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ABSTRACT
Despite a large interest in real-world problems from the research
field of evolutionary optimisation, established benchmarks in the
field are mostly artificial. We propose to use game optimisation
problems in order to form a benchmark and implement function
suites designed to work with the established COCO benchmarking
framework. Game optimisation problems are real-world problems
that are safe, reasonably complex and at the same time practical, as
they are relatively fast to compute. We have created four function
suites based on two optimisation problems previously published in
the literature (TopTrumps and MarioGAN ). For each of the applica-
tions, we implemented multiple instances of several scalable single-
and multi-objective functions with different characteristics and fit-
ness landscapes. Our results prove that game optimisation problems
are interesting and challenging for evolutionary algorithms.
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1 INTRODUCTION
Artificial problems often exhibit vastly different characteristics
than actual real-world problems. For example, artificially created
functions usually have a discernible global structure, which is not
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necessarily true for real-world problems. Applying an evolution-
ary algorithm (or some alternative optimisation method) that has
only been tested and evaluated on artificial test functions will thus
probably lead to sub-optimal results on real-world applications.

The game-benchmark for evolutionary algorithms (GBEA) de-
scribed in this paper was specifically designed to provide the means
to analyse and compare the performance of evolutionary algo-
rithms on non-artificial problems. The benchmark is comprised
of several game optimisation problems, all of which are examples
of previously published search-based procedural content genera-
tion approaches [14]. They are integrated as functions suites into
the COCO (COmparing Continuous Optimisers) benchmarking
framework [5]. GBEA is under active development and meant to be
continuously extended with new problem suites from publications
related to game optimisation1.

The reason for developing a novel benchmark is the lack of
real-world benchmarks for evolutionary algorithms that measure
anytime performance and provide sufficient post-processing fea-
tures. While this benchmark is naturally not representative for
all types of problems imaginable, it serves as a demonstration of
the effect of differences in uncertainties. We chose to add game
optimisation problems specifically for several reasons:

(1) Games describe very complex systems, but their true state is
always fully observable. This is a contrast to problems that
rely on real-world measurements such as described in [2].

(2) Games are designed for human decision makers and at the
same time often have a player AI that allows the simulation
of playthroughs.

(3) The popularity of games paired with an increasing research
and popular interest2 make large datasets available3 that are
required for statistical analysis.

(4) Game optimisation does not pose safety concerns.
(5) Actual evaluations can be comparatively cheap, as no mea-

surement equipment is required and typical game sessions
do not last for more than a few hours at a time.

In addition to providing challenging benchmarks for evolution-
ary algorithms, this study is also important in the context of games
research. The characteristics and complexity of game optimisation
problems are rarely considered in research, and data from the bench-
mark can provide important insights into this type of problems (e.g.,
regarding the choice of search algorithm).

1http://norvig.eecs.qmul.ac.uk/gbea
2see recent successes of OpenAI’s DotA AI https://openai.com/five/
3e.g. for StarCraft II [19] or League of Legends https://developer.riotgames.com/
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We first identify requirements for benchmarks at the end of
Section 1. Then, some often used benchmarks in the field of evo-
lutionary computation are described in Section 2, followed by a
description of how the requirements are achieved, along with more
technical details on our game-benchmark (Section 3). First insights
into the presented functions are given in Section 4. Section 5 con-
cludes our contribution with a summary and future work directions.

Requirements
We identified the following requirements for the benchmark:

R-I: Problem characteristics. Problems should not be artificial
in nature. The benchmark should contain a diverse set of fitness
functions which are expected to make sense within their real-world
context. Fitness functions should be of considerable complexity and
possibly involve different types of realistic uncertainties.

R-II: Practicality. Executing the benchmark should still be possi-
ble within a reasonable time frame. Therefore, it should be easy to
parallelise the benchmark and the evaluation of a single solution
should result in practical execution times on standard machines.

R-III: Statistical significance. As evolutionary algorithms are sto-
chastic, the statistics obtained via the benchmark should be statisti-
cally justified and thus interpretable.

R-IV: Investigation of scaling behaviour. Functions should be scal-
able in search space, so that scaling behaviour can be analysed.

