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ABSTRACT
A well-designed test suite for benchmarking novel optimizers
for constrained multiobjective optimization problems (CMOPs)
should be diverse enough to detect both the optimizers’ strengths
and shortcomings. However, until recently there was a lack of
methods for characterizing CMOPs, and measuring the diversity
of a suite of problems was virtually impossible. This study utilizes
the landscape features proposed in our previous work to charac-
terize frequently used test suites for benchmarking optimizers in
solving CMOPs. In addition, we apply the t-distributed Stochastic
Neighbor Embedding (t-SNE) dimensionality reduction approach
to reveal the diversity of these test suites. The experimental re-
sults indicate which ones express su%cient diversity.

KEYWORDS
constrained multiobjective optimization, benchmarking, land-
scape feature, t-SNE

1 INTRODUCTION
Real-world optimization problems frequently involve multiple
objectives and constraints. These problems are called constrained
multiobjective optimization problems (CMOPs) and have been
gaining a lot of attention in the last years [13]. As with other
theoretically-oriented optimization studies, a crucial step in test-
ing novel algorithms in constrained multiobjective optimization
is the preparation of a benchmark test.

One of the key elements of a benchmark test is the selection of
suitable test CMOPs [1]. A well-designed benchmark suite should
include “a wide variety of problems with di&erent characteris-
tics” [1]. This way the benchmark problems are diverse enough
to “highlight the strengths as well as weaknesses of di&erent
algorithms” [1]. However, until recently there existed only few
and limited techniques proposed to explore CMOPs [13]. For this
reason, the test suites of CMOPs were insu%ciently understood
and measuring their diversity was virtually impossible.

To overcome this situation, in our previous work [13], we
experimented with various exploratory landscape analysis (ELA)
techniques and proposed 29 landscape features to characterize
CMOPs, including their violation landscapes—a similar concept
as the $tness landscape where $tness is replaced by the overall
constraint violation.
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In this study, we employ the landscape features proposed
in [13] to express and discuss the diversity of frequently used test
suites of CMOPs. This is achieved by $rstly computing the land-
scape features and then employing the t-distributed Stochastic
Neighbor Embedding (t-SNE), a dimensionality reduction tech-
nique, to embed the 29-D CMOP feature space into the 2-D space.
Note that due to space limitations, only selected results are shown
in this paper. The complete results can be found online1.

The rest of this paper is organized as follows. Section 2 pro-
vides the theoretical background. In Section 3, we present the
landscape features and the t-SNE algorithm. Section 4 is dedi-
cated to the experimental setup, while the results are discussed in
Section 5. Finally, Section 6 summarizes the study and provides
an idea for future work.

2 THEORETICAL BACKGROUND
A CMOP can be formulated as:

minimize 𝐿𝐿 (𝑀), 𝑁 = 1, . . . ,𝑂
subject to 𝑃𝑀 (𝑀) → 0, 𝑄 = 1, . . . , 𝑅

(1)

where 𝑀 = (𝑀1, . . . , 𝑀𝑁 ) is a search vector, 𝐿𝐿 : 𝑆 ↑ R are objective
functions, 𝑃𝑀 : 𝑆 ↑ R constraint functions, 𝑆 ↓ R𝑁 is a search
space of dimension 𝑇 , and𝑂 and 𝑅 are the numbers of objectives
and constraints, respectively.

