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Abstract
This paper presents the Optimization Problem Inspector (OPI)

tool for assisting researchers and practitioners in analyzing indus-

trial optimization problems and their solutions. OPI is a highly

interactive web application requiring no programming knowl-

edge to be used. It helps the users to better understand their

problem by: 1) comparing the landscape features of the analyzed

problem with those of some well-understood reference problems,

and 2) visualizing the values of solution variables, objectives, con-

straints and any other user-specified solution parameters. The

features of OPI are presented using a bi-objective pressure vessel

design problem as an example.
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1 Introduction
Industrial optimization problems often require simulations to

evaluate solutions. For example, in electrical motor design [18,

19], assessing the efficiency and electromagnetic performance of a

proposed design is done by running a simulator that analyzes the

motor magnetic field and flux distribution. Such evaluations are

black boxes to the user and the optimization algorithm alike, i.e.,

the underlying functions cannot be explicitly expressed, which

makes the problem hard to understand and solve.

The established way to gain a better understanding of indus-

trial problems is through the analysis of their solutions. Depend-

ing on the problem at hand, this can be a challenging task, as

industrial problems often have a large number of variables, mul-

tiple objectives and constraints [20].

The Optimization Problem Inspector (OPI) presented in this

paper is a tool conceived to ease this task for both problem experts

and optimization algorithm developers. OPI provides two ways

to further the understanding of an optimization problem:

(1) It computes a set of landscape features of the analyzed

problem and compares them to those of well-understood

reference problems.

(2) It provides visualizations of solutions through the values

of their variables, objectives, constraints and any other

user-specified solution parameters.
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OPI is a web application, implemented by a Python library called

optimization-problem-inspector included in the PyPi Python
package index

1
. It is highly interactive and requires no program-

ming knowledge to be used.

Freely available contemporary software tools formultiobjective

optimization, such as DESDEO [12], jMetal [7] (and jMetalPy [2]),

the MOEA Framework [8], ParadisEO-MOEO [10], platEMO [17],

pygmo [3], pymoo [4], and Scilab [15], provide the implementa-

tion of various optimization algorithms and test problems. While

the majority of them include some visualization of solutions,

the plots are mostly focused on showing algorithm results for

the purpose of comparing algorithm performance and not to

increase problem understanding. In addition, none of these tools

compute additional problem features as OPI does. Therefore, OPI

brings a unique perspective to optimization problem analysis and

understanding.

Next, Section 2 presents the real-world problem that will be

used to showcase the features of OPI in Section 3. The paper

concludes with some remarks in Section 4.

2 Real-World Use Case
Our chosen real-world problem is a version of the well-known

pressure vessel design problem, first proposed more than 30

years ago [16]. In this work, we adapt the formulation from [5]

to handle the pressure vessel volume as a constraint, as well as

an objective. We also remove one unnecessary constraint and

use the original boundary constraints for the first two variables.

A pressure vessel is a tank, designed to store compressed

gasses or liquids. It consists of a cylindrical middle part capped

at both ends by hemispherical heads. The pressure vessel has

four design variables (see Figure 1): the shell thickness, 𝑥1 = 𝑇s,

the head thickness, 𝑥2 = 𝑇
h
, the inner radius, 𝑥3 = 𝑅, and the

length of the cylindrical section of the vessel, 𝑥4 = 𝐿. The two

thickness variables are integer multiples of 0.0625 inches, which

correspond to the available thicknesses of rolled steel plates,

while the length and the radius are continuous. The problem

has three constraints, two on the search variables and one on

1
https://pypi.org/project/optimization-problem-inspector/

𝑥2 = 𝑇
h

𝑥3 = 𝑅

𝑥1 = 𝑇s
𝑥4 = 𝐿

Figure 1: Pressure vessel design variables.
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the volume. Its two objectives are to minimize the total costs,

including the costs of the material, forming and welding, and to

maximize the volume. The problem is formally defined as follows:

min 𝑓1 (x) = 0.6224𝑧1𝑥3𝑥4 + 1.7781𝑧2𝑥
2

3
+ 3.1661𝑧2

1
𝑥4

+ 19.84𝑧2
1
𝑥3

max 𝑓2 (x) = 𝜋𝑥2
3
𝑥4 +

4

3

𝜋𝑥3
3

subject to 𝑔1 (x) = 0.0193𝑥3 − 𝑧1 ≤ 0

𝑔2 (x) = 0.00954𝑥3 − 𝑧2 ≤ 0

𝑔3 (x) = 𝑓2 (x) ≥ 1 296 000

𝑥1 ∈ {18, . . . , 32}
𝑥2 ∈ {10, . . . , 32}
𝑥3, 𝑥4 ∈ [10, 200]

where 𝑧1 = 0.0625𝑥1

𝑧2 = 0.0625𝑥2

3 Optimization Problem Inspector Features
OPI is a web application, organized into five functional sections

and a help section, providing guidance to the user. OPI expects the

user to provide the problem specification and its data—evaluated

problem solutions. Then, it generates and visualizes comparisons

to artificial reference problems and visualizes the provided data.