2 RELATEDWORK
The popular bbob test suite [6] from the COCO framework [5]
includes 24 common test functions with diverse characteristics,
including, e.g., sphere and linear, as well as Schwefel and Rosen-
brock functions. The same functions are combined to form the
bi-objective function suite bbob-biobj [18]. For multi-objective
problems with larger dimensions, DTLZ [3] and ZDT [23] are popu-
lar test suites. Recent visualisation approaches revealed that popular
multi-objective benchmarks mostly contain problems with very
simple fitness landscapes [4]. In contrast, if the multi-objective func-
tions are constructed as a combination of multiple single-objective
functions (as they are in bbob-biobj), the structures in the fitness
landscapes are usually very complex [4]. It is however not clear,
whether these functions are at all comparable to real-world func-
tions, or whether they instead contain unnecessary complexity.

This results in a lack of appropriate benchmarks for algorithms
specifically designed for expensive fitness function evaluations,
such as surrogate-assisted evolutionary algorithms. According to
[2] and [16], these benchmarks are rare because real-world prob-
lems in relevant publications are mostly proprietary in nature. The
shortage of benchmark problems could also not be solved by the
Black Box Optimization Competition (BBComp)4, which includes
expensive as well as bi-objective problems. BBComp is set up as
a competition rather than a benchmark, which means that it is
impractical to analyse (R-II, R-III, R-IV).

Recently, efforts have been made to tackle these issues. For exam-
ple, in [2], three real-world problems involving computational fluid
dynamics (CFD) are compiled into a benchmark for computationally
4https://bbcomp.ini.rub.de/

expensive optimisation5. Two of these problems are single-objective
and one is bi-objective, and all rely on a CFD simulation for the
computation of a fitness function. The problems offer scalability
in search space dimension and multiple instances. However, the
function suite lacks features of the established benchmarks, such
as the ability to estimate any-time performance as well as sophisti-
cated post-processing (R-III). In addition, the computational effort
required for the benchmark is also impractically large (R-II).

Another recent effort were workshops hosted at PPSN ’186 and
GECCO ’197, in which the organisers suggest to use problems from
the areas of machine learning and data analysis in order to compile
a benchmark [11]. The problems they propose include standard
applications such as clustering and model training, as well as more
specific ones such as one simulating buoy placement. The problems
have recently been integrated into the benchmarking framework
nevergrad8. In the future, it would be interesting to investigate sim-
ilarities and differences between the contained problems, because
they all come from different areas of applications.

Benchmarks are also rare in the field of computational intelligence
in games. This is often caused by licensing issues for games, as well
as the effort required to set-up game-based problems. These issues
are resolved for the popular AI and game-related competitions.
There are a variety of popular competitions in this field9, among
them the general video game AI competition. Unfortunately, there
exists no systematic analysis of the problems posed in these com-
petitions and the comparison mechanics are difficult to interpret10.
This makes them difficult to use as an independent benchmark.

3 GAMES AND BENCHMARK FUNCTIONS
The two problems we will focus on have been published previ-
ously [21, 22] along with their respective results. According to the
framework proposed in [9], both problems can be classified as level
generation methods with embedded input. Both problems use auto-
matic evaluation, but are intended to also allow for an interactive
process with input from human-based computation. They were se-
lected to stand in for the two main approaches to representing
solutions (direct encoding and genotype-phenotype mapping), and
because a sizeable amount of previous works exists to source the
fitness functions from.

In the following, we first detail how our benchmark set-up based
on the COCO framework fulfils the requirements detailed above.
Following that, we give a detailed description of the implemented
function suites.

3.1 Experimental Framework
For many of the requirements described above, the COCO frame-
work provides suitable features already. For example, it already
includes a batch mechanism, allowing for the independent execu-
tion of subsets of the benchmark functions. This provides an easy
opportunity to parallelise the benchmark as required (R-II). Data
export and import are also supported by COCO (R-II).

5https://bitbucket.org/arahat/cfd-test-problem-suite/src
6https://sites.google.com/view/optml-ppsn18/home
7http://www.erc.is/go/gecco2019
8https://github.com/facebookresearch/nevergrad/
9https://project.dke.maastrichtuniversity.nl/cig2018/competitions/
10http://norvig.eecs.qmul.ac.uk/gbea/gamesbench_events.html#cig18
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Table 1: Overview and characterisation of functions in
rw-top-trumps. Column [min] indicates how thefitnessmea-
sure x is transformed into a minimisation problem.

fid Fitness Measure (x) min
t1 deck hypervolume -x
t2 standard deviation of category averages -x
t3 winrate of better player -x
t4 switches of trick winner -x
t5 trick difference at end of game x

Furthermore, the COCO framework is also designed to include
the same functions in multiple search-space dimensions and pro-
vides post-processing features that contain plots that visualise an
algorithm’s behaviour in that regard (R-IV). Similarly, COCO ex-
pects the existence of multiple instances of any given function.
COCO further automatically computes performance assessment
measures based on the algorithm’s aggregated performance across
these instances. The resulting values are interpretable and suitable
for statistical analysis (R-III).