If a solution 𝑀 satis$es all the constraints, 𝑃𝑀 (𝑀) → 0 for 𝑄 =
1, . . . , 𝑅 , then it is a feasible solution. For each of the constraints
𝑃𝑀 we can de$ne the constraint violation as 𝑈𝑀 (𝑀) = max(0,𝑃𝑀 (𝑀)).
In addition, an overall constraint violation is de$ned as

𝑈 (𝑀) =
𝑂∑
𝑀

𝑈𝑀 (𝑀) . (2)

A solution 𝑀 is feasible i& 𝑈 (𝑀) = 0.
A feasible solution 𝑀 ↔ 𝑆 is said to dominate a solution 𝑉 ↔ 𝑆 if

𝐿𝐿 (𝑀) → 𝐿𝐿 (𝑉) for all 1 → 𝑁 → 𝑂 , and 𝐿𝐿 (𝑀) < 𝐿𝐿 (𝑉) for at least
one 1 → 𝑁 → 𝑂 . In addition, 𝑀↗ ↔ 𝑆 is a Pareto-optimal solution
if there exists no 𝑀 ↔ 𝑆 that dominates 𝑀↗. All feasible solutions
represent a feasible region, 𝑊 = {𝑀 ↔ 𝑆 | 𝑈 (𝑀) = 0}. Besides,
all nondominated feasible solutions form a Pareto-optimal set,
𝑆o. The image of the Pareto-optimal set is the Pareto front, 𝑋o =
{𝐿 (𝑀) | 𝑀 ↔ 𝑆o}. A connected component (a maximal connected
subset with respect to the inclusion order) of the feasible region
is called a feasible component, F ↓ 𝑊 .

In [13], we introduced analogous terms from the perspective
of the overall constraint violation. A local minimum-violation
solution is thus a solution 𝑀↗ for which exists a 𝑌 > 0 such
that 𝑈 (𝑀↗) → 𝑈 (𝑀) for all 𝑀 ↔ {𝑀 | 𝑍 (𝑀↗, 𝑀) → 𝑌}. If there is
no other solution 𝑀 ↔ 𝑆 for which 𝑈 (𝑀↗) > 𝑈 (𝑀), then 𝑀↗ is a

1https://vodopijaaljosa.github.io/cmop-web/
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(global) minimum-violation solution. We denoted the set of all
local minimum-violation solutions by 𝑊l and called a connected
component M ↓ 𝑊l a local minimum-violation component.

In order to express the modality of a violation landscape, we
de$ned a local search procedure to be a mapping from the search
space to the set of local minimum-violation solutions, 𝑎 : 𝑆 ↑ 𝑊l,
such that 𝑎 (𝑀) = 𝑀 for all 𝑀 ↔ 𝑊l. A basin of attraction of a local
minimum-violation componentM and local search 𝑎 is then a
subset of 𝑆 in which 𝑎 converges towards a solution from M ,
i.e., B(M) = {𝑀 ↔ 𝑆 | 𝑎 (𝑀) ↔ M}. The violation landscape is
unimodal if there is only one basin in 𝑆 andmultimodal otherwise.

3 METHODOLOGY
3.1 ELA Features
The landscape features used in this study were introduced in our
previouswork [13] and can be categorized into four groups: space-
$lling design, information content, random walk and adaptive
walk features. They are summarized in Table 1.

The space-$lling design features are used to quantify the fea-
sible components, the relationship between the objectives and
constraints, and measure the feasibility ratio and proportion of
boundary Pareto-optimal solutions. Next, the information con-
tent features are mainly used to express the smoothness and
ruggedness of violation landscapes. They are derived by ana-
lyzing the entropy of sequences of overall violation values as
obtained from a random sampling of the search space. Then, the
random walk features considered in this study are used to quan-
tify the number of boundary crossings from feasible to infeasible
regions. They are used to categorize the degree of segmentation
of the feasible region. Finally, features from the last group are
derived from adaptive walks through the search space. They are
used to describe various aspects of basins of attraction in the
violation landscapes.

3.2 Dimensionality Reduction with t-SNE
The t-SNE algorithm is a popular nonlinear dimensionality re-
duction technique designed to represent high-dimensional data
in a low-dimensional space, typically the 2-D plane [12]. First, it
converts similarities between data points to distributions. Then,
it tries to $nd a low-dimensional embedding of the points that
minimizes the divergence between the two distributions that
measure neighbor similarity—one in the original space and the
other in the projected space. This means that t-SNE tries to pre-
serve the local relationships between neighboring points, while
the global structure is generally lost.

