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Abstract. Understanding the various characteristics of multiobjective
optimization problems (MOPs) is crucial for designing and configuring
optimization algorithms to efficiently solve them. This paper introduces
a method that uses the estimation of local correlation between objec-
tives to transform MOP landscapes into single-objective problem (SOP)
landscapes. With this transformation, we make it possible to apply SOP
landscape features to MOPs, thereby extracting valuable information
about problem properties, such as modality. Our approach integrates
both sample-based and search-based features, which are assessed for their
ability to distinguish between unimodal, moderately multimodal, and
highly multimodal MOPs. The proposed method is validated through a
two-phase experimental setup. In the first phase, we select features that
can reliably identify problem modality under ideal conditions with abun-
dant data. The second phase evaluates their performance in more realis-
tic scenarios with smaller samples and higher problem dimensions. The
results show that features computed on the local correlation landscape
achieve comparable or better performance than existing MOP features.
These findings demonstrate the capability of SOP features to generalize
to MOPs, showcasing their potential for characterizing MOP landscapes
and inspiring future research on extending this approach to uncover addi-
tional problem properties.

Keywords: Multiobjective optimization · Correlation between
objectives · Landscape features · Problem modality

1 Introduction

The efficiency of an optimization algorithm highly depends on the properties of
the problem it is employed to solve. Being able to describe an optimization prob-
lem in terms of its characteristics, such as modality and separability, is therefore
valuable as it enables one to choose and/or configure an algorithm to efficiently
solve it. This work is concerned with continuous black-box multiobjective opti-
mization problems, for which the objective function definitions are unknown to the
optimizer. Because of this, most black-box problem properties are hard to detect.
One way to assess them is by sampling the problem and using these solutions to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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compute problem landscape features, low-level numerical attributes that can be
used to successfully predict certain high-level problem properties [22].

However, most research on landscape features is focused on Single-objective
Optimization Problems (SOPs; see [11] for a collection of many works propos-
ing such features), while Multiobjective Optimization Problems (MOPs) have
received much less attention. A notable exception is a fairly recent paper propos-
ing features for continuous (unconstrained) MOP landscapes [17]. Because of this
gap, it would be particularly beneficial to be able to apply the many SOP fea-
tures to MOP landscapes, thus acquiring additional features to further character-
ize MOPs.

There are several ways in which the landscape of a continuous MOP can be
reduced to a single function and, therefore, viewed similarly to that of a continuous
SOP—imagined as a terrain with peaks, basins, valleys and plateaus. Examples
include the global dominance rank ratio [7], local dominance [6], optimal trade-
offs [30], gradient length [4,10], local correlation [3] and Pareto [15] landscapes.
We base our work on the recent local correlation landscapes due to their close tie
to problem modality and the interpretability of the correlation coefficient values.

The main idea of this paper is thus to use a sample of solutions to con-
struct an approximate local correlation landscape of an MOP and then apply
‘single-objective’ Exploratory Landscape Analysis (ELA) [22] to compute its fea-
tures. As the local correlation landscape is highly related to problem modality,
we devise two experiments, testing whether the resulting features are able to
express this important problem property and compare their performance to that
of existing MOP features from [17].

In the following, Sect. 2 presents some basic concepts, the local correlation
landscapes and problem landscape features, while Sect. 3 explains how they are
used to extract problem modality features. Next, Sect. 4 details the experimental
evaluation of our approach and Sect. 5 concludes the paper with a summary and
ideas for future work.

2 Background

2.1 Multiobjective Optimization Problems

We are interested in continuous multiobjective minimization problems that can
be formally defined as:

min
x∈Rd

F (x) = (f1(x), f2(x), . . . , fm(x)),

where R
d is the search space, d is the problem dimension, and fi, i ∈ {1, . . . ,m},

are the m objective functions.
Solution x ∈ R

d dominates solution y ∈ R
d, iff fi(x) ≤ fi(y) for all i ∈

{1, . . . ,m} and at least one of these inequalities is strict. Solutions which are
not dominated by any other solution in the search space are Pareto optimal.
All Pareto optimal solutions constitute the Pareto set. Its image in the objective
space R

m is called the Pareto front.
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A solution x ∈ R
d is locally optimal if it is not dominated by any other

solution from its neighborhood N , x ∈ N ⊂ R
d. If any locally optimal solution

is also Pareto optimal, the problem in unimodal. Otherwise, it is multimodal.
In the remainder of the paper, we will be dealing with bi-objective problems,

that is, m = 2 for all problems.