COCO does provide some rudimentary features that allow the
creation of new functions and corresponding suites. We created an
interface to allow the interaction with external applications, called
either via C or Python. Given this interface, fulfilling the require-
ments listed above only hinges on the ability to define suitable
benchmarking problems. Similarly, the problem characteristics (R-I)
and execution speed (R-II) also rely on the included benchmarking
problems. We therefore discuss the function suites developed for
GBEA below, specifically with regards to the requirements.

3.2 TopTrumps Suites
This problem is based on the card game TopTrumps and the task of
generating a deck for the game.

Game Description. TopTrumps is a themed card game, where
popular themes include cars, motorcycles, and aircrafts. Each card
in the deck corresponds to a specific member of the theme and
displays several of its characteristics. During gameplay, the deck is
shuffled first and then distributed evenly among players. The start-
ing player chooses a characteristic whose value is then compared
to the corresponding values on the cards of the remaining players.
The player with the highest value receives all cards played in this
round (called trick) and then continues the game by selecting a new
attribute from their next card. The game usually ends when at least
one player has lost all their cards. However, for the purpose of this
benchmark, we end the game after all cards have been played once.

TopTrumps Suites Details. As the problem requires the generation
of a deck, the predetermined number of cards in a deck and/or the
number of values on each card can be modified to create scalable
problems (R-IV). The original publication [21] already contains
diverse functions with differing numbers of objectives (R-I). Fur-
thermore, AIs of different skill levels are already implemented (R-I).

As expected in game optimisation problems, the included func-
tions are noisy. However, the fitness for each solution is reported
as the average of 2 000 simulations, which has been shown in [21]
to produce an appropriate balance between computational effort
(R-II) and resulting standard deviations.

Table 2: Function suite details.

TopTrumps MarioGAN
Single-Obj. Bi-Obj. Single-Obj. Bi-Obj.

dimensions (88, 128, 168, 208) 10, 20, 30, 40
= 4 · (22, 32, 42, 52)

functions 5 3 28 10
instances 15 15 7 7

simul./point 2 000 [21] 2 000 [21] 30 30

The only remaining issue is to create suitable instances of the
functions (R-III), which on the one hand create fitness landscapes of
similar type and structure, but on the other hand do not share the
locations of e.g. optima. We therefore decide to interpret instances
as themes for the created decks. These themes alongwith the chosen
categories dictate the value ranges that are expected for each of
the categories on the cards. We therefore represent the different
themes by introducing lower and upper bounds for each category
on the cards. The bounds are created via seeded pseudo-random
generation, and each configuration of constraints is considered a
separate instance. This way we create 15 different instances.

Based on the TopTrumps functions described in the original
publication [21], we design a single- (rw-top-trumps) and a bi-
objective (rw-top-trumps-biobj) suite. The functions are denoted
ti and Ti for the single- and bi-objective suite, respectively.

rw-top-trumps. Contains 5 different functions, where t1 and t2
are based on encoding, whereas the others are based on a simulation.
An overview of the functions can be found in Table 1.

While the functions are not based on feedback, they are moti-
vated by a model of the intended gameplay achieved with a gener-
ated deck of cards for TopTrumps. Function t3, for example, is the
winrate of the better player. The winrate is set to be maximised so
that higher skill levels lead to higher winrates. In contrast, t4 and
t5 target the tension of the game instead, as they both reach their
optimum if the game was close, independent of the skill levels of
the players. Function t5 looks at the final outcome, while t4 also
considers how dramatic the playthrough was.

Functions t1 and t2 are computed without simulations, but still
target similar concepts. If the deck hypervolume11 (t1) is maximised,
each card is not dominated by any other one12. This ensures that
the choice of the category matters, as there is always at least one
way for each card to beat another. Maximising this function allows
for tension in the game, just like expressed in t4 and t5. However, it
also decreases the tolerance of errors and thus punishes players that
are unfamiliar with the deck. Similarly, t2, if decreased, requires
more detailed knowledge of the deck in order to make these choices.