Next, we will describe the main features of OPI through its

five content sections: problem specification, sample generation,

data, comparison to reference problems, and data visualization.

3.1 Problem Specification
In the first OPI section, the user can provide the specification

of the industrial problem to be studied. The tool needs this in-

formation to properly generate the samples, described in the

Section 3.2, and setup the visualisations.

The problem specification must be given in the yaml file for-
mat and needs to contain some basic information about problem

parameters (variables, objectives, constraints) to be included in

the analysis. OPI can handle one or more objectives and zero or

more constraints. In addition to variables, objectives and con-

straints, the user can specify any number of other parameters

that they want analyzed and visualized, for example, the name

of the algorithm that found a solution or the time required to

evaluate a solution.

For each of the parameters, the user needs to specify its name

and its grouping (whether it is a variable, objective, constraint or

something else). For variables, their type (continuous, integer or

categorical) and the upper and lower bounds (for non-categorical

types) are also required. An example yaml file, specifying a con-

strained multiobjective problem with several variables, is already

provided within the tool to guide the user.

For the pressure vessel design problem, we can input four

variables (first two are integer and last two are continuous), two

objectives and three constraints. Alternatively, we can decide to

skip the individual constraints and only use the total constraint

violation instead.

3.2 Sample Generation
In OPI, a sample is a set of x-values, corresponding to the variables

set in the problem specification section. In other words, a sample

is a set of non-evaluated solutions.

If needed, the sample can be generated by the tool itself, based

on the variable information provided in the problem specification

step. However, this is not a required step in using OPI. A user

that already has a set of (evaluated) solutions to work with can

skip it and input the data directly (see Section 3.3).

Sample generation requires one to choose the number of de-

sired samples, set to a default of 100, and the sample generation

method. Three sample generation methods are supported: ran-

dom, Sobol and Latin Hypercube, with random sampling being

the default. The user may alter the settings of these sampling

methods, such as the random generator seed. Selecting the but-

ton to generate and download the sample will download it in a

csv-formatted file.

In the pressure vessel use case, OPI warns the user that not

all sample generation methods are appropriate. In fact, the Sobol

sampler and the Latin Hypercube Sampler are not compatible

with non-continuous parameters. If used nevertheless, they may

produce unexpected results.

3.3 Data
In OPI, the data is essentially a set of evaluated solutions, where

each solution must contain a value for all objectives, constraints

and other parameters included in the problem specification. The

evaluation is conducted externally to the tool.

The data needs to be uploaded in a file in csv format. If any

parameters from the problem specification are missing from the

data, the tool will display a warning message. Any data parame-

ters that are not included in the problem specification, are ignored

without raising any warnings. When correctly input, the user

will be able to view the data they have input, inspecting it in

tabular format.

Inputting the data completes the setup stage of the process.

The user may then begin generating visualisations to assist them

in understanding their problem.

3.4 Comparison to Reference Problems
The first visualization mechanism provided by OPI visually com-

pares the problem to a set of artificial reference problems with

known properties. This is conducted by displaying the landscape

features of the user-defined problem alongside the same features

of each of the reference problems in a parallel coordinates plot.

The plot is interactive—the user can highlight some of the prob-

lems by brushing along one of the parallel axes. In addition, the

feature values can be viewed in a table and downloaded to a file

in csv format.

The reference problems can be set by the user, however, con-

fined within the collection labelled here as GBBOB, i.e., gener-

alised BBOB, where BBOB stands for the well-known suite of 24

Black-Box Optimization Benchmarking problems with diverse

properties [9]. OPI provides a generator of GBBOB problems that

match the analyzed problem in terms of the number of variables

and objectives and the presence or absence of constraints. For

objectives and (optionally) the constraint, any single-objective

BBOB problem instance can be used. The user can specify the de-

sired GBBOB problems in the yaml format. OPI already contains

five GBBOB problems to start.

