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Background

- Optimization problems often include both multiple objectives and
constraints

- Multiobjective evolutionary algorithms (MOEAs) — a natural extension of EAs
for solving multiobjective optimization problems (MOPs)

- Dealing with constrained multiobjective optimization problems (CMOPs)
long ignored - believed that constraint handling techniques (CHTs) for
single-objective problems can easily be incorporated into MOEAs

- Recent shift of research focus towards CMOPs

Motivating Example (i)

Vibrating platform (Messac 1996)

Vibrating

- Engineering design problem
- Design variables: dq,d,, ds, b, L

- Task: maximize the fundamental frequency of the platform, minimize its cost

Motivating Example (ii)
Objectives

- f1... fundamental frequency

x (EN"?
e dradob.1) = 315 (=)

2b
Bl =~ [E1d} + Ex(d — d7) + E3(d3 — d3)]
p=2b[pdi + p2(d2 — dh) + p3(ds — da)]
- f5 .. cost

fz(d1, dz, d3, b) =2b [C1d1 + Cz(dz — d1) + C3(d3 — dz)]

Motivating Example (iii)

Constraints
- Boundary constraints
0.01<d; <0.6
0.01<d, <0.6
0.01<d; <06
035<b<05
3<L<6
- Inequality constraints
0<d,—d; <£0.01
0<d;—d, <0.01
pul < 2800




Motivating Example (iv)

Vibrating platform: All solutions

Some problem characteristics

- 5 design variables 600
. . 400
- 2 objectives f
200 .
- 20 A
- 5 constraints o]

-200

- feasibility ratio* < 107>

Unconstrained

«  Constrained

among the sampled solutions.

*Estimated empirically through solution sampling. Denotes the proportion of feasible solutions

Challenges of Constrained Multiobjective Optimization

- Need to handle both objectives and constraints

- Feasibility ratio can be low

- Objectives and constraints may or may not be correlated
- Feasible region can be disconnected

- etc.

Prerequisites: CMOP Formulation

Constrained multiobjective optimization problem (CMOP):

minimize fn(x), m=1,....M
subjectto gi(x) <0, i=1,...,/
hix)=0, i=1+1...,01+)
where
- Xx=(X1,...,Xn) ... decision vector

- SCR" ... decision space

- fm : S — R .. objective functions

- g;: S — R .. inequality constraint functions
- h;: S — R .. equality constraint functions

Prerequisites: Constraint Violation

The equality constraints are usually reformulated into inequality constraints:
Gi(x) = ()| —e<0, i=1+1...,1+)
where € > 0 is a user-defined tolerance value (e.g. 10~%)

Constraint violation for a single constraint:

v, = max(g(x), 0)

Overall constraint violation for all constraints combined:
I+/

Vi) = v

i=1
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Constraint Handling Techniques
(CHTs)

CHTs for Single-Objective Optimization

- Penalty functions
- Solution repair
- Separation of objectives and constraints

- Other approaches

Penalty Functions (i)

Idea: transform a constrained problem into an unconstrained one by adding
penalty terms to the objective function:

I+

i
f'(x) = f0x) + Y pi- max(gi(x),0) + Y ;- [hi(x)|
=1

j=I+1

where
- f'(x) .. modified objective function
- p; ... penalty factors for inequality constraints

- q; .. penalty factors for equality constraints

Penalty Functions (ii)

Variants
- Death penalty
- Static penalty
- Dynamic penalty
- Adaptive penalty

- Adjustments and modifications of these variants




Penalty Functions (iii) Solution Repair

- Most popular CHT - Idea: Introduce a procedure for converting infeasible solutions to feasible

ones
- Issue: Setting the penalty factors

- Repaired solutions can be used for evaluation only, or can replace the
- Penalties too low: The algorithm spends a lot of time exploring the infeasible original solutions in the population (Lamarckian evolution)

region

- Problem-dependent, a specific procedure needed for each problem
- Penalties too high: The algorithm may have difficulties detecting the

optimum when it is located at the border of the feasible region - Suitable when repair is easy and of low computational cost

14 15

Separation of Objectives and Constraints Other Approaches

- In contrast to penalty functions, these techniques handle objectives and

constraints separately - Special representations and operators
- Examples: - Hybrid techniques
- Superiority of feasible solutions: Always assign a higher fitness to feasible
solutions than to infeasible ones - Ensembles of CHTs