The problems are relatively large in terms of search dimension.
This is because we intended to create realistic problems with a
typical number of cards in the deck (i.e. 22, 32, 42 and 52) and
number of categories on each card (4), see Table 2.

rw-top-trumps-biobj. The bi-objective function suite combines
functions from the single-objective suite that are seemingly conflict-
ing. We made this selection based on the meaning of the functions
and an estimation of their conflict using linear regression on the
11The hypervolume generated by the deck, if each card is interpreted as a point in n-
dimensional space, where n is the number of categories. n = 4 in our implementation.
12Except in unlikely edge cases.
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Table 3: Construction of the bi-objective functions from the
rw-top-trumps-biobj suite (Ti ) as pairs of single-objective
functions from the rw-top-trumps suite (tj ).

T1 = (t1, t2) T2 = (t3, t4) T3 = (t3, t5)

function values along three diagonal walks through the decision
space (see Section 4.1 for more details on these walks). We com-
puted the correlation coefficient for each pair of functions and
have chosen pairs with a negative correlation. An overview of the
functions is presented in Table 3.

Function T1 is based on t1 and t2, so computed directly from the
encoding. It is thus significantly faster to compute than the others.
However, the functions are only partly conflicting, as t1 expresses
both tension and the impact of decisions. The conflict of objectives
is more obvious for functionsT2 andT3, where the first function (t3)
targets fairness, while the second function (t4 or t5) targets some
expression of tension in the game.

3.3 MarioGAN Suites
Game description. The objective of the game is to progress through

the fictional Mushroom Kingdom to save Princess Toadstool (later
called Princess Peach). This is performed by Mario, the main player
character, racing through different levels while defeating enemies,
collecting items and solving puzzles without dying. As a side-
scrolling platformer, the player moves from the left side of the
screen to the right side in order to reach exit objectives within a
given time limit, and thereby continue to the next level.

MarioGAN Suites Details. The Mario game has been heavily re-
searched in past years [15], the levels are relatively short, and there
is a publicly available framework,MarioAI, containing various state-
of-the-art AI players. The function suites are based on a recently
published level generation method using Generative Adversarial
Networks (GANs) [22]. The solutions of a problem are in this case
represented as continuous latent vectors, thus making them suitable
for state-of-the-art evolutionary computation methods. Addition-
ally, this differs from the near-direct encoding in TopTrumps.

Another benefit of the latent vector encoding is that it allows for
easily scalable functions (R-IV), as the dimension of this latent vec-
tor is chosen arbitrarily when training the GAN. Therefore, fitness
functions with different search space dimensions can be created
by simply basing them on the results of GANs trained to have ap-
propriately sized latent vectors. Similarly, different GANs can also
be used to create instances (R-III), as they represent different level
generation models that exhibit similar characteristics. This was
verified visually, as well as based on Exploratory Landscape Analysis
[7, 10]. Hence, in order to create instances, GAN models are trained
from different seeds, resulting in neural networks with different
weight configurations. Furthermore, a simulation of a playthrough
with a player AI in the MarioAI framework is capped at 20 seconds,
thus also enabling practical benchmarking speeds (R-II).

Based on the MarioGAN approach and the included optimisation
problems, we created a single- (rw-gan-mario) and a bi-objective
(rw-gan-mario-biobj) function suite, and denoted the functions
contained thereinmi andMi , respectively.

rw-gan-mario. We implemented a set of diverse functions, cf.
Table 4. More details on these and how they are computed are given

Table 4: Overview of functions in rw-gan-mario. Function
ids in the benchmark are indicated in the last four columns,
divided by overworld [o], underground [u], overworld con-
catenated [oc] and underground concatenated [uc]. Column
[min] indicates how the fitness measure x is transformed
into a minimisation problem.

Fitness Measure (x) AI min o u oc uc
enemyDistribution - -x 1 2
positionDistribution - -x 3 4
decorationFrequency - 1 - x 5 6
negativeSpace - 1 - x 7 8
leniency - x 9 10
basicFitness A* x 11 12 13 14
basicFitness Scared x 15 16
airTime A* 1 - x 17 18 19 20
airTime Scared 1 - x 21 22
timeTaken A* 1 - x 23 24 25 26
timeTaken Scared 1 - x 27 28

below. We have added two types of variations for each of the fitness
functions. The first variation are the various models trained for the
respective sets of samples (underground and overworld). An exam-
ple of the different characteristics of underground and overworld
levels can be seen in Figure 1. The ceiling adds an additional chal-
lenge to the level, as jumps might not be executed as planned when
Mario bumps into the ceiling. We further introduced a concatena-
tion mode. This mode adds an additional realistic challenge, as the
intersections between different segments still need to be playable,
which is not considered in the training phase of the generator [20].
enemyDistribution: standard dev. (std.) of enemy tiles (x-axis)
positionDistribution: std. of tiles you can stand on (y-axis)
decorationFrequency: percentage of pretty tiles13 [13]
negativeSpace: percentage of tiles you can stand on
leniency: weighted sum of subjective leniency of tiles
basicFitness: MarioAI championship score14 for AI [15]
airTime: ratio between ticks in air vs. total ticks

