A Multiobjective Optimization Algorithm for Discovering Driving Strategies

Erik Dovgan, Matjaž Gams and Bogdan Filipič

Abstract

This paper presents a deterministic multiobjective optimization algorithm for discovering driving strategies. The goal is to find a set of non-dominated driving strategies with respect to two conflicting objectives: time and fuel consumption. The presented multiobjective algorithm is based on the breadth-first search algorithm and Nondominated Sorting Genetic Algorithm (NSGA-II). Experiments on a 10-km route show that the results significantly depend on the discretization of the search space.

Category: I.2.8 Artificial Intelligence, Problem Solving, Control Methods, and Search – control theory, graph and tree search strategies, heuristic methods

Terms: Design, Algorithms, Performance

Keywords: driving strategies, multiobjective optimization, traveling time, fuel consumption

1 Introduction

The cost of vehicle driving mainly depends on human time spent and the fuel cost. Optimizing just one of these objectives yields undesirable and often unrealistic results. Therefore, both time and fuel consumption have to be taken into account simultaneously when constructing a driving strategy.

Several researchers have optimized both time and fuel consumption by including them into a cost function as a weighted sum, or by optimizing only fuel consumption where time was a constraint. Then single objective optimization algorithms were used. These algorithms find only one solution which, in addition, significantly depends on the weights in the cost function. Moreover, it is not clear how to determine the weights. In order to find various driving strategies with respect to time and fuel consumption, a multiobjective approach has to be used. This approach produces a set of nondominated strategies that are incomparable since no strategy is better in both objectives than any other strategy. Such set of strategies enables the user to select the preferred one without limiting the time consumption in advance and without defining the weights.
Consequently, a user, e.g., a transportation company, that frequently operates on the same route can each time select a strategy with different trade-off between time and fuel consumption based on current requirements.

This paper presents a multiobjective optimization algorithm that searches for driving strategies and minimizes time and fuel consumption. It is a deterministic algorithm based on a breadth-first search algorithm that includes mechanisms from the Nondominated Sorting Genetic Algorithm (NSGA-II) [4]. A strategy is a set hypercubes which are subspaces in the space of vehicle and route states, e.g., vehicle velocity and route inclination. A hypercube stores the control actions, e.g., throttle percentage and gear, that are applied to the vehicle if its state and position on the route correspond to the hypercube. The initial results show that the quality of the strategies significantly depends on the hypercube discretization.

The paper is organized as follows. Section 2 describes the related work in this field. The implemented driving simulation is presented in Section 3. Section 4 describes the proposed multiobjective optimization algorithm that searches for a set of nondominated driving strategies. The experiments and results are described in Section 5. Section 6 concludes the paper with the ideas for future work.

2 Related work

Several researchers studied the minimization of vehicle time and fuel consumption. However, they included the objectives into a single cost function and solved single objective problems. Monastyrsky et al. [11] implemented an algorithm based on a dynamic programming approach that finds a global optimum but can be used only for limited route lengths due to the complexity of dynamic programming. Ivarsson et al. [8] used an analytical approach that is appropriate only for routes with small gradients. In addition, this approach requires a lot of knowledge about the vehicle engine, e.g., specific fuel consumption diagram, which is usually unknown. Hellstrom et al. [6] used dynamic programming as a predictive algorithm that searches for optimal driving strategy by taking into account only a finite route length ahead of the vehicle. A similar approach was presented by Huang et al. [7], who used constrained nonlinear programming.

Another problem the researchers focused on is the search for an optimal traveling route. For example, Benjamin [2] optimized the traveling time and the vehicle safety. Both objectives were included into a single objective function. The approach is appropriate only for limited space of possible routes since the whole space has to be searched at each simulation step.

