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ABSTRACT
Recently, black-box differential evolution (BBDE) has been pro-
posed to overcome the search biases and sensitivity to rotation
of the classic differential evolution (DE). To date, BBDE has been
studied only for the ‘rand’ strategy and even for this strategy, no
systematic experimental study has been published yet. In this paper
we provide such a study and further examine whether the idea
from BBDE can be extended to two other DE strategies, ‘best’ and
‘target-to-best’. We compare in detail these DE and BBDE variants
using the COCO (Comparing COntinuous Optimizers) platform to
assess their overall performance and invariance to rotation. The
results show that BBDE with the ‘rand’ strategy performs better
than the original algorithm, but this is not true for the other two
strategies. We also demonstrate that while the BBDE variants are
less sensitive to rotation than the DE variants, some sensitivity to
this transformation still persists and remains currently unexplained.
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1 INTRODUCTION
Differential Evolution is a powerful and versatile evolutionary al-
gorithm for solving continuous optimization problems [1]. For this
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reason on the one hand, and its simplicity and ease of implementa-
tion on the other hand, DE and its variants have been successfully
applied to solve numerous real-world problems from diverse do-
mains of science and engineering [7].

However, it has been observed in [9] that DE does not satisfy
the demands of black-box optimization—we say that an optimizer
satisfies the demands of black-box optimization if its performance is
invariant to translation, rotation, reflection, permutation of parame-
ters, and order-preserving transformation of the objective function.
More precisely, it has been shown that the performance of the
classic DE (the DE variant often referred to as DE/rand/1/bin and
denoted as ‘rand’ in this work) is not invariant to orthogonal rota-
tion of the coordinate system [9], which is undoubtedly a serious
drawback, since the coordinate system orientation is an arbitrary
choice. Moreover, it is evident from experiments [9] that its ex-
ploration is quite biased, e.g., toward search in a non-justifiable
direction, it favors one coordinate system orientation over another,
etc. To overcome these biases, the black-box differential evolution
has been proposed and it has been experimentally shown that BBDE
satisfies the demands of black-box optimization [9].

Nevertheless, no systematic experimental study addressing the
BBDE efficiency has been published yet. Therefore, it is not known
whether BBDE outperforms the classic DE. In addition, this idea has
been investigated only for the ‘rand’ strategy, while other variants
of DE have not yet been explored in this regard. Taking into account
the ‘no free lunch’ theorem and the extensive experimental study
presented in [11], it is evident that the performance of different
variants of DE varies over problems. For this reason, it is quite
natural to askwhat about other variants of DE. Can other variants of
DE be modified to satisfy the demands of black-box optimization as
well, andwhat is the performance of these algorithms in comparison
to their original variants?

In this study, we perform a detailed comparison between BBDE
and DE and examine whether other variants of DE can be modified
to satisfy the demands of black-box optimization. As we will see in
the following section, one of the crucial modifications in BBDE is
that the crossover operator is completely disregarded. Taking into
account this fact and the results of the experimental study from
[11], we focus on two strategies determining how new solutions
are created and mutated: ‘best’ and ‘target-to-best’.

The experiments are carried out using the COCO platform [5] on
the bbob suite [3], which contains 24 single-objective optimization
problems with diverse characteristics. Among them, two problems
(ellipsoid and Rastrigin) exist in separable and rotated variants en-
abling the study of algorithms’ sensitivity to rotation. The rest of
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Algorithm 1 DE
Input: population size and stopping criterion;
Output: population P of solutions;
1: create the initial population P of random solutions;
2: evaluate the solutions in P;
3: while stopping criterion not met do
4: Pnew ← ∅;
5: for all p ∈ P do
6: create a trial vector ptrial;
7: ensure feasibility of ptrial;
8: evaluate ptrial;
9: if ptrial is better than p then
10: p ← ptrial;
11: end if
12: Pnew ← Pnew ∪ {p};
13: end for
14: P← Pnew;
15: end while
16: return P;

this paper is organized as follows. Section 2 introduces the algo-
rithms used in our study. Section 3 is dedicated to the experimental
setup, while the results are discussed in Section 4. The conclusions
are summarized in Section 5.

2 METHODS
This section presents the algorithms used in this study. After intro-
ducing the general form of the DE algorithm, we discuss the three
chosen DE variants together with their BBDE modifications.