- Multiobjective optimization approach: K+ 1 objectives where K is the number of

: - Landscape-aware constraint handling: Using the concept of violation
constraints

landscape (Malan 2018; Malan and Moser 2019)
- Coevolution: evolve two interacting populations




CHTs for Multiobjective Optimization

decomposition (MOEA/D)

- Advanced techniques

- CHTs incorporated in Nondominated sorting genetic algorithm 11 (NSGA-I1)

- CHTs incorporated in Multiobjective evolutionary algorithm based on

CHTs incorporated in NSGA-II

- Constrained dominance principle (CDP)
- Stochastic ranking (SR)

- Penalty function

NSGA-II

- The most frequently used algorithm
in constrained multiobjective
optimization

- CHT usually incorporated within the
sorting procedure

Pg_

20

NSGA-11: CDP (Deb, Pratap, Agarwal, et al. 2002)

A solution x is said to constrained-dominate a solution y, if any of the following
conditions is true:

- Solution x is feasible and solution y is not

- Solutions x and y are both infeasible, but solution x has a smaller overall
constraint violation than y

- Solutions x and y are feasible and solution x dominates solution y

The most commonly used CHT in constrained multiobjective optimization (Z. Ma
and Y. Wang 2019)

21




NSGA-11: SR (Geng et al. 2006)

Stochastic ranking selection:
- Feasible solutions are compared based on the dominance relation

- Infeasible solutions are compared either based on on the overall constraint
violation or dominance relation

- The comparison criterion is randomly selected

IS-MOEA:
- Based on NSGA-II and stochastic ranking selection
- Uses the infeasible elitists preservation

NSGA-11: Penalty Function (Woldesenbet et al. 2009)

Transform the objective functions into:

fi(x) if x is feasible
fix) =< v(x) if x is infeasible and pg(P) = 0
pi(x) + di(x) if x is infeasible and pr(P) # 0
where
pi(x) = (1= pr(P)V(X) + pr(P)fi(X)
and

di() = \/fi(x)? + v(x)?

23
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CHTs incorporated in MOEA/D

- CDP
- SR
- e-constraint (Epsilon)

- Improved e-constraint (IEpsilon)

MOEA/D

The original problem is decomposed into multiple subproblems

The Tchebycheff aggregation function is the most widely used decomposition
approach in constrained multiobjective optimization

A subproblem is defined as follows:
minimize g(x | A,z") = max {\; |fi(x) — zI|}
1<i<m
where z* is an approximation for the ideal point and A a weight vector

Idea: The aggregation function can be seen as a fitness of the subproblem —
Easy to incorporate CHTs for single-objective optimization

25




MOEA/D-DE (i)

Algorithm 1: Update neighboring solu-
tions N with x
c<+ 0
while c < n,and N # () do
randomly pick y € N;

if g(x) < g(y) then
‘ Y X C—C+T,

MOEA/D-DE:

- Employs differential evolution (DE)
operator for generating new
solutions

- Limits the maximal number of
solutions replaced by a better child

solution, n, end
The most interesting part of MOEA/D-DE N N—{y}
is the update phase end

MOEA/D-DE (ii)

Algorithm 2: Update neighboring so-
lutions N with x
c+« 0
while c < n,and N # () do
randomly pick y € N;
if g(x) < g(y) then if x < ythen
‘ Y= X,C—C+T; ‘ Y= X C+—C+T,
end end
N« N-—{y} N N—{y};
end end

Algorithm 3: Update neighboring so-
lutions N with x
C<+0;
while c < n, and N # () do
randomly pick y € N;
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MOEA/D: CDP and SR (Jan et al. 2013)

MOEA/D-CDP:
X) < ifv(x)=v(y)=0
X <opp ¥ & g(x) <9) ) ‘ )
v(x) < v(y) otherwise
MOEA/D-SR:
if = =0
X <sp Y & g(x) < g(y) ifv(x) = v(y) orrand < p
v(x) < v(y) otherwise

MOEA/D: e-Constraint Technique (Asafuddoula et al. 2012)

MOEA/D-Epsilon:

