tion ν : N → N with ν(n) ∈ Kn for all n ∈ N. Since (Kn) is a decreasing sequence
of sets, we have ν(m) ∈ Kn whenever m � n. It follows that for each n ∈ N the set
Lx

(
xν(n), 2εn

) ⊇ Lx(cn, εn) ⊇ Kn contains all ν(m) with m � n, whence the subse-
quence

(
xν(n)

)
of the sequence x is Cauchy, therefore converges to some point y ∈ M

because M is a complete metric space.

Recalling that the space R
n, equipped with the Euclidean metric (say), is a complete

metric space in which every bounded subset is totally bounded, we obtain the following
corollary of Lemmas 22 and 23, and of Proposition 21:

Theorem 24 (Heine-Borel theorem). A subset of the metric space R
n is compact if and

only if it is closed and bounded.
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7 All flavors of compactness

Now we do the great summing up.

Theorem 25. The following properties of a metric space M are equivalent to each other:

(1) M is compact: every open cover of M has a finite subcover;

(2) M is pseudocompact: every continuous real-valued function on M is bounded;

(3) M is sequentially compact: every sequence in M has a cluster point;

(4) M is limit point compact: every infinite subset of M has a limit point;

(5) M is countably compact: every countable open cover of M has a finite subcover;

(6) M is complete and totally bounded.

The first five properties of the metric space (M,d) are in fact properties of the
topological space associated with the metric space. The sixth property is different, it is
expressible in terms the uniform space (M,U) associated with the metric space M, where
the uniformity U = U(d) is the filter10 on the set M×M generated by the filter base
consisting of the r-entourages Vr :=

{
(x, y)

∣∣ x, y ∈ M, d(x, y) < r
}

for all real r > 0.
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