2.2 Local Correlation Landscapes

The concept that differentiates MOPs from SOPs is not the mere presence of
multiple objectives, but the fact that they are typically in conflict, resulting
in MOPs having multiple Pareto optimal trade-off solutions. In contrast, if the
objectives would be in perfect harmony, i.e., completely equal, the MOP would
be equivalent to the corresponding SOP. Therefore, when dealing with MOPs,
we usually assume that they have conflicting objectives.

However, the conflict between two objectives exists primarily on the locally
optimal sets and their ‘vicinity’, not the entire search space. In fact, it is a local
problem property, not a global one, which is often ignored or disregarded.

To explain its local nature, we first need to formalize the relationship between
two objectives. We can do this by considering their correlation. The correlation
between two objectives can be estimated by the Pearson correlation coefficient
[29], which measures the linear correlation between the objectives of a sample of
solutions and takes a value between −1 (perfect linear anti-correlation that corre-
sponds to conflicted objectives) and 1 (perfect linear correlation that corresponds
to harmonious objectives). A zero value implies there is no linear dependency
between the objectives, i.e., the objectives are neither conflicted nor in harmony.

Consider the simple example of the two-dimensional double sphere problem
presented in Fig. 1. This is a bi-objective problem defined on the search space
[−5, 5]2, where each objective is a sphere function with the optimum located at
a different point in the search space. The Pareto set of this function is the line
segment connecting the two single-objective optima (shown in black1 in Fig. 1a).
The Pearson correlation coefficient visualized in Fig. 1b is computed for each
grid point from a set of 100 solutions in its close proximity (see [3] for more
details).

We can see that the Pearson correlation coefficient between the two objectives
depends on the position in the search space. The correlation values along the
Pareto set equal −1. This is to be expected as on the Pareto set, one cannot
improve in one objective without deteriorating in the other. With increasing
distance from the Pareto set in a direction perpendicular to it, the correlation
coefficient increases, eventually becoming positive. On the parts of the line with
the two single-objective optima that go beyond the Pareto set, the correlation
coefficient takes on the value of 1, which is again understandable since at that
location, a move in the direction toward the Pareto set results in simultaneous
improvement in both objectives.

1 Note that the black region in the plot is thicker than a line because of the discretiza-
tion of the search space into a 501 × 501 grid for visualization purposes.
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Fig. 1. Two grid-based visualizations of the search space of the first instance of the 2-D
double sphere problem F1 from the bbob-biobj suite [4] of the COCO platform [8].

To summarize, even for a simple unimodal problem such as the one from
Fig. 1, the correlation between objectives is not constant, but depends on the
position in the search space. On the Pareto set and in certain regions that are
close to it, the correlation is negative, in others, it is zero or positive.

The relationship between objectives becomes even more complex when they
are less regular or multimodal—see the examples from Fig. 2 in Sect. 4. There,
we can see that some unimodal problems have anti-correlated objectives not only
close to the Pareto set, but also far away from it. Additionally, visualizations
of local correlations on multimodal problems demonstrate that many distinct
anti-correlated regions can be located throughout the search space, surrounded
by regions with correlated objectives.

The correlation between objectives is closely connected to problem modality
and to the bi-objective gradient [10] as it equals −1 on any locally optimal set of
solutions, not just the Pareto set. This is why the plots of multimodal problems in
Fig. 2 contain many distinct regions with a negative correlation—one per locally
optimal set of solutions.

Although these examples demonstrate that the concept of a ‘global corre-
lation between objectives’ is effectively meaningless, the relationships between
the objectives, as well as their mutual correlations, are almost always discussed
solely on the global scale. Even a recently published book chapter [5] that pro-
vides an overview of the use of correlations among objectives in multiobjective
optimization, explores several ways of estimating correlation in addition to the
Pearson correlation coefficient and reviews the use of correlations for reducing
redundant objectives, does not address their local nature. Similarly holds for the
MOP feature f cor from [17], which equals the (Spearman) correlation among
objective values and is measured on the entire sample, i.e., is treated globally.
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The local correlation landscape, therefore, provides an insightful view of the
problem that is worth further exploration. However, this is a limited view as it
does not contain enough information by itself to infer whether a locally optimal
solution is also Pareto optimal. This is why any features computed solely from the
local correlation landscape can meaningfully characterize only certain problem
features, like (but not necessarily limited to) modality.