However, only few researchers, e.g., in the field of racing games, focused on multiobjective optimization, but did not include both time and fuel consumption. For example, Agapitos et al. [1] studied the driving strategy optimization of racing game competitors based on several objectives, e.g., avoiding collisions and minimizing steering changes. They used a simplified vehicle model that considers the vehicle as a point that moves with constant velocity in the selected
direction.

Most researchers focus on single objective optimization. Moreover, they search for strategies that include some knowledge on the vehicle operation. However, from the user point of view, such knowledge is unavailable. More precisely, a user can only predict the vehicle response since the exact vehicle response to his/her actions is not known. Therefore, the black box approach is the only reasonable one. In addition, if multiobjective problems are addressed, the researchers use over-simplified vehicle models. Searching for driving strategies by modeling a real vehicle as a black box driving on a real route and using a multiobjective optimization algorithm has not been tested yet. An initial version of an algorithm of this type is presented in this paper.

3 Driving Simulation

3.1 Driving Simulator

The driving simulator is implemented as a black box. It receives the data about the current vehicle velocity \(v_V \), the route that has been already traveled \(s_V \), the route that has to be traveled \(\Delta s_V \), and the control actions, i.e., throttle and braking percentage \(\varepsilon_V \) and gear \(g_V \). The throttle percentage is \(\varepsilon_V \) if \(\varepsilon_V > 0 \), otherwise it is 0. The braking percentage is \(-\varepsilon_V \) if \(\varepsilon_V < 0 \), otherwise it is 0. It outputs the updated \(v_V \) and \(s_V \), and the time \(t \) and fuel \(c \) consumption on the traveled route [5].

The route is divided into segments. Each segment is defined with its length \(s_S \), turning radius \(r_S \), inclination \(\alpha_S \), and velocity limit \(v_{S,lim} \). The current segment is given with \(s_V \). The final velocity limit \(v_{S,limit} \) is the minimum limit among \(v_{S,lim} \) and maximum turning velocity \(v_T = \sqrt{r_S g \cos \alpha_S c_s} \) [3], where \(g \) is the gravitational acceleration and \(c_s \) is the static friction coefficient.

To simulate the vehicle traveling on the route \(\Delta s_V \), the vehicle simulator described in Section 3.2 is applied in steps, each step simulating vehicle driving at a constant velocity for a small time \(\Delta t \). Afterwards, the vehicle velocity and position on the route are updated, \(\Delta t \) is added to \(t \), and \(\Delta c \) is added to \(c \). Finally, the velocity feasibility is checked. The driving is infeasible if \(v_V > v_{S,limit} \) or \(v_V \leq 0 \). In this case the simulation ends.

3.2 Vehicle Simulator

The input data for the vehicle simulator are \(v_V \), \(\alpha_S \), \(\varepsilon_V \), \(g_V \) and \(\Delta t \). The forces acting on the vehicle are the moving force \(F_E \), engine braking force \(F_{EB} \), tire braking force \(F_{WB} \), wheel friction force \(F_W \), inertial force \(F_i \), aerodynamic drag force \(F_A \), and tangential component of the gravitational force \(F_t \). They are combined together as follows [10]:

\[
F_E - F_{EB} - F_{WB} = F_W + F_i + F_A + F_t.
\]

The moving force is 0 if \(\varepsilon_V \leq 0 \). Otherwise, it is [10]:

\[
F_E = \frac{T_E i_D}{n_W} \frac{|g_V| i_D}{|i_D|} \eta,
\]

where engine torque \(T_E = \varepsilon_V T_{E,max} \), engine speed \(n_E = n_W i_G |g_V| i_D \), maximum engine torque \(T_{E,max} = f T_{E,max}(n_E) \), wheel speed \(n_W = \frac{v_V}{2 \pi r_W}, T_W \) is
wheel torque, r_w is wheel radius, i_G are gear ratios, i_D is differential ratio, η is vehicle transmissions mechanical efficiency, and $f_{TE,max}(n_E)$ is maximum torque function.