2.1 The DE Algorithm
Like other population-based methods, DE begins with a randomly
created population of solutions P. In each iteration, for each solution
p ∈ P named target vector, DE creates a trial vector ptrial. These
two vectors are then compared and the better one is selected as a
member for the new population. The DE pseudocode is shown in
Algorithm 1. All the algorithms studied in this paper follow this
structure and differ only in the creation of the trial vector (Line 6
in Algorithm 1).

In this study, we bound the decision space by predefined box
constraints and it can happen that the trial vector violates them. For
this reason, we include a simple constraint handling technique that
ensures the feasibility of ptrial (Line 7 in Algorithm 1) as follows.
Any component of the trial vector that violates the box constraints
is replaced with a randomly selected feasible value.

2.2 The ‘rand’ Strategy
The DE strategy DE/rand/1/bin, also called classic DE and denoted
with DE/rand in the remainder of this paper, is arguably the most
popular DE variant. It creates the trial vector as follows. First, three
pairwise different solutions p0,p1,p2 are selected from P − {p},
where p0 is named base vector. Second, the trial vector is initialized
asptrial = p0+F (p1−p2), where F , named scaling factor, is an apriori
selected positive real number fixed over the entire run. Finally,
the trial vector is altered by crossover with the target vector. The

Algorithm 2 Trial vector creation by DE/rand
Input: population P and target vector p ∈ P;
Output: trial vector ptrial;
1: randomly select three pairwise different solutions
p0,p1,p2 ∈ P − {p};

2: create a trial vector ptrial = p0 + F · (p1 − p2);
3: alter ptrial by crossover with p;
4: return ptrial;

Algorithm 3 Trial vector creation by BBDE
Input: population P and target vector p ∈ P;
Output: trial vector ptrial;
1: randomly select two different solutions p1,p2 ∈ P;
2: sample a scaling factor F from XF ∼ exp(N(0, 1));
3: create a trial vector ptrial = p + F · (p1 − p2);
4: return ptrial;

Algorithm 4 Trial vector creation by BBDE-N
Input: population P and target vector p ∈ P;
Output: trial vector ptrial;
1: randomly select two different solutions p1,p2 ∈ P;
2: sample a scaling factor F from XF ∼ exp(N(0, 1))/

√
D;

3: create a trial vector ptrial = p + F · (p1 − p2);
4: return ptrial;

pseudocode describing the creation of trial vectors is shown in
Algorithm 2.

From the perspective of black-box optimization demands, there
are two main concerns about DE/rand—its asymmetrical explo-
ration and the bias for separable directions brought by crossover
with the target vector. The first concern is that the exploration of
DE/rand is not symmetrically distributed around the target vector
for target vectors that are far away from the center of the pop-
ulation. To overcome this drawback, in BBDE the base vector is
always equal to the target vector, and the two selected solutions
p1,p2 do not have to be different fromp. This ensures symmetrically
distributed exploration around the target vector (for more informa-
tion see [9]). The second concern is that the crossover operator in
DE imposes a search bias for separable directions. For this reason,
BBDE uses no crossover. In addition, in BBDE the scaling factor F
is sampled for each solution in each iteration, thus it is not fixed
over the entire run. The pseudocode describing how BBDE creates
the trial vector is shown in Algorithm 3.

The distribution XF in Line 2 of Algorithm 3 can have different
forms. Originally, the author of BBDE proposed to use a log-normal
distribution XF ∼ exp(N(0, 1)). However, in [10] the same author
observed that a normalization of the scaling factor based on the
dimension of the decision space (denoted in this paper by D) XF ∼

exp(N(0, 1))/
√
D improved the algorithm performance. We will

refer to this special case of BBDE as BBDE-N. Its pseudocode is
shown in Algorithm 4.
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Algorithm 5 Trial vector creation by DE/best
Input: population P and target vector p ∈ P;
Output: trial vector ptrial;
1: randomly select two different solutions p1,p2 ∈ P − {p};
2: create a trial vector ptrial = pbest + F · (p1 − p2);
3: alter ptrial by crossover with p;
4: return ptrial;