(if level completed, otherwise 1)
timeTaken: ratio between time taken and total time allowed

(if level completed, otherwise 1)
enemyDistribution and positionDistribution are based on statis-

tics suggested in [13] with no directly assumed meaning. decora-
tionFrequency is proposed as an aesthetic measure in [13]. Leniency
is a weighted sum designed to express the leniency of the level de-
sign, as suggested in [12]. negativeSpace is intended to capture how
much of the space in the level is traversable, as proposed in [1].

The remaining functions are all based on simulations with two
different types of AIs. One of them is a particularly successful agent
from the MarioAI Championship by R. Baumgarten, which is based
on the A* algorithm [15]. The other AI, ScaredAgent, is one of the
default agents in the MarioAI source code, which works by avoiding
any sort of obstacles, including enemies. It does not do any forward
planning, however, and thus does not perform well in comparison
to the A* agent. In order to not rely on outliers when evaluating a

13pretty tiles:= {Tube, Enemy, Destructible Block, Question Block, or Bullet Bill}
14(lengthOfLevelPassedPhys − timeSpentOnLevel + numberOfGainedCoins +
marioStatus ∗ 5000)/5000
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Figure 1: Examples of generated level segments. Top: over-
world level. Bottom: underground level.

given solution, we executed the simulation 30 times per solution
and averaged the results given by the respective fitness measure.

Fitness measures airTime and timeTaken are modified from their
implementation in [22] as described in [20]. Both functions, when
optimised, result in levels that take longer / more actions to com-
plete. Both measures also evaluate to 1 (the maximum value) if the
AI in question fails to complete the corresponding level. Finally,
basicFitness is the MarioAI competition score for the AI agents.

The variations extend the number of problems in the suite sig-
nificantly. We ran preliminary experiments on the 11 functions
from Table 4 for each available combination. Based on the results,
we removed functions with similar fitness landscapes and kept 28
functions as indicated in Table 4. Many of the functions with the
ScaredAgent were removed as they were not interesting due to the
AI failing on all levels.

The resulting single-objective suite thus contains 28 different
functions for 4 different search space dimensions and 7 instances.
The dimension of the search space is solely determined by the
size of the random vector that is fed into the neural network and
can thus be set arbitrarily. We chose dimensions 10, 20, 30 and
40 based on the similarity to the bbob search space dimensions.
These specifications were motivated by observations on the original
publication [22], where the 32-dimensional random vector produced
a fitness landscape with large plateaus. It is important to note,
however, that the corresponding GAN was trained on only a single
level. The details of the function suite are summarised in Table 2.

rw-gan-mario-biobj. For the bi-objective function suite, we
chose functions that are likely to conflict. Again, we base our deci-
sion on our intuition as well as the correlation coefficients computed
on the diagonal walks (see Section 4.1 for more details). For exam-
ple, functions that result in early failure of a Mario agent (such as
basicFitness) will contradict functions that try to extend the dura-
tion and complexity of gameplay (such as airTime and timeTaken).
All of the functions selected based on context knowledge were then
verified to have a large negative linear correlation. The functions
resulting from these combinations are listed in Table 5.

Table 5: Construction of the bi-objective functions from the
rw-gan-mario-biobj suite (Mi ) as pairs of single-objective
functions from the rw-gan-mario suite (mj ).

M1 = (m4,m6) M6 = (m12,m24)
M2 = (m4,m8) M7 = (m13,m19)
M3 = (m11,m17) M8 = (m13,m25)
M4 = (m11,m23) M9 = (m14,m20)
M5 = (m12,m18) M10 = (m14,m26)

4 EVALUATION
As mentioned in Section 3, all functions in the four suites are jus-
tified in terms of the context of the real-world application, as all
functions have been used in previous research (R-I). However, the
functions in the corresponding game optimisation problems are
rarely analysed and usually treated as black boxes. We seek to
determine some characteristics of the functions to evaluate their
complexity and novelty. These results can also be used to help
the interpretation of the GBEA results. We further provide a brief
overview of computational efforts required for the different func-
tions, in order to assess the practicality of the benchmark.