The engine braking force is 0 if $\epsilon_V > 0$. Otherwise, it is [10]: $F_{EB} = \frac{\mu m_V g \cos \alpha_S \epsilon_V}{\eta r_w}$, where engine braking torque T_{EB} is a linear function between $(n_{E,min}, T_{E,Min})$ and $(n_{E,max}, \frac{T_{E,Max}}{3})$. Here, $n_{E,min}$ and $n_{E,max}$ are minimum and maximum engine speeds, and $T_{E,Min}$ and $T_{E,Max}$ are minimum and maximum engine torques at any n_E. The tire braking force is 0 if $\epsilon_V \geq 0$. Otherwise, it is [9]: $F_{WB} = \mu m_V g \cos \alpha_S \epsilon_V$, where μ is tire braking force percentage, and m_V is vehicle mass. The wheel friction force is: $F_w = c_r m_V g \cos \alpha_S$, where c_r is the rolling resistance coefficient. The aerodynamic drag force is: $F_a = 0.5 \rho v^2 \pi T \alpha_s$, where ρ is air density, v is vehicle front speed, and c_x is vehicle aerodynamic force. The tangential component of gravitational force is: $F_t = m_V g \sin \alpha_s$. The inertial acceleration is: $a_V = \frac{F_t}{m_V}$ [10].

The vehicle state and position are updated as follows [10]: $v_V = v_V + a_V \Delta t$, $\Delta c = f_c(T_E, n_E) P_E \Delta t$, $P_E = 2 \pi T_E n_E$, $\Delta s = v_V \Delta t + \frac{v_V \Delta t^2}{2}$, where P_E is the engine power, Δc is the fuel consumption, $f_c(T_E, n_E)$ is the fuel consumption function, and Δs is the traveled route. When $v_V = 0$, the vehicle starts moving only if $g_V = g_{V,\text{min}}$ (and $a_V > 0$), since $T_{E,max} = 0$ if $n_E < n_{E,min}$ and $g_V > g_{V,\text{min}}$.

4 Algorithm for Discovering Driving Strategies

This section presents a deterministic multiobjective optimization algorithm for finding driving strategies based on the breadth-first search algorithm [13] and Nondominated Sorting Genetic Algorithm (NSGA-II) [4]. A strategy is a set of hypercubes which are subspaces in the space of vehicle and route states. This space has the following seven dimensions: vehicle gear g_V, vehicle engine speed n_E, current segment inclination α_{CS}, current segment velocity limit $v_{CS,\text{limit}}$, next segment inclination α_{NS}, next segment velocity limit $v_{NS,\text{limit}}$, and route to the next segment s_{NS}. Hypercubes store vehicle control actions ϵ_V and g_V.

The continuous space dimensions, i.e., n_E, α_S, $v_{CS,\text{limit}}$, s_{NS} and ϵ_V, are discretized into intervals i_{n_E}, i_{α_S}, $i_{v_{CS,\text{limit}}}$, $i_{s_{NS}}$ and i_{ϵ_V} by defining the interval bounds. Parameters α_S and $v_{CS,\text{limit}}$ are discretized only once for both current and next segments. For example, α_S is discretized into n_{α_S} intervals by defining the vector of bounds $D_{\alpha_S} = [\alpha_{S,\text{min}}, \alpha_{S,1}, \alpha_{S,2}, \ldots, \alpha_{S,n_{\alpha_S}-1}, \alpha_{S,\text{max}}]$. A hypercube can be presented as a rule as follows:

IF $g_V = g_{V,\text{RU}}$, $n_E \in i_{n_E,\text{RU}}$, $\alpha_{CS} \in i_{\alpha_{CS,\text{RU}}}$, $v_{CS,\text{limit}} \in i_{v_{CS,\text{limit},\text{RU}}}$, $\alpha_{NS} \in i_{\alpha_{NS,\text{RU}}}$, $v_{NS,\text{limit}} \in i_{v_{NS,\text{limit},\text{RU}}}$, $s_{NS} \in i_{s_{NS}}$ **THEN** $i_{\epsilon_V,\text{control,\text{RU}}}$, $g_{V,\text{control,\text{RU}}}$