Algorithm 6 Trial vector creation by BBDE/best
Input: population P and target vector p ∈ P;
Output: trial vector ptrial;
1: randomly select two different solutions p1,p2 ∈ P;
2: sample a scaling factor F from XF ∼ exp(N(0, 1));
3: create a trial vector ptrial = pbest + F · (p1 − p2);
4: return ptrial;

2.3 The ‘best’ Strategy
The ‘best’ strategy differs from the ‘rand’ strategy in the selection
of the base vector. Unlike in the ‘rand’ strategy, where the base
vector is selected at random, the ‘best’ strategy always selects the
best-so-far solution pbest as the base vector. We will refer to this
variant of DE as DE/best. The pseudocode describing the creation
of the trial vector is shown in Algorithm 5.

The modification toward the demands of black-box optimization
in this case is very similar to that in the case of the ‘rand’ strat-
egy. We remove crossover, since it forces the algorithm to explore
in separable directions. However, we do not wish to remove the
preference for exploring around the best-so-far solution as this
is a feature of the ‘best’ strategy. Given that other solutions are
obviously worse than the best-so-far solution, this bias is justifi-
able. For example, experiments show [11] that it can improve the
algorithm performance on many optimization problems. Next, in
this modification the base vector is always equal to the best-so-far
solution, but the two selected vectors p1 and p2 do not have to be
different from p. Finally, the scaling factor is sampled from a given
distribution XF ∼ exp(N(0, 1)). We will refer to this algorithm as
BBDE/best. The pseudocode describing how BBDE/best creates the
trial vector is shown in Algorithm 6.

2.4 The ‘target-to-best’ Strategy
Similarly to the ‘best’ strategy, the ‘target-to-best’ strategy takes
into account the information of the best-so-far solution. This time,
however, the trial vector is created so that it lies on a line between
the target vector and the best-so-far solution. To achieve this, the
base vector and p2 are equal to the target vector, while p1 is equal
to the best-so-far solution. The pseudocode describing the creation
of the trial vectors is shown in Algorithm 7.

The modification toward satisfying the black-box optimization
demands is quite similar as before. The crossover is removed, and
the scaling factor is sampled from XF ∼ exp(N(0, 1)). To make
the algorithm even less biased, we remove the constraint that the
trial vector lies on a line between the target vector and the best-
so-far solution. Therefore, p2 is not equal to the target vector, but
to a randomly selected solution different from pbest. In this way,

Algorithm 7 Trial vector creation by DE/target-to-best
Input: population P and target vector p ∈ P;
Output: trial vector ptrial;
1: create a trial vector ptrial = p + F · (pbest − p);
2: alter ptrial by crossover with p;
3: return ptrial;

Algorithm 8 Trial vector creation by BBDE/target-to-best
Input: population P and target vector p ∈ P;
Output: trial vector ptrial;
1: randomly select a solution p2 ∈ P − {pbest};
2: sample a scaling factor F from XF ∼ exp(N(0, 1));
3: create a trial vector ptrial = p + F · (pbest − p2);
4: return ptrial;

the exploration of the algorithm is more flexible. For example, if
the best-so-far solution is close to the center of the population, the
exploration is almost unbiased and very similar to that of BBDE. On
the other hand, if the best-so-far solution is far from the population
center, the algorithm pushes the whole population toward the best-
so-far solution, but as soon as the population reaches this solution—
which is now close to the center of the population—the search
explores near the best-so-far solution in an ‘unbiased’ way. Thus, we
can say that this variant of BBDE adapts its bias in a ‘self-adaptive’
fashion. We will refer to this variant of BBDE as BBDE/target-to-
best. The pseudocode describing how BBDE/target-to-best creates
the trial vector is shown in Algorithm 8.

3 EXPERIMENTAL SETUP
3.1 The COCO Platform
The experiments were performed using COCO, a platform for sys-
tematic and sound comparisons of real-parameter global optimizers
[5]. COCO provides benchmark function testbeds, experimentation
templates, and tools for processing and visualizing data gener-
ated by one or several optimizers. Its performance assessment is
based on the runtime (measured in the number of objective func-
tion evaluations) needed to reach specific targets [4]. A target is
the absolute difference in the objective function value between
the known optimal solution and the best-so-far solution found
by the algorithm. We use COCO’s default target values of 10i for
i ∈ {−8,−7.8, . . . , 1.8, 2}.

