TUŠAR, Tea, FILIPIČ, Bogdan. Visualization of Pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method. IEEE Transactions on Evolutionary Computation, 2015, vol. 19, no. 2, pp. 225-245. (IEEE Xplore, Open Access)
MLAKAR, Miha, PETELIN, Dejan, TUŠAR, Tea, FILIPIČ, Bogdan. GP-DEMO: Differential evolution for multiobjective optimization based on Gaussian process models. European Journal of Operational Research, 2015, vol. 243, no. 2, pp. 347-361. (ScienceDirect)
MLAKAR, Miha, TUŠAR, Tea, FILIPIČ, Bogdan. Comparing solutions under uncertainty in multiobjective optimization. Mathematical Problems in Engineering, vol. 2014, Article ID 817964, 10 pages, doi: doi:10.1155/2014/817964. (Hindawi, Open Access)
TUŠAR, Tea, FILIPIČ, Bogdan. Visualizing exact and approximated 3D empirical attainment functions. Mathematical Problems in Engineering, vol. 2014, Article ID 569346, 18 pages, doi: 10.1155/2014/569346. (Hindawi, Open Access)
DOVGAN, Erik, JAVORSKI, Matija, TUŠAR, Tea, GAMS, Matjaž, FILIPIČ, Bogdan. Discovering driving strategies with a multiobjective optimization algorithm. Applied Soft Computing, 2014, vol. 16, no. 1, pp. 50-62. (ScienceDirect)
DEPOLLI, Matjaž, TROBEC, Roman, FILIPIČ, Bogdan. Asynchronous master-slave parallelization of differential evolution for multiobjective optimization. Evolutionary Computation, 2013, vol. 21, no. 2, pp. 261-291. (MIT Press Journals)
DOVGAN, Erik, JAVORSKI, Matija, TUŠAR, Tea, GAMS, Matjaž, FILIPIČ, Bogdan. Comparing a multiobjective optimization algorithm for discovering driving strategies with humans. Expert Systems with Applications, 2013, vol. 40, no. 7, pp. 2687-2695. (ScienceDirect)
FISTER, Iztok, MERNIK, Marjan, FILIPIČ, Bogdan. Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm. Computational Optimization and Applications, 2013, vol. 54, no. 3, pp. 741-770. (SpringerLink)
KOROŠEC, Peter, ŠILC, Jurij, FILIPIČ, Bogdan. The differential ant-stigmergy algorithm. Information Sciences, 2012, vol. 192, no. 1, pp. 82-97. (ScienceDirect)
ZUPANC, Jernej, FILIPIČ, Bogdan. Evolutionary synthesis of cellular automata. CIT, Journal of Computing and Information Technology, 2011, vol. 19, no. 2, pp. 105-112.
FISTER, Iztok, MERNIK, Marjan, FILIPIČ, Bogdan. A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Applied Soft Computing, 2010, vol. 10, no. 2, pp. 409-422.
VALENTINČIČ, Joško, FILIPIČ, Bogdan, JUNKAR, Mihael. Machine learning induction of a model for online parameter selection in EDM rough machining. The International Journal of Advanced Manufacturing Technology, 2009, vol. 41, no. 9-10, pp. 865-870.
FISTER, Iztok, MERNIK, Marjan, FILIPIČ, Bogdan. Optimization of markers in clothing industry. Engineering Applicationsof Artificial Intelligence, 2008, vol. 21, no. 4, pp. 669-678.
FILIPIČ, Bogdan, TUŠAR, Tea, LAITINEN, Erkki. Preliminary numerical experiments in multiobjective optimization of a metallurgical production process. Informatica, 2007, vol. 31, no. 2, pp. 233-240.
TUŠAR, Tea, KOROŠEC, Peter, PAPA, Gregor, FILIPIČ, Bogdan, ŠILC, Jurij. A comparative study of stochastic optimization methods in electric motor design. Applied Intelligence, 2007, vol. 27, no. 2, pp. 101-111.
BRATKO, Andrej, CORMACK, Gordon V., FILIPIČ, Bogdan, LYNAM, Thomas R., ZUPAN, Blaž. Spam filtering using statistical data compression models. Journal of Machine Learning Research, 2006, vol. 7, pp. 2673-2698.
BRATKO, Andrej, FILIPIČ, Bogdan. Exploiting structural information for semi-structured document categorization. Information Processing and Management, 2006, vol. 42, no. 3, pp. 679-694.
GANTAR, Gašper, KUZMAN, Karl, FILIPIČ, Bogdan. Increasing the stability of the deep drawing process by simulation-based optimization. Journal of Materials Processing Technology, 2005, vol. 164/165, pp. 1343-1350.
FILIPIČ, Bogdan, LAITINEN, Erkki. Model-based tuning of process parameters for steady-state steel casting. Informatica, 2005, vol. 29, no. 4, pp. 491-496.
KAVALENKA, Aleh A., FILIPIČ, Bogdan, HEMMINGA, Marcus A., ŠTRANCAR, Janez. Speeding up a genetic algorithm for EPR-based spin label characterization of biosystem complexity. Journal of Chemical Information and Modeling, 2005, vol. 45, no. 6, pp. 1628-1635.
ŠTRANCAR, Janez, KOKLIČ, Tilen, ARSOV, Zoran, FILIPIČ, Bogdan, STOPAR, David, HEMMINGA, Marcus A. Spin label EPR-based characterization of biosystem complexity. Journal of Chemical Information and Modeling, 2005, vol. 45, no. 2, pp. 394-406.
FILIPIČ, Bogdan. Optimizing production schedules and energy consumption with an evolutionary algorithm. Informatica, 2004, vol. 28, no. 4, pp. 353-357.
URSEM, Rasmus K., FILIPIČ, Bogdan, KRINK, Thiemo. Exploring the performance of an evolutionary algorithm for greenhouse control. CIT, Journal of Computing and Information Technology, 2002, vol. 10, no. 3, pp. 195-201.
FILIPIČ, Bogdan, ŠTRANCAR, Janez. Tuning EPR spectral parameters with a genetic algorithm. Applied Soft Computing, 2001, vol. 1, no. 1, pp. 83-90.
FILIPIČ, Bogdan, ŽUN, Iztok, PERPAR, Matjaž. Skill-based interpretation of noisy probe signals enhanced with a genetic algorithm. International Journal of Human-Computer Studies, 2000, vol. 53, no. 4, pp. 517-535.
FILIPIČ, Bogdan, JUNKAR, Mihael. Using inductive machine learning to support decision making in machining processes. Computers in Industry, 2000, vol. 43, no. 1, pp. 31-41.
FILIPIČ, Bogdan, URBANČIČ, Tanja, KRIŽMAN, Viljem. A combined machine learning and genetic algorithm approach to controller design. Engineering Applications of Artificial Intelligence, 1999, vol. 12, no. 4, pp. 401-409.
ŽUN, Iztok, FILIPIČ, Bogdan, PERPAR, Matjaž, BOMBAČ, Andrej. Phase discrimination in void fraction measurements via genetic algorithms. Review of Scientific Instruments, 1995, vol. 66, no. 10, pp. 5055-5064.
VARŠEK, Alen, URBANČIČ, Tanja, FILIPIČ, Bogdan. Genetic algorithms in controller design and tuning. IEEE Transactions on Systems, Man and Cybernetics, 1993, vol. 23, no. 5, pp. 1330-1339.
JUNKAR, Mihael, FILIPIČ, Bogdan, BRATKO, Ivan. Identifying the grinding process by means of inductive machine learning. Computers in Industry, 1991, vol. 17, no. 2/3, pp. 147-153.