Finding the best embedding is an optimization problem with
a non-convex $tness function. To solve it, t-SNE uses a gradient
descent method with a random starting point, which means that
di&erent runs can yield di&erent results. The output of t-SNE
depends also on other parameters, such as the perplexity (similar
to the number of nearest neighbors in other graph-based dimen-
sionality reduction techniques), early exaggeration (separation of
clusters in the embedded space) and learning rate (also called 𝑏).
The gradients can be computed exactly or estimated using the
Barnes-Hut approximation, which substantially accelerates the
method without degrading its performance [11].

4 EXPERIMENTAL SETUP
We studied eight suites of CMOPs which are most frequently
used in the literature. These are CTP [2], CF [14], C-DTLZ [5],
NCTP [7], DC-DTLZ [8], LIR-CMOP [3], DAS-CMOP [4], and

Table 1: The ELA features used to characterize CMOPs cat-
egorized into four groups: space-!lling design, informa-
tion content, random walk, and adaptive walk [13].

Space-$lling design features
𝑐F Number of feasible components
Fmin Smallest feasible component
Fmed Median feasible component
Fmax Largest feasible component
O(Fmax) Proportion of Pareto-optimal solutions in Fmax
Fopt Size of the “optimal” feasible component
𝑑F Feasibility ratio
𝑑min Minimum correlation
𝑑max Maximum correlation
𝑑𝑃𝑄𝐿 Proportion of boundary Pareto-optimal solutions
Information content features
𝑒max Maximum information content
𝑏𝑅 Settling sensitivity
𝑂0 Initial partial information
Random walk features
(𝑑𝑃𝑆 )min Minimal ratio of feasible boundary crossings
(𝑑𝑃𝑆 )med Median ratio of feasible boundary crossings
(𝑑𝑃𝑆 )max Maximal ratio of feasible boundary crossings
Adaptive walk features
𝑐B Number of basins
Bmin Smallest basin
Bmed Median basin
Bmax Largest basin
(BF)min Smallest feasible basin
(BF)med Median feasible basin
(BF)max Largest feasible basin
↘BF Proportion of feasible basins
𝑈 (B)med Median constraint violation over all basins
𝑈 (B)max Maximum constraint violation of all basins
𝑈 (Bmax) Constraint violation of Bmax
O(Bmax) Proportion of Pareto-optimal solutions in Bmax
Bopt Size of the “optimal” basin

MW[9]. In addition, we included also a novel suite named RCM [6].
In contrast to other suites which consist of arti$cial test prob-
lems, RCM contains 50 instances of real-world CMOPs based
on physical models. Note that we actually used only 11 RCM
problems, since only continuous and low-dimensional problems
were suitable for our analysis. We considered three dimensions of
the search space: 2, 3, 5. It is to be noted that large-scale CMOPs
were not taken into account since the methodology described
in Section 3 is not su%ciently scalable. This limits our results to
low-dimensional CMOPs. Table 2 shows the basic characteristics
of the studied test suites.

For dimensionality reduction, we used the t-SNE implemen-
tation from the scikit-learn Python package [10] with default
parameter values. That is, we used the Euclidean distance metric,
random initialization of the embedding, perplexity of 30, early
exaggeration of 12, learning rate of 200, the maximum number of
iterations of 1000, and the maximum number of iterations with-
out progress before aborting of 300. The gradient was computed
by the Barnes-Hut approximation with the angular size of 0.5.

5 RESULTS AND DISCUSSION
The results obtained by t-SNE are shown in Figures 1 and 2.
Speci$cally, the $gures show the 2-D embedding of the 29-D
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Table 2: Characteristics of test suites: number of problems,
dimension of the search space 𝑇 , number of objectives
𝑂 , and number of constraints 𝑅 . The characteristics of se-
lected RCM problems are shown in parentheses.