X<,y & g(x) <ag(y)
v(x) < v(y)

if v(x) = v(y) or (v(x) < eand v(y) <e)
otherwise

The e value is updated in each generation:

where

29




MOEA/D: Improved e-Constraint Technique (Fan, W. Li, Cai, Huang, et al. 2019)

MOEA/D-IEpsilon:

The e value is updated in each generation:

v(x9) ift=0

(1) = (1T—7)e(t=1) if pr(P) < wand t < T
(T4 7)Viax if pe(P) > cand t < T¢
0 ift>T,

where 7, a, T, are user-defined parameters and v(x?) is the overall constraint
violation of the top 6-th individual in the initial population

30

- Ensembles

- Multiple phase techniques

- Multiple population techniques
- Hybrids

- Coevolution

Advanced Techniques

31

Advanced Techniques: Two-Phase Framework (Liu et al. 2019)

Two-phase framework:

1. First phase: Solve a constrained single-objective problem
M
minimize f'(x) = _fi(x)
=1

subjectto gj(x) <0, i=1,...,/4)
2. Second phase: Apply constrained multiobjective optimization on the original
problem starting with solutions obtained in the first phase

ToP:
- Differential evolution in the first phase
- NSGA-II (CDP) or IDEA in the second phase

32

Advanced Techniques: Push and Pull Search (Fan, W. Li, Cai, H. Li, et al. 2019b)

Search is divided into two stages:
1. Push ignores constraints
2. Pull handles infeasible solutions

PPS-MOEA/D:
- Push stage: MOEA/D-DE
- Pull stage: MOEA/D-IEpsilon
- Parameters for the pull stage assessed in the push stage

33




Advanced Techniques: Push and Pull Search (Fan, W. Li, Cai, H. Li, et al. 2019b) Advanced Techniques: Two-Archive Evolutionary Algorithm (K. Li et al. 2019)

Two complementary archives:

- Convergence archive: Maintain the convergence and feasibility of the
evolution process

fi fr fi

- Diversity archive: Maintain the diversity of the evolution process
f2 fa f2

- Arestricted mating mechanism combines parents from the two archives

‘\;:EK C-TAEA:
— - Based on MOEA/D and M2M framework (decomposition of the original
Fi Fi 7 multiobjective optimization problem into multiple simpler subproblems)
[0 Infeasible region ~—— Constrained PF - —— Unconstrained PF
34 35

Advanced Techniques: Detect-and-Escape Strategy (Zhu et al. 2020) Advanced Techniques: Coevolutionary Framework (Tian, T. Zhang, et al. 2021)

If a “suboptimal” area is detected, escape: Two populations:

1. Feasible subregion — search areas which

1. One population is solving the original problem
dominate the current one

[+ Update popuiation 2. The other one is solving a helper problem—a simpler problem derived from

the original one

2. Infeasible area — improve diversity

MOEA/D-DAE:

=2 A CCMO:
+ Based on MOEA/D and e-constraint CHT - Coevolutionary framework incorporated into NSGA-II
- Only one detect-and-escape cycle is allowed

- Helper problem: original problem without constraints

36 37




Advanced Techniques: Two-Rankings Approach (Z. Ma, Y. Wang, and Song 2021) Advanced Techniques: Additional (i)

Two rankings:

1. The first ranking is based on CDP (R¢) - ¢-DPEA: Dual-population-based evolutionary algorithm (M. Ming et al. 2021)
2. The second ranking is based on Pareto dominance (RP . S S .
g (R?) - CMOEA-MS: Two-stage constrained multiobjective optimization (Tian,
The two rankings are then combined into a single ranking: Y. Zhang, et al. 2021)
RTOR — oR® 4 (1 — a)RP - MSCMO: Multi-stage evolutionary algorithm for constrained multiobjective
oo 1t Pe(P) optimization (H. Ma et al. 2021)
2

- POCEA: Paired offspring generation-based evolutionary algorithm (He et al.
ToR-NSGA-II: 2021)

- Two-rankings approach integrated into the NSGA-II framework

38 39

Advanced Techniques: Additional (ii)

- DPSEA: Evolutionary algorithm with a dynamic population size (B. Wang et al.
2022)

- ICMA: Indicator-based constrained multiobjective algorithm (Yuan et al. 2022) Test Problems

- TriP: Tri-population based coevolutionary framework (F. Ming et al. 2022)

- TSTI: Two stage evolutionary algorithm based on three indicators (Dong et al.
2022)