2.3 Problem Landscape Features

Most problem landscape features require only a set of solutions, called a sample,
to be computed. Typically, the sample is generated with a procedure that tries
to evenly cover the search space, such as Latin Hypercube Sampling (LHS) [21],
and is evaluated beforehand. We will call such features sample-based features.
However, there are also other problem features that require additional solu-
tion evaluations to be computed. For example, they can be based on a random
walk [20], a hill climber run [1] or basin hopping iterations [2], to name a few. We
will refer to these as search-based features. In real-world optimization scenarios,
especially those with time-consuming evaluations, the latter might not always
be retrievable. In this work, we use both sample- and search-based features, but
only those search-based ones for which we can limit the number of additional
evaluations.

The set of considered SOP features thus includes a total of 117 features that
can be categorized into the following groups: dispersion features [19], classical
ELA features (convexity, y-distribution, levelset, and meta model features) [22],
fitness distance correlation features [9,24], cell mapping features (angle, convex-
ity and gradient homogeneity features) [12], information content features [25],
gradient features [20], nearest better clustering features [13], length-scale fea-
tures [23], linear model features [14], and principal component features [14]. Of
these, only the ELA convexity features, the gradient features and the length-scale
features (with a total of 18) are search-based, the rest (99) are sample-based.
All SOP features were computed with the pflacco Python library [27,28].

The set of MOP features used in the comparison comprises the 49 features
from [17], which include global landscape features (among them, the global cor-
relation between objectives), multimodality features, evolvability features and
ruggedness features. All features are sample-based and were computed with the
freely available features.R R script [16,17].

3 Detecting Problem Modality

The basic idea of this paper is to test whether features computed on the local
correlation landscape can be used to detect problem modality. This is essentially
done in three steps:

1. Approximate the local correlation landscape of the problem.
2. Compute SOP features of this landscape.
3. Measure the feature success in detecting problem modality.
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Step 1: Approximating the Local Correlation Landscape. The execution
of this step depends on the type of features—whether they are sample- or search-
based, since search-based features guide the choice of solutions in the sample.

For sample-based features, the sample of solutions is retrieved independently
from the features. This is done using LHS. Since we are interested in the local
correlation of objectives, we need to define the neighborhood of solutions. For
each solution in the sample, the neighborhood is comprised of n closest solutions
to it, in terms of the Euclidean distance. This always includes the solution itself.
The local correlation between objectives at each solution is then estimated by
computing the Pearson correlation coefficient using the objective values for all
solutions in its neighborhood.

Because search-based features use some inherent procedure to select the solu-
tions to be evaluated, we cannot build the entire local correlation landscape
upfront. Therefore, we first take a small ratio of the entire sample size s to
produce an initial sample of solutions using LHS. Then, we construct the ini-
tial local correlation landscape using the same neighborhood definition as for
sample-based features. Next, we let the search-based feature guide the choice of
the subsequent solutions. For each, we find its current n closest neighbors and
use them to approximate its local correlation value with the Pearson correlation
coefficient. Note that the estimation of the local correlation for search-based fea-
tures is less accurate at the beginning (when only a few solutions are available)
than at the end.

Step 2: Computing Landscape Features. This step is straightforward—it
requires computing the SOP feature values using the local correlation landscape
instead of an objective landscape.

Step 3: Measuring Feature Success. Finally, feature success is measured
by determining whether the feature can successfully differentiate between three
groups of problems: unimodal, moderately multimodal and highly multimodal
ones. We use clustering for this, because we are interested in the prediction
capabilities of the feature. First, feature values are clustered into three clusters
by k-means clustering with a fixed k = 3 [18,26]. Then, we count the errors—
number of problems that have not been clustered correctly2. The lower the error,
the better the feature in detecting problem modality.