The multiobjective optimization algorithm for discovering driving strategies is a deterministic algorithm that searches for driving strategies similarly to breadth-first search algorithm. It starts with a single strategy where none of the hypercubes stores the control actions. Afterwards, it simulates the driving
of a set of strategies through several steps by using the algorithm described in Section 3 until the whole route has been traveled.

A step is defined with the route length Δs_V where control actions do not change. Control actions currently applied to the vehicle are stored in the hypercube that covers the subspace which includes the current vehicle and route state. Since the control actions do not change within a hypercube, the step Δs_V is defined with the route length interval i_{syg} of the hypercube.

If the control actions of the observed hypercube are not defined yet, e.g., the initial strategy has no control actions, they have to be defined before the simulation continues. The number of combinations of control actions is $|i_{\epsilon V,control,RU}| \times |g_{V,control,RU}|$. For each combination, the strategy is cloned and the combination is assigned to the new strategy. Since the number of strategies grows, the maximum number of strategies is limited with the population size S_{pop}. This size is maintained by applying the functions Fast Nondominated Sort and Crowding Distance from the Nondominated Sorting Genetic Algorithm (NSGA-II) [4] at each simulation step. As a result, only the best and diverse strategies with respect to the objectives are preserved. The algorithm is shown in Algorithm 1.

5 Experiments

The presented algorithm has been tested on several routes. However, due to the space limit, we present the results of a test on a single route. Its length is 10829 m. It is presented in more detail in Figure 1. The vehicle parameter values used in the experiments are the following: $g_{V,min} = 1$, $g_{V,max} = 5$, $\eta = 0.8$, $\mu = 0.9$, $\rho = 1.225$ kg/m3, $c_r = 0.04$, $c_s = 0.7$, $r_W = 0.33$ m, $m_V = 1700$ kg, $A_x = 2.16$ m2, $c_x = 0.37$, $i_G = [3.45, 1.94, 1.28, 0.97, 0.80]$, $i_D = 3.67$, $n_{E,min} = 800$ min$^{-1}$, $n_{E,max} = 6400$ min$^{-1}$. Besides, the functions $f_{T_E,max}(n_E)$ and $f_c(T_E,n_E)$ defining the operation of the vehicle engine were derived from the specific fuel consumption diagram [12] shown in Figure 2.

The algorithm was run three times with $S_{pop} = 100$ and different hypercube discretizations. However, the hypercube gear dimension was always discretized into all five values. The other dimensions were discretized as shown in Table 1.

The results shown in Figure 3 indicate that the quality of the obtained strategies significantly depends on the hypercube discretization. For example, if only time is minimized, there are no significant differences among the discretizations. On the other hand, if only fuel consumption is minimized, the second and the third hypercube discretizations are better than the first one. Moreover, the strategies found using the second and the third discretization are incomparable, since better strategies are found with respect to both objectives with the second discretization, and better strategies are found with respect to fuel consumption only, using the third discretization.

These results show that a predefined hypercube discretization is not appropriate. Therefore, we are currently studying a two-level approach to discovering driving strategies. The lower level is based on the algorithm described in this
Figure 1: Inclinations and radii of the testing route.

Figure 2: Specific fuel consumption diagram.