The four GBEA function suites contain problems scalable in the
number of variables (R-IV). However, to keep the analysis concise,
we will in the following mostly conduct the experiments for a
single dimension per function suite. In case of the MarioGAN suites,
we selected the smallest dimension (10) in order to speed up the
experiments, but also to achieve comparability with the artificial
single-objective function suite bbob. For the TopTrumps suites, we
chose dimension 128, as this results in 32 cards, which is a common
deck size for card games (R-I).

4.1 Diagonal Walks
In order to gain a first impression of the fitness landscape of the
various functions contained in the benchmarks, we conducted what
we call diagonal walks through a random point. This means we
generate a random point, which represents a valid solution, and
“walk” in equidistant steps along a straight line (in the search space)
through the random point. These walks are repeated three times
for the same random point, but using three different directions. Per-
forming diagonal line walks rather than axis-aligned ones enables
to investigate the effects of changing the values of all variables
simultaneously. Of course, the observations only correspond to
the selected random point, and can not offer any insights in terms
of global optima. Yet, this approach nonetheless offers a simple
way to (visually) inspect some properties (e.g. sensitivity) in a high
dimensional search space.

Examples of resulting plots can be found in Figure 2. Labels
on the x-axes are neglected as all lines feature different lengths,
which are normalised to fit the axes and, thus, are meaningless. The
depicted function values only represent a single instance.

Plots (a) and (b) in Figure 2 are good representatives of the
encoding-based functions. They have numerous steps in the fitness
function, as well as a discernible global structure. The steps are
likely a result of the genotype-phenotype mapping. If values are
varied along a line, for a specific cut-off value, the encoding in the
neural network will flip and produce a tile (for more details on the
encoding, see [20]). This is a result of using GANs on Mario levels
in a discrete encoding, as opposed to images with pixels encoded
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Figure 2: Diagonal walks for instance 1 of rw-gan-mario functionsm7,m10,m17 andm21 (top) and bbob functions f6, f7, f23 and
f24 (bottom). Colours indicate separate walks and the black point denotes the common random point.

as continuous values. Because of this discrete encoding, the steps
in the tile-based fitness functions will always occur.

In contrast, plots (c) and (d) in Figure 2 are representative of what
most simulation-based fitness functions look like, with plateaus (d),
very high spikes (c) and almost no structure at all. The steps are
significantly less pronounced, because the addition or removal of
a single tile can influence the gameplay significantly. This is then
captured by simulation-based fitness functions, and we therefore
do not see the distinctive steps.

In the following, we compare the diagonal walks for functions
from rw-gan-mariowith those on selected functions from the bbob
suite (cf. bottom row of Figure 2). Function f6 is representative for a
lot of bbob functions, as it is continuous and has a global structure
without any major local irregularities. Function f7 could be con-
sidered similar to the encoding-based fitness functionm7, as both
have pronounced steps (cf. Figure 2 (b)). The bbob suite however
also contains functions with high local irregularities. While most
functions do possess an obvious global structure, such as f24, there
are evidently also functions where (at least for the diagonal line
walk) no structure is discernible, for example, f23.

Due to the described similarities between the functions in the
rw-gan-mario and the bbob suites, we conclude that these func-
tions are not degenerate. This means we can expect meaningful re-
sults from the benchmark. However, the functions in rw-gan-mario
also contain some very distinctive features, such as realistic noise
levels, as well as extreme function changes, very small valleys of
attraction and large plateaus (see Figure 2, plots (b-d)).

In order to also be able to visualise the bi-objective landscapes,
we produce diagonal walks where we show the values for both
objective functions. Examples can be found in Figures 3, 4, 5 and

6. Each of the three walks is shown separately for the specific
functions selected, so that conflicts in the functions are observable.
In addition, we plot the walks in objective space for each of the
selected bi-objective functions.

For functionM4, we see clear conflicts in all diagonal walks as
visualised in Figure 3. This is expected, because if a given agent re-
ceives a low competition score (basicFitness,m11), this likely means
that it failed early in the simulation. This is of course in conflict
with timeTaken (m23), which seeks to maximise the time that the
agent spends on the level. In addition, the basicFitness measure
penalises agents for taking longer. The same observations are true
for function M8 (see Figure 4), which combines the same type of
fitness measures for underground levels instead of overworld.

Finally, we show diagonal walk results for functions from the
bi-objective rw-top-trumps-biobj suite. For function T1 (see Fig-
ure 5), it seems that, while in one direction (blue) both objectives
can be improved at the same time, other directions show the con-
flict between them. This is expected behaviour, as in some cases,
increasing the hypervolume t1 by increasing the absolute values of
a card will also increase the standard deviation between card aver-
ages t2. However, if these values are increased too far, this might
result in fewer non-dominated cards, resulting in abrupt jumps in
the function value as seen in the plot. The value for t2 will however
still decrease.