A problem can be characterized by a large number of features,

most hard to interpret by a human. In OPI, we included the fol-

lowing problem landscape features that are understandable to an

expert user [1, 11, 13, 14]: CorrObj, MinCV, FR, constr_obj_corr,
H_MAX, UPO_N, PO_N and a set of neighborhood features. CorrObj
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Figure 2: The initial part of the parallel coordinate plot visualizing feature values for the analyzed problem and the chosen
set of artificial test problems.

is a feature that shows the correlation between the objectives.

MinCV represents the minimum constraint violation among all so-

lutions in the population. FR represents the proportion of feasible

solutions in the population. constr_obj_corr presents the max-

imum correlation between the constraints and all the problem

objectives. H_MAX is the maximum information content among

all objectives. UPO_N is the proportion of unconstrained non-

dominated solutions, while PO_N is the proportion of the con-

strained non-dominated solutions. The neighbourhood features

denoted by neighbourhood_feats are a collection of features

explaining the neighborhood of solutions, e.g., how many neigh-

bors of a solution dominate the solution, how many neighbors

are dominated by the solution, how many are incomparable to

the solution, how close the neighboring solutions are, etc. OPI

offers a total of 16 features, but the user can choose which to

compute and visualize.

Figure 2 shows the initial part of the parallel coordinates plot

(as the entire plot would not fit the paper) for the pressure vessel

problem. In the comparison, we use the default five GBBOB

reference problems as well as a custom created one. We notice

that the pressure vessel problem is most similar to the custom

GBBOB problemwith the first objective equal to the step ellipsoid

function 𝑓7, the second to the multimodal peaks function 𝑓22, and

the linear constraint 𝑓5. This similarity might be due to our mixed-

integer problem containing plateaus in the continuous landscape

space in which the features are computed, which is similar to the

step ellipsoid function, and having linear constraints.

3.5 Data Visualization
In the data visualization section of the web application, the sup-

plied data can be visualized using either a scatter plot matrix or

a parallel plot. In both cases, the user can choose which prob-

lem parameters to visualize among all those listed in problem

specification. Additionally, a simple data filtering that limits any

variable between the desired minimum and maximum values is

also supported and can be manipulated via the OPI interface in

yaml format. The parameter used for coloring the solutions, as

well as the color map, can also be specified by the user. Both vi-

sualizations support interaction and can be downloaded in html
or png format.

3.5.1 Scatter Plot Matrix. The scatter plot matrix consists of 𝑛2

plots for 𝑛 chosen problem parameters as it contains 2-D scatter

plots for all possible parameter pairs. In OPI, the user can apply

brushing and linking to select the desired solutions in one or

more of the scatter plots. These are then highlighted in all scatter

plots in the matrix.

Figure 3 shows such a scatter plot for our pressure vessel

problem. This visualization includes data from two sources. The

first comes from a random sampling of the search space (shown

in light blue) and the second from running the NSGA-II algo-

rithm [6] on this problem for 2 · 106 function evaluations to

achieve a good approximation of the Pareto front (shown in

black). The two sources are set apart by a custom parameter that

is then used for coloring the solutions. Some solutions from Fig-

ure 3 are highlighted – see the rectangle in the (𝑥3, 𝑥1) scatter
plot (third from the left in the top row).

These plots clearly show the linear relationship of the near-

optimal solutions between 𝑥1 and 𝑥2 as well as 𝑥1 and 𝑥3. When

only 𝑓1 and 𝑓2 are chosen, it is distinctively visible that the Pareto

set approximation is piece-wise linear and disconnected.

3.5.2 Parallel Coordinates Plot. The parallel coordinates plot

shows all chosen parameters as parallel coordinates and solu-

tions as lines in the plot. Similarly as with the scatter plot matrix,

interaction via brushing and linking is supported to select solu-

tions that fit the desired values.

4 Conclusions
This work presented the features of Optimization Problem Inspec-

tor – a web application to support problem experts and algorithm

designers in gaining a better understanding of industrial optimiza-

tion problems. The tool provides comparisons to well-understood

reference problems and interactive and highly-customizable vi-

sualizations, which can be exported in html and png formats.
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Figure 3: Random (light blue) and near-optimal (black) solutions of the pressure vessel design problem visualized in OPI
with a scatter plot matrix containing variables 𝑥1 to 𝑥4 and objectives 𝑓1 and 𝑓2.

Samples can be exported and solutions imported using the stan-

dard csv format, which makes the data exchange between OPI

and various optimization software easy to do. OPI functionality

is made to be simple and at the same time flexible. Therefore, it

is utilisable by non-experts and experts, alike, providing a wide

range of angles from which to view the problems.
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