40




- Artificial test problems . - —
’ min. fi(x) =2 + (X1 — 2)? + (x, — 1)? i e

- Artificial test suites min. f5(x) = 9x; — (x, — 1)?
st.gi(x) =x2 +x4 —225<0
3(X)=x1—3x+10<0

o 8

g 8588 8 &

- Real-world test problems based on mathematical models

- Real-world test problems based on simulation X1,% € [-20,20]

41 42

Artificial Test Problems: TNK (Tanaka et al. 1995) Artificial Test Problems: OSY (Osyczka et al. 1995)

max. £i(x) = 2506 — 2)2 + (x2 — 2+
(x3 — 1)2 + (X4 — 4)2 + (x5 — 1)2

min. f1(x) = x . — T min. f(x) = X7 + X5 + X3 + X, + X6 + ¢ §
min. f,(x) = x; st.g1i(X)=x1+x—-2>0
st gi(x) =x2 4+ —1-0.1 cos(16tan_1§) >0 G2(X) =6—x1—x2 >0 .
- ‘ g3(X) =2—x2+x1 >0 i
g2(x) = (x1 = 0.5) + (x — 0.5)* — 0.5 < 0 N _ G =2 x1— 3% >0 [
ol g5(x) = 4~ (x ~ 3} x> 0
ge(x) = (x5 —3)4x—-4>0

X1,X2, X6 € [0,10],X3,X5 € [1,5], % € [0, 6]

43 4




Artificial Test Problems: BNH (Binh et al. 1997) Artificial Test Problems: Issues with SRN, TNK, OSY, BNH

Issues:

min. fi(x) = 4(x3 + x3)
min. f(x) = (x1 — 5)* + (x, — 5)*
st.gi(x) = (x1 —5)? +x3 —25<0
@)= (x1—8)*—(x,+3)=77>0
x1 € [0,5],x2 € [0,3] - — Further proposals: Frameworks for constructing harder tunable problems

- Low dimensionality
- Not hard to solve
- Complexity/difficulty not tunable

45 46

Artificial Test Suites: CTP (Deb, Pratap, and Meyarivan 2001) Artificial Test Suites: CF (Q. Zhang et al. 2008)
LT
Constrained test problems (CTPs) :
Scalable number of decision variables and . Constrained multiobjective test problems from
tunable constraint difficulties - the CEC 2009 Special Session and Competition -
Two kinds of difficulty: R (CFs)
- Difficulty in the vicinity of PF . 10 problems with 2 or 3 objectives and 1 or 2 ot
- Difficulty in the entire search space N < constraints
8 bi-objective CMOPs including 1-2 constraints = RN -
47 48




Artificial Test Suites: C-DTLZ (Jain et al. 2014) Artificial Test Suites: NCTP (J. Li et al. 2016)

e "
Constrained DTLZ problems (C-DTLZs) . - 'n%h\
Three types of CMOPs: o New constrained test problems (NCTPs) = xﬁ“‘m
- C1: unconstrained PF still optimal, barrier in - An extension of CTPs: o "“-»,M%
approaching PF e s e oo - Difficulty of convergence is increased L
+ C2: only parts of unconstrained PF feasible —— = - Infeasible region is increased by an
» C3: unconstrained PF no longer optimal e additional constraint
o DN o . .
6 scalable CMOPs in the number of objectives B} : 18 bi-objective CMOPs with 1 or 2 constraints
and constraints =
49 50

Artificial Test Suites: DC-DTLZ (K. Li et al. 2019) Artificial Test Suites: DAS-CMOP (Fan, W. Li, Cai, H. Li, et al. 2019a)
Constrained DTLZ problems where constraints S Difficulty-adjustable and scalable CMOPs = R
act in the decision space (DC-DTLZs) . (DAS-CMOPS) - ’
Three types of constraints: = Test problem kit considering basic difficulty ”

- DC1: several infeasible segments ® types: s
- DC2: unconstrained PF still optimal, barrier PR e e e - T1: diversity hardness
in appro§§h|ng PF | = - T2: feasibility hardness
. DC3:. deuspn space consists of several Q . T3: convergence hardness
feasible regions g\ \
labl i th ber of obiecti “ § N\ 9 CMOPs of increasing hardness, scalable in the
6 scalable CMOPs in the number of objectives A i number of objectives

and constraints ;

51 52




Artificial Test Suites: LIR-CMOP (Fan, W. Li, Cai, Huang, et al. 2019)

Large infeasible region CMOPs (LIR-CMOPs)

14 CMOPs with 2 or 3 objectives and 2 or 3
constraints

53

Artificial Test Suites: MW (Z. Ma and Y. Wang 2019)

MW3: All solutions.