4 Experiments and Results

In this section we first explain the various problems used in the experiments.
Then we present the two experiments and their results.
2 This is not trivial to do because there is no fixed order in how k-means labels clusters

and feature values can be increasing or decreasing with increasing problem modality.
Therefore, we check all possible 23 orderings of the three clusters and use the one
with the smallest error count.
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Many of the features listed in Sect. 2.3 are not useful for detecting problem
modality, which could diminish the predictive capability of the entire set of fea-
tures. To avoid this, we split the study into two parts. In the first experiment,
we identify individual features that are able to differentiate well between uni-
modal, moderately multimodal and highly multimodal problems when given a
lot of data at their disposal. Then, in the second experiment, we use only these
features to more comprehensively test their capabilities in a real-world-like sce-
nario with less available data. Before detailing the two experiments, we present
the problems used in both of them.

4.1 Problems

To test our idea, we need a selection of problems with diverse modality. While we
first planned to use only problems from the bbob-biobj suite [4] of the COCO
platform [8], they do not cover the modality range well enough, as they are either
unimodal or highly multimodal. To fill this gap, we construct the moderately
multimodal problems ourselves.

The set of moderately multimodal problems are Python implementations of
Wessing’s Multiple Peaks Model problems [31], here labeled multi-peak prob-
lems. For each objective, a multiple peak function is generated by taking the
minimum value of a set of individual peak functions. Each individual peak func-
tion consists of a center point and a positive definite Hessian matrix. The sepa-
rate problems within the set were generated by randomly configuring these cen-
ter and matrix settings. The number of peaks per objective, however, were set
manually, to provide different degrees of modality within the moderate range.
The degree of modality is determined by the combinations of peaks between
objectives, which each provide a basin of attraction.

Table 1 presents the 15 problems selected for this study. P1–P5 are unimodal
bbob-biobj problems, P6–P10 are moderately mutimodal multi-peak problems
and P11–P15 are highly multimodal bbob-biobj problems. While all problems
can be instantiated in any dimension, d ∈ {2, 3, 5, 10} is used in this work. The
local correlation landscapes for all 15 2-D problems are shown in Fig. 2.

We can see that the multi-peak problems indeed represent the middle ground
between the unimodal and highly multimodal bbob-biobj problems. We can also
hypothesize that among all problems, P14 might be the hardest to categorize
correctly, as its local optima are located in a relatively small region of the entire
search space, which can be easily overlooked, especially with sparse sampling.

4.2 First Experiment

Experimental Setup. To find features with a potential for detecting problem
modality, we simplify the task as much as possible. We use only 2-D problems
and provide a large budget of s = 10 000 solutions to compute the features. For
sample-based features, all solutions are placed on the 100 × 100 grid, while for
search-based features, the initial grid contains 32 × 32 solutions (which roughly
equals 10% of the budget s) and the rest is made available to the method to
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Fig. 2. Local correlation landscapes calculated with the Pearson correlation coefficient
for 2-D unimodal problems P1–P5 (left column), moderately multimodal problems P6–
P10 (middle column) and highly multimodal problems P11–P15 (right column). Red
areas denote regions with negatively correlated objectives, while blue areas designate
regions with positively correlated objectives.
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Table 1. The 15 problems employed in this study. We always use only the first instance
of a bbob-biobj problem. For multi-peak problems, the two numbers in brackets deter-
mine the number of peaks in the first and second objective.

Unimodal problems

P1 bbob-biobj problem F1 = (f1, f1)

P2 bbob-biobj problem F14 = (f2, f13)

P3 bbob-biobj problem F36 = (f13, f14)

P4 bbob-biobj problem F41 = (f14, f14)

P5 bbob-biobj problem F58 = (f1, f5)

Moderately multimodal problems

P6 multi-peak problem with (2, 5) peaks

P7 multi-peak problem with (2, 10) peaks

P8 multi-peak problem with (4, 4) peaks

P9 multi-peak problem with (4, 8) peaks

P10 multi-peak problem with (6, 6) peaks

Highly multimodal problems

P11 bbob-biobj problem F10 = (f1, f21)

P12 bbob-biobj problem F17 = (f2, f17)

P13 bbob-biobj problem F24 = (f6, f15)

P14 bbob-biobj problem F33 = (f8, f20)

P15 bbob-biobj problem F55 = (f21, f21)

With fi we denote a single-objective bbob function as follows:

f1 sphere f8 original Rosenbrock f17 Schaffers F7

f2 ellipsoidal f13 sharp ridge f20 Schwefel

f5 linear slope f14 different powers f21 Gallaghers Gaussian

f6 attractive sector f15 Rastrigin 101-medium peaks

sample the space according to its principle. In both cases, the neighborhood size
n equals 9, which corresponds to the Moore neighborhood for the internal grid
solutions.

