Bourbaki–Witt theorem for dcpos is constructively equivalent to Bourbaki–Witt theorem for ccpos

A chain complete partial order, or shorter, a ccpo, is a poset in which every nonempty chain has a join (i.e. a least upper bound).

This is Bourbaki–Witt theorem (we will refer to it as BWT) for ccpos:

BWT for ccpos. Let P be a ccpo, and let f be an ascending endomap on P. Then for every $a \in P$ there exists a fixed point of f above a.

It should be proper to refer to this theorem as a "statement", or a "claim". Actually it *is* a theorem in the classical set theory *without* the axiom of choice (AC), but we do not (as of now) know whether it is a theorem in a constructive set theory¹. This said, we will keep referring to BWT for ccpos, and its cousins, as "theorems", never forgetting that they may not be theorems in a restricted logical context.

A simpler version of BWT for ccpos asserts existence of one fixed point somewhere in a nonempty ccpo; we shall refer to this simpler theorem as BWT1 for ccpos:

BWT1 for ccpos. Let P be a nonempty ccpo, and let f be an ascending endomap on P. Then f has a fixed point in P.

It is clear that BWT for ccpos implies BWT1 for ccpos. It is also easy to see that the converse is also true: assume BWT1 for ccpos; let P be any ccpo, and let f be an ascending endomap on P; then for any $a \in P$ the principal filter A = [a..) is a nonempty ccpo, mapped into itself by f; by BWT1 for ccpos, the restriction of f to $A \to A$, being an ascending endomap on a nonempty ccpo, has a fixed point, which is the desired fixed point of f above a.

Mark that we use "X is nonempty" to mean "X has at least one element"; in a constructive set theory, a set that is 'nonempty' in this sense is said to be 'inhabited'.

Recall that a **directed set** is a nonempty poset in which any two elements have an upper bound, that a subset of a poset is said to be **directed** if it is directed as a subposet, and that a **directed complete partial order** (a dcpo) is a poset in which every directed subset has a join. We can formulate versions of BWT and BWT1 for dcpos:

BWT for dcpos. Let P be a dcpo, and let f be an ascending endomap on P. Then for every $a \in P$ there exists a fixed point of f above a.

BWT1 for dcpos. Let P be a nonempty dcpo, and let f be an ascending endomap on P. Then f has a fixed point in P.

It is easy to see, in the same way as above, that BWT for dcpos is equivalent to BWT1 for dcpos. Moreover:

¹Note that we say "*a* constructive set theory", not "*the* constructive set theory", since there are several constructive set theories, with various levels of constraints prescribing admissible modes of reasoning and legitimate ways of constructing sets. Here we work in a very permissive constructive set theory, one which allows power sets and impredicative constructions.

Proposition 1. BWT1 for dcpos is constructively equivalent to BWT1 for ccpos.

Proof. It is clear that BWT1 for ccpos implies BWT1 for dcpos, since every dcpo is a ccpo. Conversely, assume that BWT1 for dcpos holds, and let P be a nonempty ccpo and

Conversely, assume that BW 11 for dcpos holds, and let F be a holenipty ccpb and f an ascending endomap on P. The set C of all nonempty chains in P, ordered by inclusion, is nonempty and closed under directed unions, and is therefore a nonempty dcpo. For each chain $C \in C$, define $F(C) = C \cup \{f(\bigvee C)\} \in C$. The endomap F on C is ascending, and by BWT1 for dcpos it has a fixed point B, thus $f(\bigvee B) \in B$ and hence $f(\bigvee B) \leq \bigvee B$, which means that $\bigvee B$ is a fixed point of f.