Test suite #problems 𝑇 𝑂 𝑅
CTP [2] 8 * 2 2, 3
CF [14] 10 * 2, 3 1, 2
C-DTLZ [5] 6 * * 1, *
NCTP [7] 18 * 2 1, 2
DC-DTLZ [8] 6 * * 1, *
DAS-CMOP [4] 9 * 2, 3 7, 11
LIR-CMOP [3] 14 * 2, 3 2, 3
MW [9] 14 * 2, * 1–4
RCM [6] 50 (11) 2–34 (2–5) 2–5 1–29 (1–8)
*Scalable parameter.

Figure 1: Embedding of the feature space as obtained by t-
SNE. The four regions are depicted in green, red, blue, and
orange. The points that are not contained in any region
are considered to be outliers.

feature space consisting of the landscape features presented in
Table 1. Each sub$gure in Figure 2 corresponds to one of the
test suites. For example, Figure 2a exposes the embedding of the
CTP suite in blue, while the gray points correspond to the rest
of the test suites. Points with a shape of a plus (+) correspond
to CMOPs with two variables, points with a shape of a triangle
(↭) to CMOPs with three variables, and points with a shape of a
pentagon ( ) to CMOPs with $ve variables.

An additional analysis shows that the embedding of the fea-
ture space can be, based on the corresponding characteristics,
split into four regions: green, red, blue and yellow (Figure 1).
The green region corresponds to CMOPs with severe violation
multimodality, small basins of attraction, and rugged violation
landscapes. The red region corresponds to CMOPs with mod-
erate violation multimodality, rugged violation landscapes, and
small feasibility ratios. The blue region corresponds to relatively
low violation multimodality, rugged violation landscapes, small
feasibility ratios, and positive correlations between objectives
and constraints. Finally, the yellow region corresponds to uni-
modal CMOPs with large feasible components, smooth violation
landscapes, and large feasible regions.

As we can see from Figure 2a, almost all CTP problems are
located in the orange region. Therefore, many relevant character-
istics are poorly represented by CTP, e.g., violationmultimodality,
small feasibility ratios, etc. Similarly, NCTP fails to su%ciently

represent severe multimodality since it contains no problems
from the green region (Figure 2d). On the other hand, DC-DTLZ,
LIR-CMOP, and MW are biased towards highly multimodal viola-
tion landscapes or those with small basins of attraction (Figure 2e,
Figure 2g, and Figure 2h). Nevertheless, MW is one of the most
diverse suites considering other characteristics (Figure 2h).

The C-DTLZ and DAS-CMOP suites are mainly located in the
green and orange regions and fail to su%ciently represent the
characteristics of the red and blue regions.

Finally, the results show that CF and RCM are well spread
through the whole embedded feature space (Figure 2b and Fig-
ure 2i). As we can see, they have at least one representative CMOP
instance in each region. Therefore, CF and RCM are the most
diverse test suites according to the employed landscape features.

6 CONCLUSIONS
In this paper, we analyzed the diversity of the frequently used
test suites for benchmarking optimizers in solving CMOPs. For
this purpose, we considered 29 landscape features for CMOPs
that were proposed in our previous work. In addition, the t-SNE
algorithm was used to reduce the dimensionality of the feature
space and reveal the diversity of the considered test suites.

The experimental results show that the most diverse test suites
of CMOPs according to the applied landscape features are CF and
RCM. Indeed, they include the widest variety of CMOPs with
di&erent characteristics. In addition, MW also proved to be a di-
verse suite except for unimodal CMOPs. Nevertheless, we suggest
to consider CMOPs from various test suites for benchmarking
optimizers in constrained multiobjective optimization.

One of the main limitations of our study is that only low-
dimensional CMOPs were used in the analysis. Therefore, we
were unable to adequately address the issue of scalability. For this
reason, a crucial task that needs to be addressed in the feature is
the extension of this work to large-scale CMOPs.
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