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On the first page of Chapter 3 of “Proofs from THE BOOK” we read:

When is
(n
k

)
equal to a power m�? It is easy to see that there are infinitely

many solutions for k = � = 2, that is, of the equation
(n
2

)
= m2. Indeed,

if
(n
2

)
is a square, then so is

((2n−1)2

2

)
. . . . . . . . . . Beginning with

(9
2

)
= 62

we obtain infinitely many solutions — the next one is
(289

2

)
= 2042.

Not all solutions of
(
n
2

)
= m2 —i.e., the square numbers that are also triangular num-

bers—are generated in this way. It is not very hard to obtain and describe all solutions;
we shall do it here.

Consider the equation
(

n

2

)
= m2 , m, n ∈ N, n > 0 (1)

(we ignore
(0
2

)
= 02). Multiplying (1) by 8 and rearranging, we get the equation

(2n− 1)2 − 2(2m)2 = 1 , m, n ∈ N, n > 0 ,

which is precisely the Pell’s equation

x2 − 2y2 = 1 , x, y ∈ N , (2)

because all solutions of this equations have x odd and y even. The solutions of (2) are
(xk, yk), k ∈ N, where

xk + yk

√
2 =

(
3 + 2

√
2
)k

, k ∈ N (3)
(
which includes the trivial solution (x0, y0) = (1, 0)

)
. From this we obtain the formula

for the k-th solution (nk,mk) =
(

1
2(xk +1), 1

2yk

)
, k ∈ N, of (1),

nk =

(
3+ 2

√
2

)k +
(
3− 2

√
2
)k + 2

4
, (4)

mk =

(
3+ 2

√
2

)k − (
3− 2

√
2

)k

4
√

2
, (5)
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and for the k-th square number that is also a triangular number,

(
nk

2

)
= m2

k =

(
17+ 12

√
2
)k +

(
17− 12

√
2
)k − 2

32
. (6)

From (3) we derive the recursion for (nk,mk),

nk+1 = 3nk + 4mk − 1 ,

mk+1 = 2nk + 3mk − 1 ,
(7)

which we can use to produce all solutions starting with the solution (n0,m0) = (1, 0).
Moreover, looking at the formulas (4), (5), and (6), we notice that nk and mk satisfy
the recurrence relations

n0 = 1 , n1 = 2 , nk = 6nk−1 − nk−2 − 2 for k � 2 , (8)

m0 = 0 , m1 = 1 , mk = 6mk−1 − mk−2 for k � 2 ,

and that the triangular squares m2
k satisfy the recurrence relations

m2
0 = 0 , m2

1 = 1 , m2
k = 34m2

k−1 − m2
k−2 + 2 for k � 2 .

Using the formula (4) for nk, an easy computation shows that (2nk−1)2 = n2k. The
construction in THE BOOK, quoted above, therefore produces the sequence of numbers
n2j for j = 1, 2, 3, . . . .

We can invoke the recursion (7) to demonstrate (without delving into the background
where the Pell’s equation lurks) that there are infinitely many triangular squares: we
prove that

if
(

n

2

)
= m2 , then

(
3n+4m−1

2

)
= (2n+3m−1)2 ,

which follows from the identity(
3n+4m−1

2

)
− (2n+3m−1)2 =

(
n

2

)
− m2 .

We know that n2k is a square, namely the square of 2nk−1. Contemplating numbers
n2k+1 we notice that n2k+1 − 1 seems always to be a square: n1 − 1 = 12, n3 − 1 = 72,
n5 − 1 = 412, n7 − 1 = 2392, and so on. This is indeed true. The easiest way to see
this is to look at the original equation (1) when n is even: setting n = 2n′ we get the
equation

n′(2n′ − 1) = m2 ;

since n′ and 2n′ − 1 are coprime, both are squares, that is, n − 1 and 1
2n are squares.(

Similarly, when (n,m) is a solution of (1) with n odd, we find that n and 1
2(n− 1) are

squares.
)

Now, it is clear from the recurrence relations (8) that nk is always of the same
parity as nk−2, for k � 2; since n0 = 1 is odd and n1 = 2 is even, it follows that all n2k

are odd and all n2k+1 are even. Done.

Therefore, not only are the numbers n2k squares, but so are 1
2(n2k − 1), n2k+1 − 1,

and 1
2 n2k+1. Let’s figure out what it is that they are the squares of. To achieve this, we

push a little further the discussions of the equation (1) for and even n and an odd n.
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In the case n = 2n′ we have n′ = v2 and 2n′ − 1 = u2, that is, u and v satisfy the
Pell’s equation

u2 − 2v2 = −1 , u, v ∈ N ,

which differs from the equation (2) in that its right hand side is −1, not 1. Solutions of
this variant of Pell’s equation are (uk, vk), k ∈ N, where

uk + vk

√
2 =

(
1+

√
2

)2k+1
, k ∈ N .

(
Note that

(
1+

√
2

)2 = 3 + 2
√

2.
)

The formulas for uk and vk are

uk =

(
1+

√
2
)2k+1 +

(
1−√

2
)2k+1

2
,

vk =

(
1+

√
2
)2k+1 − (

1−√
2

)2k+1

2
√

2
.

A straightforward calculation shows that u2
k + 1 = n2k+1, and hence n2k+1 = 2v2

k.
In the other case n = 2n′ + 1 we have n′ = y2 and 2n′ + 1 = x2 for some x and y

which satisfy the Pell’s equation (2) (talk about wheels within wheels. . . ). Formulas for
solutions (xk, yk), k ∈ N are

xk =

(
1+

√
2
)2k +

(
1−√

2
)2k

2
,

yk =

(
1+

√
2

)2k − (
1−√

2
)2k

2
√

2
.

We have n2k = x2
k = (2nk − 1)2 and n2k = 2y2

k + 1.

Certainly there are many more wonders one could discover about triangular squares.
But let’s stop here, shall we? There seems to be a whole science of triangular squares
out there; we can be sure that all the results we considered here, and many more besides,
were worked out (and worked to death) long ago.

For the formula (6) and references, see Martin Gardner’s “New Mathematical Diver-
sions”, Revised Edition, The Mathematical Association of America (1995), p. 89.
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