Figure 3: Nondominated strategies in the objective space.
Table 1: Hypercube discretizations

<table>
<thead>
<tr>
<th>Discretization</th>
<th>Variable</th>
<th>Unit</th>
<th>Min</th>
<th>Max</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D_{n_E}</td>
<td>min$^{-1}$</td>
<td>0</td>
<td>6500</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>D_{α_S}</td>
<td>radians</td>
<td>−0.16</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>$D_{v_S,limit}$</td>
<td>km/h</td>
<td>0</td>
<td>130</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$D_{s_{NS}}$</td>
<td>m</td>
<td>0</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>D_{ε}</td>
<td>min$^{-1}$</td>
<td>−1</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>D_{n_E}</td>
<td>min$^{-1}$</td>
<td>0</td>
<td>6500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>D_{α_S}</td>
<td>radians</td>
<td>−0.16</td>
<td>0.16</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>$D_{v_S,limit}$</td>
<td>km/h</td>
<td>0</td>
<td>130</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>$D_{s_{NS}}$</td>
<td>m</td>
<td>0</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>D_{ε}</td>
<td>min$^{-1}$</td>
<td>−1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>D_{n_E}</td>
<td>min$^{-1}$</td>
<td>0</td>
<td>6500</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>D_{α_S}</td>
<td>radians</td>
<td>−0.16</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>$D_{v_S,limit}$</td>
<td>km/h</td>
<td>0</td>
<td>130</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>$D_{s_{NS}}$</td>
<td>m</td>
<td>0</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>D_{ε}</td>
<td>min$^{-1}$</td>
<td>−1</td>
<td>1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

paper. The upper level consists of an evolutionary algorithm that evolves the hypercube discretizations and forms a final set of nondominated strategies from all strategies found with the applied discretizations.

6 Conclusions

This paper presented a deterministic multiobjective optimization algorithm for discovering driving strategies. It searches for a set of nondominated strategies as sets of hypercubes and aims to minimize the time and fuel consumption. A hypercube is a subspace in the space of vehicle and route states that stores the vehicle control actions. The algorithm was tested using three different hypercube discretizations and the results show that the quality of strategies significantly depends on discretization and that no discretization is better than the other discretizations. Therefore, the future work will focus on the automatic search for appropriate discretizations. Moreover, the results will be compared to results of other single objective algorithms such as dynamic programming.
References

Algorithm 1 Multiobjective optimization algorithm for discovering driving strategies

\[S_{\text{pop}} = \{S_{\text{init}}\} \{S_{\text{init}} \text{ is empty strategy}\} \]
\[S_{\text{final}} = \{\} \]

repeat

\[S_{\text{pop, nextStep}} = \{\} \]
for all \(S \in S_{\text{pop}} \) do

\[S_{\text{pop, temp}} = \{\} \]
if \{currently observed hypercube of strategy \(S \) stores control actions\} then

\[S_{\text{pop, temp}} = \{S\} \]
else

for all \(i_{V,\text{control, RU}} \) do

for all \(g_{V,\text{control, RU}} \) do

\[S_{\text{clone}} = S._{\text{clone}}() \]
\[S_{\text{clone}}.add(i_{V,\text{control, RU}}, g_{V,\text{control, RU}}) \]
\[S_{\text{pop, temp}}.add(S_{\text{clone}}) \]
end for
end for

end if
for all \(S_{\text{temp}} \in S_{\text{pop, temp}} \) do

\[S_{\text{temp, drivingSimulationForOneStep}}() \]
if \(S_{\text{temp}} \) simulated driving on whole route and feasible then

\[S_{\text{final}}.add(S_{\text{temp}}) \]
else if \(S_{\text{temp}} \) feasible then

\[S_{\text{pop, nextStep}}.add(S_{\text{temp}}) \]
end if
end for
end for

reduceNumberOfStrategies(\(S_{\text{pop, nextStep}} \)) \{apply Fast Nondominated Sort and Crowding Distance [4]\}
\[S_{\text{pop}} = S_{\text{pop, nextStep}} \]
until \(S_{\text{pop}} = \{\} \)

\[S_{\text{final}} = \text{returnNondominatedStrategies}(S_{\text{final}}) \{\text{apply Fast Nondominated Sort [4]}\} \]

return \(S_{\text{final}} \)