We also show diagonal walks for function T3 with objectives
t3 and t5 in Figure 6. Here, due to the high irregularities of both
functions, the plots are harder to interpret. Based mainly on the
walks in the objective space, we can infer that the two objectives
are mostly in conflict.

652



Game-Benchmark for Evolutionary Algorithms GECCO ’19, July 13–17, 2019, Prague, Czech Republic

0.2

0.4

0.6

0.8

1.0

m11

w1 i01

m11

0.2

0.4

0.6

0.8

1.0

m11

w2 i01

m11

0.2

0.4

0.6

0.8

1.0

m11

w3 i01

m11

0.4

0.6

0.8

1.0

m23

m23

0.4

0.6

0.8

1.0

m23

m23

0.4

0.6

0.8

1.0

m23

m23

rw-gan-mario f22 f28

0.2

0.4

0.6

0.8

1.0

m11

w1 i01

m11

0.2

0.4

0.6

0.8

1.0

m11

w2 i01

m11

0.2

0.4

0.6

0.8

1.0

m11

w3 i01

m11

0.4

0.6

0.8

1.0

m23

m23

0.4

0.6

0.8

1.0

m23

m23

0.4

0.6

0.8

1.0

m23

m23

rw-gan-mario f22 f28

0.2

0.4

0.6

0.8

1.0

m11

w1 i01

m11

0.2

0.4

0.6

0.8

1.0

m11

w2 i01

m11

0.2

0.4

0.6

0.8

1.0

m11

w3 i01

m11

0.4

0.6

0.8

1.0

m23

m23

0.4

0.6

0.8

1.0

m23

m23

0.4

0.6

0.8

1.0

m23

m23

rw-gan-mario f22 f28

0.25 0.50 0.75 1.00
m11

0.4

0.6

0.8

1.0

m23

i01

rw-gan-mario f22 f28

(a) Walk 1 (b) Walk 2 (c) Walk 3 (d) Walks in the obj. space

Figure 3: Diagonal walks for rw-gan-mario-biobj functionM4 with objectivesm11 andm23 (instance 1)
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Figure 4: Diagonal walks for rw-gan-mario-biobj functionM8 with objectivesm13 andm25 (instance 1)
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Figure 5: Diagonal walks for rw-top-trumps-biobj function T1 with objectives t1 and t2 (instance 1)
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Figure 6: Diagonal walks for rw-top-trumps-biobj function T3 with objectives t3 and t5 (instance 1)

4.2 Practicality
The practicality in terms of computational effort is an important
consideration in real-world benchmarks (R-II). The optimisation
problems inspired by real-world applications are usually expensive,
which makes compiling these functions into a benchmark difficult.
The functions then either need to be simplified (e.g. in terms of
search space dimension) or represented by a simulation instead of
an actual evaluation (e.g. CFD model). In cases where the functions
are only moderately expensive, they can still not be easily com-
piled into a benchmark, as multiple scalable (R-IV) instances of the
functions should exist (R-III). Even if these two requirements are
fulfilled, a full benchmark with a diverse set of functions is likely
still impractical to compute for a multitude of algorithms.

In order to assess the practicality of the GBEA with regards
to computation time, we measured the time for computing a sin-
gle function evaluation. The experiments were run on a regular
computer and resulted in the following averaged runtimes:

• rw-gan-mario, without simulation: ca. 0.52 seconds
• rw-gan-mario, with ScaredAgent: ca. 1.52 seconds
• rw-gan-mario, with A*: ca. 35.16 seconds15
• rw-top-trumps, without simulation: ca. 0.002 seconds
• rw-top-trumps, with simulation: ca. 3.13 seconds16

We observe that, as expected, functions that do not rely on sim-
ulations are fast to compute. For TopTrumps, even the simulated

15average median 7.5 seconds, max observed 375 seconds
16average median 3 seconds, max observed 9 seconds
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functions are very fast despite executing 2 000 simulations per point.
For Mario, if the AI agent performs well and does not fail at the start
of the levels, the simulations do take longer. Although a majority
of the simulations finishes within less than 10 seconds, there are
a considerable number that take longer and finish after up to 375
seconds. We have not observed any evaluations that took as long
as 600 seconds, which is the maximally allotted time.

