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The Challenge Problem

Find an analytical derivation of the inequality
∫ 2π

0

√
a2 sin2(t) + b2 cos2(t) dt �

√
4π

(
πab + (a − b)2

)
, (1)

where a and b are any non-negative real numbers.

Where the Challenge Problem comes from

This is the challenge problem as stated by Paul J. Nahin at the end of the section 6.8 of
“When Least is Best” (the derivation of the formula for the perimeter of an ellipse is omitted):

Consider Figure 1, which shows an ellipse (divided into four quarters) with
semimajor axes of lengths a and b. The area of this ellipse is given by πab.
In Figure 2, the four quarters have been rearranged to form a new figure with

a

b

Figure 1: An ellipse.

(a − b)2

Figure 2: The ellipse of Figure 1 quartered and rearranged
(same perimeter, increased area).

area πab + (a − b)2. The crucial observation about these two figures is that they
have the same perimeter (I’ll call it P ), given by

P =
∫ 2π

0

√
a2 sin2(t) + b2 cos2(t) dt .
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Now, the isoperimetric theorem says that the area of a plane region with a
perimeter P = 2πR cannot exceed the area of a circle with radius R. That is,

A � πR2 = π

(
P

2π

)2

=
P 2

4π
.

Thus, P �
√

4πA, and so, using the area of Figure 2 for A, we have
∫ 2π

0

√
a2 sin2(t) + b2 cos2(t) dt �

√
4π

(
πab + (a−b)2

)
.

where the equality certainly holds when a = b.
Here’s the challenge —there seems to be no ‘easy’ way to derive this inequality

directly, by manipulating the integral on the left-hand side. That is, I can’t see
how to do it. If you try your hand at it and succeed, please write to me and tell
me how you did it!

Some preparatory massaging

The integrand on the left hand side of inequality (1) is a periodic function with a period π,
hence the integral from 0 to π is precisely one half of the integral from 0 to 2π, and so we may
halve both sides and get an equivalent inequality

∫ π

0

√
a2 sin2(t) + b2 cos2(t) dt �

√
π
(
πab + (a − b)2

)
. (2)

The right hand side of this inequality is symmetric in a and b. So is the left hand side: if we
shift the interval of integration by −π/2 and introduce new integration variable t + π/2, then
cos2 and sin2 change places. We can therefore assume that a � b. If a = b = 0, then both
sides of the inequality are 0, so the inequality certainly holds in this trivial case, and we may
assume, from now on, that b > 0.

The integrand on the left hand side of (2) is symmetric with respect to the midpoint π/2 of
the interval of integration, so we may once more halve boths sides of the inequality, to obtain

∫ π/2

0

√
a2 sin2(t) + b2 cos2(t) dt � 1

2

√
π
(
πab + (a − b)2

)
. (3)

Both sides of this inequality are homogenous of degree 1 in a and b: if we replace the parameters
a, b with ua, ub, where the multiplier u is any nonnegative real number, each of the two sides
is multiplied by u. We choose u = 1/b, write x = a/b, and obtain yet another inequality
equivalent to the original inequality:

∫ π/2

0

√
x2 sin2(t) + cos2(t) dt � 1

2

√
π
(
πx + (1 − x)2

)
, 0 � x � 1 . (4)

It is this final form of the challenge inequality which we shall prove. Analytically.

The first attempt, which fails

The idea of our analytical derivation is to replace the integrand in (4), which cannot be
decently integrated, by a function lying below the integrand whose integral we can calculate
and then show it to be greater or equal to the right hand side of (4).

But before we embark on the actual work, we introduce some shorthands and agree on
some conventions. We shall write f(t) for the integrand and I for the integral on the left hand
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side of the inequality (4), and B for the lower bound on its right hand side; this inequality
therefore reads simply I � B. Functions approximating f(t) from below shall be denoted
by g1(t), g2(t), g3(t), . . . , and their integrals (from 0 to π/2) by J1, J2, J3, . . . .

The integrand f(t) and the integral I depend on the parameter x, as does the lower
bound B, so we should by rights write them as, say, fx(t), Ix, and Bx (or B(x)). Likewise,
any approximating function will depend on the parameter x, and possibly on some other pa-
rameter(s). Nevertheless, we shall mostly supress the urge to display parameters, because
otherwise we would hardly be able to see our formulas for the thicket of parameters sprouting
all over them in subscript and/or superscript positions. Instead we shall simply remember,
about each particular animal under discussion, on which parameters it happens to depend.

And here begins our first attempt. It will fail, as announced in the section’s title, but at
the same time it will point out a promising direction of attack on the problem.

First let us take a look at the diagrams of functions f(t) and f(t)2 when x = 1
3 (Figure 3).
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Figure 3: Functions f(t) and f(t)2, for x = 1
3 .

The diagram of f(t)2 is a vertically scaled and shifted cosine wave cos(2t):

f(t)2 = x2 · 1
2

(
1 − cos(2t)

)
+ 1

2

(
1 + cos(2t)

)
= 1

2 (1 + x2) + 1
2 (1 − x2) cos(2t) .