Ma and Wang problems (MWs) B e

aaaaaaaaaaaa

Four types of CMOPs:
- Type I: unconstrained PF remains feasible

- Type Il: constrained PF is a part of the
unconstrained PF

- Type Ill: constrained PF consists of a part of
the unconstrained PF and part of a boundary

- Type IV: unconstrained PF no longer optimal

11 bi-objective CMOPs and 3 scalable in the : W

number of objective with 1-4 constraints

Artificial Test Suites: Others

- DOC: Constrained multiobjective optimization problems with constraints in
the decision and objective space (Liu et al. 2019)

- Eq-DTLZ and Eq-IDTLZ: Benchmark for equality constrained multiobjective
optimization (Cuate et al. 2020)

- CLSMOP: Constrained large-scale mutliobjective optimization problems (He
et al. 2021)

55

Real-World Test Problems Based on Mathematical Models

Real-world constrained multiobjective optimization problems (RCMs) from CEC
2021 Special Session and Competition and GECCO 2021 Competition’

A collection of real-world test problems based on mathematical models:
- Mechanical design problems
- Chemical engineering optimization problems
- Process synthesis optimization problems

- Power systems optimization problems

50 problems with 2-34 variables, 2-5 objectives, and 1-29 constraints

Thttps://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2021/CEC2021-1.htm




Real-World Test Problems Based on Simulations (i)

Mazda benchmark problem?:
- Based on a real-world car structure design

- 222 design variables

- 2 objectives:
- Minimization of the total weight of various cars
- Maximization of the number of common gauge parts among various cars

- 54 constraints

“http://ladse.eng.isas.jaxa.jp/benchmark/
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Real-World Test Problems Based on Simulations (ii)

Lunar lander landing site selection®:

1.00

- 2 design variables: coordinates x,y
- 3 objectives: 075

- Total communication time

- Continuous shade days 050

- Landing point inclination angle
- 2 constraints 025

- Max. continuous shade days

-+ Max. landing point inclination angle oiR

0.00 0.25 0.50 0.75 1.00

http://www.jpnsec.org/files/competition2018/EC-Symposium-2018-Competition-English.html
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Real-World Test Problems Based on Simulations (iii)

Wind turbine design problem*:
- Based on a real-world wind turbine design

- 32 design variables

- 5 objectives:
- Annual power production
-+ Average annual cost
- Tower base load
- Blade tip speed
- Fatigue damage

- 22 constraints

“http://www.jpnsec.org/files/competition2019/EC-Symposium-2019-Competition-English.html
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Real-World Test Problems Based on Simulations (iv) (Picard et al. 2021)

Multiobjective design of actuators (MODAct):

- Design of electro-mechanical actuators

- 20 CMOPs with 20 design variables

- 2-5 objectives:
- Total cost (min.)
- Torque excess (max.)
- Harmonic mean of safety factors (max.)
- Elec. to mech. energy conversion (max.)
- Transmission ratio (min.)

b,

b
W

- 7-10 constraints

b
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Problem Characterization

Overview

- Type of CMOPs
- Pareto front shapes

- Problem landscapes

Type of CMOPs (Z. Ma and Y. Wang 2019)

Type | Type Il
f2

f2

N

| Feasible region ~—— C

62

Test Suite Comparison: Type of CMOPs

‘ :
=

Type | CTP | CF | C-DTLZ | NCTP | DC-DTLZ | DAS-CMOP | LIR-CMOP | MW

I v v v v v v v
Il v IV v v v v v
1] v v v v v
v v v v v v




Pareto Front Shapes Test Suite Comparison: Pareto Front Shapes
\

Type CTP | CF | C-DTLZ | NCTP | DC-DTLZ | DAS-CMOP | LIR-CMOP | MW
Linear v |V v v v v v