The execution times were calculated for dimension 10 for the
rw-gan-mario suite and 128 for the rw-top-trumps suite. How-
ever, the runtimes for MarioGAN are independent of the size of
the search space, as the solution vector is always transformed into
a level snippet of constant size. The time to simulate TopTrumps
playthroughs will increase in larger dimensions. But, as the simu-
lation is very fast, increasing the dimension further is likely still
going to result in reasonable runtimes.

We consider these results sufficient to claim that the benchmark
is indeed practical in terms of computational resources required
(R-II). This is based on the average execution times reported for a
comparable benchmark [2]. For their CFD-based benchmark, the
authors report average execution times of 40.35, 947.37 and 34.44
seconds, respectively, for the three functions included in the bench-
mark. The observed execution times for the functions in GBEA are
significantly lower for a majority of the functions included. The
only exception are simulated functions in rw-gan-mario, which
takes only slightly longer than the fastest CFD function.

4.3 Interpretability of Results
There is one major issue that arises when integrating real-world
problems into the COCO framework. For real-world problems, the
value of the global optimum is usually unknown, even when a
theoretical optimum can be computed. This becomes an issue in
conjunction with the COCO post-processing and logging, as it
is based on pre-defined target values. If the optimal value for a
given function is set to a theoretical optimum, which can not be
reached in reality, no algorithm can ever reach the higher precision
target(s). Due to the way the targets are distributed, this might make
algorithms with widely different performances appear similar in
terms of when they reach the targets.

A solution is to compile a set of baseline results and to then define
the best observed result as the global optimum. This was also done
for the bbob-biobj suite, since the globally optimal hypervolume of
its problems is not computable analytically. This issue is exacerbated
for the rw-gan-mario-biobj and rw-top-trumps-biobj suites, as
in both cases, even the optima for the single-objective functions
are unknown. The globally optimal hypervolume is therefore even
more difficult to estimate.

However, these issues will be automatically resolved with time,
when more results become available. In addition, the progression
of fitness values can still be plotted and interpreted independent of
the COCO post-processing features.

5 SUMMARY AND FUTUREWORK
Summarising the observations made in this paper, we determine
that, based on the line walk plots, the game optimisation problems
incorporated in GBEA are interesting and challenging for evolution-
ary algorithms. They contain plateaus and steps, and vary in terms

of existence of a global structure, just as artificial functions do. The
GBEA functions, however, also possess novel characteristics due to
the inherent noise and partial lack of locality. We further find that
simulation-based and encoding-based functions possess different
characteristics. We can also report that the benchmark runs with
practical execution times, especially when run in batch mode. Thus,
we conclude that GBEA can be used for benchmarking evolutionary
algorithms designed for optimising real-world optimisation tasks.

In the future, we will continue improving the benchmark. One
important step in this process is to collect data with numerous
algorithms, so that the targets measured in the benchmark can be
chosen more consciously. This will also automatically increase the
interpretability of the benchmark and allow the identification of
specific weaknesses for a given algorithm as argued in Section 4.3.

Besides potential modifications of the existing function suites,
we also plan to add more suites based on different applications in
the future. To do this, ideally, the COCO framework should be ex-
tended in order to fully support noisy optimisation in this context.
This would allow to leave noise handling up to the optimisation
algorithm instead of reporting averages of multiple simulations.
An extension towards benchmarking surrogate-assisted optimisa-
tion algorithms with features that include automatic logging of
prediction errors is planned as well.

Furthermore, many of the game optimisation problems targeted
in literature seem to have a mixed-integer search space [8]. In order
to be able to represent these types of problems, appropriate function
suites should be added to the GBEA. For example, we plan to add
hyper-parameter optimisation problems to the benchmark. COCO,
initially designed for continuous optimisation, has already been
extended to support mixed-integer problems [17].

In addition to extending the GBEA with more problems, we will
also conduct detailed analyses on the already implemented prob-
lems, e.g. using Exploratory Landscape Analysis. Based on the in-
sights gained from these studies, we might observe (dis-)similarities
to the established (artificial) benchmark problems. A better under-
standing of the problem characteristics also (a) helps to foster algo-
rithm design, and (b) paves the way for more sophisticated studies,
such as automated algorithm selection and configuration.

We hope that the presented GBEA benchmark will facilitate
further research in real-world optimisation as well as help assess
and improve surrogate-assisted algorithms intended for expensive
optimisation. We further hope to produce data that helps to better
understand game optimisation problems, specifically in terms of
how hard the problems are for evolutionary algorithms.
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