We get f(t) by taking the square root of f(t)2, which deforms the cosine wave by scaling
it vertically depending on the ordinate. For a tiny segment of the diagram of f(t)2 around
f(t)2 = y the scaling factor is

(√
y
)′ = 1/

(
2
√

y
)
, which decreases when y increases, and that

means that taking the square root squashes higher parts of the cosine wave f(t)2 in comparison
with its lower parts. Now, if we vertically scale and shift the undeformed cosine wave cos(2t)
so as to obtain a function g1(t) with the same values at t = 0 and t = π/2 as f(t),

g1(t) = 1
2(1 + x) + 1

2(1 − x) cos(2t) , (5)

then the diagram of g1(t) should lie below the diagram of f(t)— and so it does, as a glance
at Figure 4 convinces us. Since a glance at a convincing figure does not constitute a proof,
we compute the difference f(t)2 − g1(t)2 to see if it is always non-negative:

f(t)2 − g1(t)2 = 1
4(1 − x)2

(
1 − cos2(2t)

)
� 0 .

It is, and the diagram of g1(t) does lie below the diagram of f(t). Actually, it lies somewhat
too low, so that the gap between the two diagrams is ominously large. Still we push on, since
we want to see how good, or bad, is our approximation g1(t) of f(t). The integral of g1(t) is

J1 = 1
4 π(1 + x) .
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Figure 4: g1(t) � f(t) for 0 � t � π/2.

To compare J1 with the lower bound B of I, we compute the difference

J2
1 − B2 = − 1

16 π(4 − π)(1 − x)2 ,

and find that it is strictly negative for 0 � x < 1 and is zero at x = 1. How bad is this? If we
compare J1 −B with I −B (Figure 5), we see that J1 −B is negative and almost the opposite

0.2 0.4 0.6 0.8 1.0
x

�0.10

�0.05

0.05

0.10

I � B

J1 � B

Figure 5: J1 − B compared to I − B.

of I − B, while we wanted it to be positive and less than I − B.

So our first attempt is a total, wide miss.

Success!

What now? We can try to improve the lower bound g1(t) of f(t), by increasing it to g2(t) in
such a way that we will still manage to compute the integral J2 of g2(t), with the resulting
expression simple enough, so that we will be able to decide whether it is greater than B or not.

Let us try this. We pick α in the interval 0 < α < π/2, grab the diagram of g1(t) at
the point

(
α, g1(α)

)
and slide it along the vertical t = α upwards to the point

(
α, f(α)

)
,

deforming the diagram of g1(t) into the diagram of a function g2(t) (Figure 6). During the
deformation the endpoints (0, 1) and (1, x) of the diagram of g1(t) stay fixed, and the two arcs
of the diagram, from (0, 1) to

(
α, g1(α)

)
and from

(
α, g1(α)

)
to (1, x), are getting uniformly

scaled in the vertical direction. Describing g2(t) by a formula, we have

g2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(α) − cos(2α) +
(
1 − f(α)

)
cos(2t)

1 − cos(2α)
if 0 � t � α ,

f(α) + x cos(2α) +
(
f(α) − x

)
cos(2t)

1 + cos(2α)
if α � t � π/2 .

(6)
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Figure 6: Increasing the lower bound g1(t) of f(t) to a better lower bound g2(t).
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Figure 7: The difference f(t) − g2(t), for α = π/4 and x = 1
3 .

The important question here is, of course, is g2(t) still below f(t) for all t? The plot of
the difference f(t) − g2(t), for α = π/4 and x = 1

3 , is encouraging (Figure 7). Plotting the
difference for various values of x and α we invariably get a diagram entirely above the t-axis.
To actually prove that always g2(t) � f(t), we could proceed just as we did with g1(t) � f(t),
namely calculate the difference f(t)2−g2(t)2, factor it (separately for each of the two intervals
0 � t � α and α � t � π/2), and then find, by examining the factors, that this difference is
in fact always non-negative; this would work, though rather messily. However, there seems to
be some more general principle at work here; if we can discover what it is, we may be able
to take a shortcut and conclude straightaway that g2(t) � f(t). But of course: the square
root is a concave function! We have already exploited the concavity of the square root in our
‘intutive reasoning’ about why the diagram of g1(t) must lie below the diagram of f(t).

Here is how it goes. Let Y be a nonempty interval of real numbers (which may be bounded,
or may be unbounded in one or both directions), and let ϕ be a real-valued convex function
defined on Y . Let a < b be real numbers, and let h(t) be a function defined for a � t � b

and taking values in Y ; moreover, suppose that h(a) �= h(b) and that h(t) lies between h(a)
and h(b) for a � t � b.