- Linear/Convex/Concave = Convex Y v v v v
Concave v v v v v v
- Connected/Disconnected/Discrete TN T Conn. v % v v v v %
- Mixed - \“\” - Disconn. | v | v | v v v v v
\"“«»\ : Discrete | v | v v v v v
. Mixed vV |V v v v v

64 65
Problem Landscape Example: C2-DTLZ2

Dominance ratio Constraint violation Problem landscape

Constrained multiobjective problem landscape, £(S,f, v, d):
- SCR" .. decision space

- f:S— RM .. objective vector function - [ | -

- v:S — R ..overall constraint violation function

- d:SxS—R..distance metric




Exploratory Landscape Analysis: State of the Art (i)

Example: MW6

Multiobjective optimization:
- Limited studies in the combinatorial (Verel et al. 2013; Daolio et al. 2017;

. . L Liefooghe, Daolio, et al. 2020) and continuous context (Liefooghe, Verel, et al.
Dominance ratio Constraint violation Problem landscape 2021)

- Initial attempts to visualize bi-objective continuous problems (Fonseca 1995;

o Kerschke, H. Wang, et al. 2016; Kerschke and Grimme 2017; Schapermeier et al.
'“}ullllll v v —IN 2021)

o
N

"

' b— .
"

Constrained single-objective optimization:
- Preliminary study on the characterization of constrained single-objective
optimization problems (Malan, Oberholzer, et al. 2015)
- Incorporation of these characteristics to guide the constraint
handling (Malan 2018; Malan and Moser 2019)

Exploratory Landscape Analysis: State of the Art (ii) Exploratory Landscape Analysis (i) (Picard et al. 2021)

Goals:
- Analyze the effect of constraints on search and objective spaces

- Measure the feasibility ratio
Constrained multiobjective optimization: - Quantify the relationship between objectives and constraints

- Three preliminary studies on exploratory landscape analysis exist in the - Measure the disjointedness of feasible regions
literature (Picard et al. 2021; Alsouly et al. 2022; Vodopija et al. 2022)
Methods:

- Uniform sampling

- Random walk




Exploratory Landscape Analysis (ii) (Alsouly et al. 2022)

Goals:

- Explore the relationship between MOEA performance and CMOP
characteristics

- Analyze the y-distribution of problem landscapes
- Analyze the interaction between constraints and objectives
- Measure the ruggedness of problem landscapes

- Explore the connectedness of Pareto fronts and sets

Methods:
- Uniform sampling
- Random walk

Exploratory Landscape Analysis (iii) (Vodopija et al. 2022)

Goals:
- Assess the existing test suites of CMOPs
- Measure correlations between objectives and constraints
- ldentify feasible subregions and basins

- Characterize the local structure of violation landscapes

Methods:
- Space-filling sampling
- Random and adaptive walk

- Information content

73

72
Test Suite Comparison: Correlations

Correlations between objectives and constraints

All suites N cre N cF N DTz N NCTP N DC-DTLZ . DASCMOP LIR-CMOP

Mw

RCM

05 05, 075 075 075 05 05 075 075

050 050 050 050 050 050 050 050 050

025 025 025 025 02 025 025 025

=025 =0.25 =025 ) =025 o =0.25 =0.25 =025

-1 -1.00 -1

0.00

025

050

~075

-1 -1 -1 -1

075

050

025

0.00

-025

050

075

-1.00
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Test Suite Comparison: Feasible Subregions

Number of feasible subregions

Al suites ce cF o1z NCTP. DC-DTLZ DAS-CMOP LIR-CMOP MW RCM

w w0 o0 w0 w w ol w0 w
60 60- 60 60 60 60 60 ) 60 60
w0 w0 w0 “ w0 w0 w0 w0 “
20; 20- * 20 20, 20 20 20 20, 20
-1 _L . |, - Us -
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Test Suite Comparison: Ruggedness

Maximum information content

All suites. cre cF

DC-DTLZ DASCMOP

LIR-CMOP

c-DTLZ NCTP

0.6 P 0.6 / 0.6° 0.6 0.6 0.6 0.6
Al

0.2 0.2 02 02 02 \ 0.2 02
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A Note on Present Test Suites

- There are too many Type | and Type Il CMOPs in the existing suites (Tanabe
et al. 2017)

- Pareto front shapes of the artificial test problems are unrealistically
regular (Ishibuchi et al. 2019)