Results and Discussion. In this experiment, we apply k-means clustering sep-
arately for each feature. The number of clustering errors committed on the 15
problems ranges from one to ten and is collected for all features in the histogram in
Fig. 3a. The colors distinguish among features of the three different types (search-
and sample-based SOP features, and MOP features). We can see that the distri-
bution over error counts is roughly similar for all feature types with most features
performing very badly (making six or more mistakes on 15 problems). Among the
best features (making less than five mistakes) we have 22% of all sample-based
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Fig. 3. Results of the first experiment applying k-means clustering separately for each
feature.

Table 2. The errors of the best SOP features computed on the local correlation land-
scape with 10 000 sampled solutions. There are 24 features with a clustering error lower
than five. The only two search-based features are denoted by an asterisk (*), while the
rest of them are sample-based.

Feature ErrorFeature Error

cm angle.y ratio best2worst mean1 cm angle.dist ctr2worst mean3

cm grad.mean 1 cm angle.dist ctr2worst sd 3

nbc.nb fitness.cor 1 cm conv.convex.hard 3

nbc.nn nb.mean ratio 1 disp.diff median 02 3

cm angle.angle mean 2 disp.ratio median 02 3

cm conv.concave.hard 2 *ela conv.lin dev abs 3

*gradient.g avg 2 ic.eps s 3

ic.costs runtime 2 disp.diff median 05 4

ic.eps ratio 2 disp.ratio median 05 4

limo.length mean 2 ela level.mmce qda 50 4

cm angle.dist ctr2best mean 3 ic.eps max 4

cm angle.dist ctr2best sd 3 ic.h max 4

SOP features, 11% of all search-based SOP features and 14% of all MOP features.
We set the threshold for ‘good’ features to four or fewer to discard features which
clearly cannot distinguish among problems of different modality even when pro-
vided with plenty of data, but still keep enough to experiment with.

The complete list of the best 24 SOP features is given in Table 2. We can see
that they come from various groups, with cell mapping, nearest better clustering,
information content and dispersion features being the most well represented.
These results are very positive as they show that we have a large number of SOP
features that can be applied on local correlation landscapes to detect problem
modality.
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Fig. 4. Feature values (on the y-axis) for all 2-D problems (on the x-axis) computed
on samples with 10 000 solutions for a selection of MOP features that is comprised by
all seven features with an error smaller than five, all multimodal features (denoted by
‘(MM)’ after their name) and the correlation feature f cor. The features are sorted in
ascending order of their error. The color of the dots represents the cluster determined
by k-means and a red cross denotes every incorrectly categorized problem.
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Next, the results for some chosen MOP features are presented in greater
detail in Fig. 4. Every plot contains dots showing the feature value (y-axis) on
each of the 15 problems (x-axis). Their colors denote the cluster assigned to
that problem by k-means, while the red crosses represent wrongly categorized
problems. This visualization comprises all seven MOP features with an error
smaller than five, all nine multimodal (MM) features and the feature f cor
measuring correlation between objectives. The features are sorted in ascending
error count. We see that only two of the nine multimodal features make less
than five errors on 15 problems when detecting their modality and five other
features outperform the rest of the multimodal ones. Also, we empirically show
that the global correlation feature has very little meaning (see the first plot of
the fourth row in Fig. 4). According to f cor, most of the 15 problems have
mildly correlated objectives (values between 0 and 0.5), with P13 being the only
problem with highly anti-correlated objectives, which is incorrect.

Finally, Fig. 3b shows which of the problems were most often wrongly clus-
tered by the 31 best features. We see a clear outlier—problem P14 that stands
out from other highly multimodal problems in our set because its local optima
are concentrated in a relatively small part of the search space.

4.3 Second Experiment
Experimental Setup. Only the 31 best features identified in the first experi-
ment are included in the second part of this study. Here, we investigate how larger
problem dimensions d ∈ {2, 3, 5, 10} and smaller sample sizes s ∈ {200d, 1000d}
affect the capability of features to detect problem modality. In addition, to find
a good neighborhood size n, we experiment with two settings, n ∈ {5, 10}. Sim-
ilarly as before, for search-based SOP features, only 10% of the sample size s
is created by LHS, while the rest is used to explore the search space according
to the feature method. We repeat all the experiments five times, using different
samples.