Concavity of ϕ(t) means that its diagram bulges above any chord connecting two of its
points; spelled out formally, ϕ(t) satisfies the condition

ϕ
(
(1−λ)y + λz

)
� (1−λ)ϕ(y) + λϕ(z) (7)

for all y and z in Y and all real numbers λ in the unit interval 0 � λ � 1. For any t (in the
interval on which h is defined) we can write

h(t) = (1−λt)h(a) + λth(b) , (8)

where the coefficients λt and 1 − λt are

λt =
h(t) − h(a)
h(b) − h(a)

, 1 − λt =
h(b) − h(t)
h(b) − h(a)

,
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and 0 � λt � 1. Using (7) on (8), we get the inequality

ϕ
(
h(t)

)
� (1−λt)ϕ

(
h(a)

)
+ λtϕ

(
h(b)

)
=: hϕ(t) ; (9)

which is an equality when t = a or t = b,

hϕ(a) = ϕ
(
h(a)

)
, hϕ(b) = ϕ

(
h(b)

)
. (10)

The function hϕ(t) has the form

hϕ(t) = u + vh(t) , (11)

where the coefficients u and v are constants (i.e. they do not depend on t), given by

u =
h(b)ϕ

(
h(a)

) − h(a)ϕ
(
h(b)

)
h(b) − h(a)

, v =
ϕ
(
h(b)

) − ϕ
(
h(a)

)
h(b) − h(a)

; (12)

that is, the diagram of hϕ(t) is obtained by vertically scaling and shifting the diagram of h(t).
The diagram of hϕ(t) lies below the diagram of ϕ

(
h(t)

)
, and has the same endpoints with it.

Note that if h(t) = c + dk(t), where c and d are constants, and k(t) has the property we have
required of h(t) (k(a) �= k(b) and k(t) is between k(a) and k(b) for a � t � b), then

hϕ(t) = (u + cv) + (dv)k(t) = u1 + v1k(t) , (13)

where u1 and v1 are the constants

u1 =
k(b)ϕ

(
h(a)

) − k(a)ϕ
(
h(b)

)
k(b) − k(a)

, v1 =
ϕ
(
h(b)

) − ϕ
(
h(a)

)
k(b) − k(a)

. (14)

Formulas (13) and (14) give a valid ‘subterpolated’ function hϕ(t) even in the degenerate case
when d = 0 and h(t) is the constant c, since then hϕ(t) is that same constant.

Taking h(t) = f(t)2, ϕ(y) =
√

y, k(t) = cos(2t), and 0 � a < b � π/2, we see that

f(t) � cos(2b)f(a) − cos(2a)f(b)
cos(2b) − cos(2a)

+
f(b) − f(a)

cos(2b) − cos(2a)
cos(2t) for a � t � b . (15)

The desired inequality f(t) � g2(t), for 0 � t � π/2, is now an immediate consequence.

At this point we are tempted (but only for a moment or two), to compute the integral J2

of g2(t) and then find α = αopt (which depends on the parameter x) that maximizes the in-
tegral. If we try to carry out this plan, we soon find ourselves wading knee-deep in messy
formulas while trying to solve an equally messy transcendental equation. The dependences
of αopt and the maximal value of J2 on the parameter x are far from simple, and our chances of
proving that the maximal value of J2 is above B, by directly manipulating some nice formulas
obtained from optimization, are nil. (We shall soon be able to conclude that the maximal
value of J2 is above B, by showing that the value of J2 for a particular value of α is above B.)
This is one of those occasions when “keep it simple” is the best ‘optimization policy’.

So this is what we do —we choose α = π/4, and compute the integral J2 of the corre-
sponding ‘subterpolated’ function g2(t) of f(t):

J2 =
1
2

(
1 + x +

√
2

(π

2
− 1

)√
1 + x2

)
. (16)

With slightly trembling fingers we type into Mathematica the request to plot the difference
J2 −B as a function of the parameter x, and. . . there it is (Figure 8), and it is non-negative!
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Figure 8: The difference J2 − B (for α = π/4) as a function of x.

That is, it appears to be non-negative, and all it remains to do is to prove that it really is
non-negative. We start with the inequality 2J2 � 2B,

1 + x +
√

2
(π

2
− 1

)√
1 + x2 �

√
π
(
πx + (1 − x)2

)
, (17)

which we are going to square and rearrange, then square and rearrange again to get the right
hand side down to zero, and finally factor the left hand side. This final left hand side will
be— let’s see —a biquadratic polynomial in x; looking at the diagram of J2 − B in Figure 8
we have a strong hunch that the factor (1 − x)2 will appear in the factorization, so the other
factor will be quadratic, hence easy to handle. Now we proceed with our plan. We square (17),
multiply by 2, rearrange:

2
√

2(π − 2)(1 + x)
√

1 + x2 � (−6+6π−π2) + (−4−4π+2π2)x + (−6+6π−π2)x2 . (18)

The numerical values, to five decimal places, of the coefficients of the quadratic polynomial
on the right hand side are 2.97995, 3.17284, and 2.97995. Once more we square (18), then
rearrange and factor, and obtain the inequality

(1 − x)2(a0 + a1x + a2x
2) � 0 , (19)

where the coefficients of the second quadratic factor are

a0 = −4 + 40π − 40π2 + 12π3 − π4 .= 1.54576 ,

a1 = 8 + 16π − 8π3 + 2π4 .= 5.03345 ,

a2 = a0 ,

(20)

from which it is clear that inequality (19) holds for 0 � x � 1; since this inequality implies
the inequality J2 � B (actually, all inequalities in our derivation are equivalent to each other
for any x � 0), we are done.
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