- The existing artificial test problems fail to satisfactorily represent some
real-world problem characteristics

Performance Assessment

77
Performance Indicators

Any popular performance indicator for multiobjective optimization can be
adapted for CMOPs by removing infeasible solutions

The most frequently used indicators in the literature are:
- Hypervolume (HV)
- Generational distance (GD and GD¥)
- Inverted generational distance (IGD and IGD™)
- Epsilon indicator (EPS)

It is very important to use archives or cumulative indicators




Constraint-Related Measures Example: Hypervolume

- Minimum of overall constraint violations
- Mean of overall constraint violations

- Feasibility ratio

79

MOEA/D-CDP

Cumulative hypervolume (HV})

Cumulative hypervolume (HV}

MOEA/D-IEpsilon

HY

Example: Overall Constraint Violation

MOEA/D-CDP

MOEA/D-IEpsilon

14
—v — v

- 12 @ First feasible w2 @ First feasible
& &
§ 1o E Lo
E 2
s o8 £ 08
£ B
] i
ko8 Eos
g g
S oa Zoa
2 g
g 0z g 0z

0.0 0.0

o 200 400 600 800 1000
Generations

200 400 600 800 1000
Generations
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Example: Feasibility Ratio
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Overview

- Python
Software for Constrained
Multiobjective Optimization R
- Matlab
- Java
83
Python (i) Python (ii)

pymoo: Multi-objective Optimization in Python®
- Algorithm implementations: NSGA-11 (CDP), NSGA-11I (CDP), C-TAEA
- CMOP implementations: TNK, OSY, BNH, CTP, DAS-CMOP, MW, MODAct, 3 RCMs
- Performance assessment: HV, GD, GD*, IGD, IGD*

- Additional: Solution repair when constraints are analytically expressed and
visualization techniques

°https://pypi.org/project/pymoo/
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jMetalPy: Python Version of the JMetal Framework®
- Algorithm implementations: NSGA-1I (CDP), NSGA-IIl (CDP), MOEAD-IEpsilon
- CMOP implementations: SRN, TNK, OSY, BNH, LIR-CMOP
- Performance assessment: HV, GD, IGD, EPS

- Additional: Statistical analysis and visualization techniques

®https://pypi.org/project/jmetalpy/




mco: Multiple Criteria Optimization Algorithms and Related Functions®
deap: Distributed Evolutionary Algorithms in Python’ - Algorithm implementations: NSGA-II (CDP)

- Constraint handling by delta penalty approach, closest valid penalty - CMOP implementations: BNH

approach, or island approach - Performance assessment: HV, GD, EPS

pygmo: Parallel Optimization for Python®

MOEADr: Component-Wise MOEA/D Implementation'
- Advanced algorithms for hypervolume calculation

- Constraint handling by penalty function approach, violation-based ranking
- Performance assessment: HV, IGD

"https://pypi.org/project/deap/

“https://cran.r-project.org/web/packages/mco/index.html
8https://pypi.org/project/pygmo/

https://cran.r-project.org/web/packages/MOEADr/index.html
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MOEAFramework: A Free and Open Source Java Framework for Multiobjective
Optimization™

- Algorithm implementations: NSGA-1I (CDP)
- CMOP implementations: SRN, TNK, OSY, BNH, CF, C-DTLZ
- Performance assessment: HV, GD, IGD

PlatEMO: Evolutionary Multi-objective Optimization Platform™

- Algorithm implementations: NSGA-1I (CDP), NSGA-I1I (CDP), ToP, PPS-MOEA/D,
C-TAEA, MOEA/D-DAE, CCMO

- CMOP implementations: CF, C-DTLZ, DC-DTLZ, LIR-CMOP, MW, DOC

- Additional: Statistical analysis and visualization techniques
- Performance assessment: HV, GD, IGD

- Additional: Statistical analysis, visualization techniques and GUI jMetal: A Framework for Multi-objective Optimization with Metaheuristics™

- Same functionalities as jMetalPy

https://github.com/MOEAFramework/MOEAFramework

"https://github.com/BIMK/PlatEMO Bhttps://github.com/jMetal/jMetal




. - Increasing interest in constrained multiobjective optimization
Conclusions

- Many new techniques, test suites, and software proposed in the last years

- Problem characterization is now gaining interest
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