The suite of problems used in our study was the bbob suite from
2017, which contains twenty-four noiseless single-objective opti-
mization problems without explicit constraints in fifteen instances
and six dimensions of the decision space (2, 3, 5, 10, 20, 40). The
bbob suite consists of five groups of problems: separable problems,
problems with low or moderate conditioning, problems with high
conditioning and unimodal, multi-modal problems with adequate
global structure, and multi-modal problems with weak global struc-
ture [3].

To assess the overall performance of the algorithms presented
in the previous section, all 24 problems from the bbob suite are
used. In addition, to investigate the invariance to rotation and the
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importance of separability, we use ellipsoid and Rastrigin prob-
lems. There are two variants of ellipsoid problem. The first variant
(f2) is a separable ellipsoid problem where its principle axes are
aligned with the coordinate axes. The second variant is a rotated
ellipsoid problem (f10), therefore, no longer aligned with the co-
ordinate system orientation. Similarly to ellipsoid problem there
are two variants of Rastrigin problem a highly multimodal opti-
mization problem. The first one is a separable variant (f3), which
has a very regular and symmetric structure. The second variant
(f15) is transformed—rotation included—in order to alleviate this
symmetry and regularity (see [3] for more details). Clearly, this
variant of Rastrigin problem is no longer separable.

3.2 Parameter Settings
In all the experiments, the decision spacewas boundedwith [−5, 5]D
and the population size was equal to 15D. The crossover probabil-
ity CR was set to 0.7 and the scaling factor to 0.5 for all original
algorithms: DE/rand, DE/best, and DE/target-to-best. Finally, each
algorithm run was stopped when the following criterion was met:
The final target (10−8) was reached or 5 · 105D evaluations were
performed and the last population was completed.

3.3 Implementations
All the algorithms were implemented in Python 2.7 [12]. The SciPy
[6] implementation of DE was used for all variants of DE, while all
variants of BBDE were implemented by ourselves mimicking the
classic DE implementation from SciPy. In addition, the experiments
and the plots were produced with COCO version 2.2.1.

4 RESULTS
In this section, we present the results obtained while experimenting
with the presented algorithms. Like Section 2, this section is also
divided based on the strategies used. The results are presented as
empirical cumulative distribution function (ECDF) of simulated
runtimes. The ECDF displays the proportion of problems solved
within a specified budget aggregated over all problem instances [4].

For each strategywe first discuss the overall results where ECDFs
are additionally aggregated over all problems of the same dimension.
Then, we address the question about invariance to rotation and
separability. This is done by comparing the ellipsoid problem and
Rastrigin problem presented in Section 3.1. Here, we present the
results only for dimensions 10 and 20, since the differences are not
perceptible for other dimensions.

In addition, the results include a comparison with four DE vari-
ants that were tested on the bbob suite in the past: DEuniform [2],
DE [8], DEAE [8], and R-DE-10e5 [13]. The performance of these
algorithms is shown in the background of the ECDF plots in gray.

4.1 The ‘rand’ Strategy
In the initial set of experiments, we compared DE/rand, BBDE, and
BBDE-N. The results are shown in Figure 1.

For small dimensions of the decision space (2, 3, 5), the DE/rand
variant performs better than BBDE and there are almost no dif-
ferences between BBDE and BBDE-N. This is probably because
the normalization is proportional to the square of the dimension.
Thus, the scaling factor does not change significantly for small

dimensions, since the denominator (
√
D) in the normalization is

close to one. In contrast, BBDE-N performs significantly better than
DE/rand and BBDE for high dimensions (10, 20, 40).

Figure 2 shows that the performance of DE/rand is highly corre-
lated with the chosen coordinate system orientation. For example,
the algorithm cannot reach even the first target (102) on the rotated
ellipsoid problem of dimension 20, while it solves the separable
version of this problem. In contrast, BBDE and BBDE-N are almost
invariant to rotation on the ellipsoid problem. While BBDE-N is
able to solve both ellipsoid problems for dimensions 10 and 20, it
needs around 17% more evaluations to do so for the rotated prob-
lems (this is not easily visible from the plots due to the logarithmic
scale of the x axis). Similarly holds for BBDE, but because it’s worse
than BBDE-N, the differences in its performance on the separable
and rotated ellipsoid are easier to see (especially for dimension 20).
Analogous results were achieved also on the two Rastrigin prob-
lems. These findings do not corroborate the invariance to rotation
of BBDE as shown in [9]. Given that the mechanisms used in BBDE
and BBDE-N seem invariant to rotation, it is unclear what causes
this mild but persisting sensitivity to this transformation.

