
The proof of Bourbaki–Witt theorem in Lang’s Algebra

Here I reproduce, for easier reference, the proof of Bourbaki–Witt theorem as given in
Lang’s Algebra [1], Appendix 2, pages 881–884. The reproduced proof is verbatim as in
the book, except that set inclusion is denoted by ⊆ instead of by ⊂; also the footnotes are
not part of the original.

From now on to the end of the proof of Theorem 2.1, we let A be a nonempty partially
ordered and strictly inductively ordered set.1 We recall that strictly inductively ordered
means that every nonempty totally ordered subset has a least upper bound. We assume
given a map f : A → A such that for all x ∈ A we have x � f(x). We could call such a map
an increasing2 map.

Let a ∈ A. Let B be a subset of A. We shall say that B is admissible if:

1. B contains a.

2. We have f(B) ⊆ B.

3. Whenever T is a nonempty totally ordered subset of B, the least upper bound of T

in A lies in B.

Then B is also strictly inductively ordered, by the induced ordering of A. We shall prove:

Theorem 2.1. (Bourbaki). Let A be a nonempty partially ordered and strictly inductively
ordered set. Let f : A → A be an increasing mapping. Then there exists an element x0 ∈ A

such that f(x0) = x0.

Proof. Suppose that A were totally ordered. By assumption, it would have a least upper
bound b ∈ A, and then

b � f(b) � b ,

so that in this case, our theorem is clear. The whole problem is to reduce the theorem to
that case. In other words, what we need to find is a totally ordered admissible subset of A.

If we throw out of A all elements x ∈ A such that x is not � a, then what remains3

is obviously an admissible subset. Thus without loss of generality, we may assume that A

has a least element a, that is a � x for all x ∈ A.
Let M be the intersection of all admissible subsets of A. Note that A itself is an

admissible subset, and that all admissible subsets of A contain a, so that M is not empty4.
Furthermore, M is itself an admissible subset of A. To see this, let x ∈ M . Then x is
in every admissible subset, so f(x) is in every admissible subset, and hence f(x) ∈ M .
Hence f(M) ⊆ M . If T is a totally ordered nonempty subset of M , and b is the least
upper bound of T in A, then b lies in every admissible subset of A, and hence lies in M .
It follows that M is the smallest admissible subset of A, and that any admissible subset
of A contained in M is equal to M .

We shall prove that M is totally ordered, and thereby prove Theorem 2.1.
1That is, A is a chain complete partial order.
2We could, but won’t (except in the Lang’s text, of course). We call such maps ‘ascending’; they are

also called, by various authors, ‘inflating’, ‘inflationary’, ‘expansive’, ‘progressive’, ‘explosive’. . .
3I.e. the set {x ∈ A | a � x}. An intuitionist would vigorously protest that what Lang actually describes

here— if he describes anything at all — is the set {x ∈ A | ¬¬(a � x)}.
4. . . , so M contains a.
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Let c ∈ M . We shall say that c is an extreme point of M if whenever x ∈ M and x < c,
then f(x) � c. For each extreme point c ∈ M we let

Mc = set of x ∈ M such that x � c or f(c) � x .

Note that Mc is not empty because a is in it.

Lemma 2.2. We have Mc = M for every extreme point c of M .

Proof. It will suffice to prove that Mc is an admissible subset. Let x ∈ Mc. If x < c then
f(x) � c so f(x) ∈ Mc. If x = c then f(x) = f(c) is again in Mc.5 If f(c) � x, then
f(c) � x � f(x), so once more f(x) ∈ Mc. Thus we have proved that f(Mc) ⊆ Mc.

Let T be a totally ordered subset of Mc and let b be the least upper bound of T in M .
If all elements x ∈ T are � c, then b � c and b ∈ Mc. If some x ∈ T is such that f(c) � x,
then f(c) � x � b, and so b is in M .6 This proves our lemma.

Lemma 2.3. Every element of M is an extreme point.

Proof. Let E be the set of extreme points of M . Then E is not empty because a ∈ E. It will
suffice to prove that E is an admissible subset. We first prove that f maps E into itself.
Let c ∈ E. Let x ∈ M and suppose that x < f(c). We must prove that f(x) � f(c).
By Lemma 2.2, M = Mc, and hence we have x < c, or x = c,7 or f(c) � x. This last
possibility cannot occur because x < f(c). If x < c, then

f(x) � c � f(c) .

If x = c then f(x) = f(c), and hence f(E) ⊆ E.
Next let T be a totally ordered subset of E. Let b be the least upper bound of T in M .

We must prove that b ∈ E. Let x ∈ M and x < b. If for all c ∈ T we have f(c) � x, then
c � f(c) � x implies that x is an upper bound for T , whence b � x, which is impossible.
Since Mc = M for all c ∈ E, we must therefore have x � c for some c ∈ T .8 If x < c, then
f(x) � c � b, and if x = c,9 then

c = x < b .

Since c is an extreme point and Mc = M , we get f(x) � b.10 This proves that b ∈ E, that
E is admissible, and thus proves Lemma 2.3.

We now see trivially that M is totally ordered. For let x, y ∈ M . Then x is an extreme
point of M by Lemma 2.3, and y ∈ Mx so y � x or

x � f(x) � y ,

thereby proving that M is totally ordered. As remarked previously, this concludes the
proof of Theorem 2.1.

5Here Lang splits the case x � c into the subcases x < c, x = c. Since x < c means (x � c) ∧ ¬(x = c),

the two subcases are not exhaustive in intuitionistic logic.
6Let C = {z ∈ M | z � c} and D = {z ∈ M | f(c) � z}. If we use classical logic, then T ⊆ C∪D implies

(T ⊆ C) ∨ (∃y : y ∈ T ∩ D); however, if we use intuitionistic logic, we cannot make this conclusion.
7See footnote 5.
8See footnote 6. This time C = {z ∈ M | f(z) � x} and D = {z ∈ M | x � z}.
9See footnote 5.

10Since b ∈ M = Mc = Mx, we have b � x or f(x) � b, where the first case cannot occur because x < b.
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