Results and Discussion. First, we discuss the results of using k-means clus-
tering on separate features. Figure 5a shows how its error count depends on the
type of feature, the problem dimension and sample size. The neighborhood size
is not shown separately as it does not visibly affect the results. We can see that
the sample size has a large effect on the feature capability to discern problem
modality with the larger sample size (1000d) generally supporting better results
than the smaller one (200d). The effect of problem dimension d is also visible—
the error count typically (but not always) increases with higher dimensions.
Both results are in line with expectations. Finally, the comparison among the
three feature types shows that SOP features computed on the local correlation
landscapes perform comparable to MOP ones. A visibly better performance is
achieved by the two search-based SOP features only on 2- and 3-D problems
with a large sample size.

This means that the excellent results achieved in the first experiment, where
SOP features on local landscapes were outperforming MOP features, were not
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Fig. 5. Results of k-means clustering on (a) separate features and (b) all features of the
same type. The plots show how clustering error count (y-axis) depends on the problem
dimension d (x-axis) and sample size s (color). The line represents the mean, while the
shaded region corresponds to the 95 % confidence interval.

replicated in the more difficult scenario with higher problem dimensions and less
available data. Still, the approach achieved results that are generally not worse
than those by MOP features, meaning that it has established its merit.

However, the predictive power of features can be combined. Therefore, we
present in Fig. 5b k-means clustering results using all features of the same type.
The search-based SOP features are excluded from this analysis, because the
two features of this type come from two different methods, meaning that their
resulting samples are different and cannot be meaningfully combined. Similarly
as before, we see a fairly reliable effect of the sample size and problem dimension
(with the notable exception of sample-based SOP features with 1000d samples
on dimension 2 that perform worse than expected). Surprisingly, combining the
features does generally not help to (considerably) improve their separate results.

Finally, an analysis of the errors per problem (results not pictured) does not
result in any stark outliers as the one from Fig. 3b. Rather, all problems are
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similarly difficult (or easy) to categorize, with slightly higher errors achieved on
unimodal problems P2 and P4. A rather surprising result for which we cannot
yet provide an explanation.

5 Conclusions

This paper demonstrates that estimating local correlation between objectives can
effectively transform a multiobjective problem landscape into a single-objective
one. This transformation enables the application of SOP features, including both
sample-based and search-based features, to MOPs, facilitating the extraction
of valuable information about problem characteristics—in this case, problem
modality. Furthermore, this research paves the way for exploring alternative
transformations that could be applied to similarly capture other important prob-
lem properties.

An important limitation of this work is its focus on bi-objective problems,
as correlation can only be computed between two objectives. For problems with
three or more objectives, only pairwise correlation values can be obtained, mak-
ing it impossible to calculate a direct multi-way correlation. In future work, we
would like to explore potential approaches to overcome this limitation.
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542 T. Tušar and J. N. Cork

19. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strat-
egy. In: Proceedings of the Conference on Genetic and Evolutionary Computation
(GECCO 2006), pp. 477–484. Association for Computing Machinery, New York,
NY, USA (2006). https://doi.org/10.1145/1143997.1144085

20. Malan, K.M., Oberholzer, J.F., Engelbrecht, A.P.: Characterising constrained con-
tinuous optimisation problems. In: Proceedings of the Congress on Evolutionary
Computation (CEC 2015), pp. 1351–1358. IEEE (2015). https://doi.org/10.1109/
CEC.2015.7257045

21. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 42(1), 55–61 (1979)

22. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO 2011), pp. 829–836. Association for Com-
puting Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2001576.
2001690

23. Morgan, R., Gallagher, M.: Analysing and characterising optimization problems
using length scale. Soft. Comput. 21(7), 1735–1752 (2015). https://doi.org/10.
1007/s00500-015-1878-z

24. Müller, C.L., Sbalzarini, I.F.: Global characterization of the CEC 2005 fitness
landscapes using fitness-distance analysis. In: Di Chio, C., et al. (eds.) Applications
of Evolutionary Computation. Lecture Notes in Computer Science, vol. 6624, pp.
294–303. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
20525-5 30
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