4.2 The ‘best’ Strategy
Next, we performed the experiments comparingDE/best and BBDE/-
best. The results are presented in the same form as before and shown
in Figure 3.

We can observe that there are no significant differences between
the two algorithms for dimensions 2 and 3, and that DE/best per-
forms significantly better on high dimensions (10, 20, 40) for large
number of evaluations.

From Figure 4 it is evident that BBDE/best is less sensitive to
rotation than DE/best. However, as shown by the results on the
ellipsoid problems, some sensitivity to rotation is still present.

4.3 The ‘target-to-best’ Strategy
Finally, we compared the strategies DE/target-to-best and BBDE/-
target-to-best. The results are presented in the same form as before
and shown in Figure 5. As we can see, the strategy DE/target-to-best
generally performs better than BBDE/target-to-best.

Figure 6 shows that while DE/target-to-best is highly sensitive
to rotation, the performance of BBDE/target-to-best is very similar
on separable and rotated problems (the differences are sometimes
difficult to see from the plots).

5 CONCLUSIONS
In this paper, we compared three variants of DE and their modifica-
tions to meet the demands of black-box optimization. To assess the
overall performance and the invariance to rotation, we used the
COCO platform and the bbob test suite.

We have seen that modifying the ‘rand’ strategy can improve
its general performance, while the modifications for the ‘best‘ and
‘target-to-best‘ strategies have shownworse results in general. How-
ever, the comparisons on separable and rotated variants of the same
problems have demonstrated that the modifications are, for the
most part, invariant to rotation. Further work is needed to explain
the remaining sensibility to rotation.
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Figure 1: ECDFs of simulated (bootstrapped) runtimes of the ‘rand’ strategy for different problem dimensions (see Section 3.1
for more details), where the yellow line represents DE/rand, the purple line represents BBDE-N, and the blue line represents
BBDE.
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Figure 2: ECDFs of simulated (bootstrapped) runtimes of the ‘rand’ strategy for selected functions and dimensions 10 and 20
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Figure 3: ECDFs of simulated (bootstrapped) runtimes of the ‘best’ strategy for different problem dimensions (see Section 3.1
for more details), where the purple line represents DE/best, and the blue line represents BBDE/best.
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Figure 4: ECDFs of simulated (bootstrapped) runtimes of the ‘best’ strategy for selected functions and dimensions 10 and 20
(see Section 3.1 for more details), where the purple line represents DE/best and the blue line represents BBDE/best. The top
four plots show results on separable versions of the ellipsoid and Rastrigin problems (functions f2 and f3), while the bottom
four plots present the results on the rotated versions of these problems (functions f10 and f15).
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Figure 5: ECDFs of simulated (bootstrapped) runtimes of the ‘target-to-best’ strategy for different problem dimensions (see
Section 3.1 for more details), where the purple line represents DE/target-to-best, and the blue line represents BBDE/target-to-
best.
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Figure 6: ECDFs of simulated (bootstrapped) runtimes of the ‘target-to-best’ strategy for selected functions and dimensions
10 and 20 (see Section 3.1 for more details), where the purple line represents DE/target-to-best and the blue line represents
BBDE/target-to-best. The top four plots show results on separable versions of the ellipsoid and Rastrigin problems (functions
f2 and f3), while the bottom four plots present the results on the rotated versions of these problems (functions f10 and f15).
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Further experiments are also necessary to establish whether the
‘best‘ and ‘target-to-best‘ strategies can (or cannot) be modified
so that they satisfy the demands of black-box optimization and at
the same time improve the performance. For example, one could
investigate whether an approach similar to the normalization used
in BBDE-N could be used for these variants as well. In addition,
there are several differences between DE and BBDE. Thus, it is
not evident which differences are important and which are not,
since here we make a comparison of algorithms in a general sense.
Although it seems that the omission of crossover is the most influ-
ential modification, a more detailed investigation would be needed
to confirm this.
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