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Abstract. Constraint handling in multiobjective optimization is more
complex than in single-objective optimization, where the values of the
objective and constraints are easier to combine. To gain insight into the
characteristics of constraint handling techniques (CHTs) for multiob-
jective optimization, we explore their effect independently from search
methods. We regard CHTs as transformations that alter the problem
landscape and visualize these modified landscapes. This helps us pre-
dict potential strengths and weaknesses for search methods. We then use
a simple local search technique to test our predictions. Results of the
experiments with six CHTs applied on 12 test problems show specific
properties of the studied CHTs that can help us devise better CHTs in
the future, as well as find suitable search methods for them.

Keywords: Constrained multiobjective optimization · Constraint
handling technique · Problem landscape · Visualization

1 Introduction

Constraint handling in multiobjective optimization requires taking into account
multiple (conflicting) objectives as well as constraints (often represented by the
overall constraint violation). As such, it is more demanding than constraint han-
dling in single-objective optimization, where the values of the sole objective and
the overall constraint violation can be combined more naturally. Possibly for this
reason, many constraint handling techniques (CHTs) in multiobjective optimiza-
tion are closely intertwined with the search method [4,9,17,19], which makes it is
hard to understand how much, when and why a particular CHT is more efficient
than some other.

For example, as Ma and Wang show in [18], the efficiency of constrained
multiobjective optimization algorithms heavily depends on the type of the prob-
lem. However, their study does not decouple CHTs from the optimization meth-
ods, meaning that its findings are tied to the frameworks of NSGA-II [5] and
MOEA/D [27] that encompass the examined CHTs. Similarly holds for the work
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by Alsouly et al. [1] and our previous work [25], which connect problem land-
scape features with algorithm performance, but the considered algorithms differ
in multiple mechanisms, not just in the CHT.

A notable exception in this regard is the study by Fukumoto and Oyama [11],
which proposes a generic framework for incorporating CHTs into multiobjective
optimization algorithms. It views a CHT separately from the search method
and introduces a way to combine the two that covers dominance-based (e.g.,
NSGA-II [5]), decomposition-based (e.g., MOEA/D [27]), and indicator-based
(e.g., IBEA [29]) multiobjective optimization algorithms. The experiments are
then performed on different combinations of search methods and CHTs.

In this work, we explore the effect of CHTs independently from search meth-
ods, that is, as independently as possible. The goal is to enhance the understand-
ing of their workings and provide intuition that can help guide the improvement
of existing CHTs as well as find suitable search methods for particular CHTs. To
this end, we regard CHTs as transformations that alter the problem landscape.
We compute the CHT-based ranking of solutions from a grid approximation of
the problem landscape to visualize it for various constrained multiobjective opti-
mization problems (CMOPs). In this way, we are able to gain insight into the
problem as ‘seen’ by an algorithm that uses a particular CHT. The CHT-based
problem landscapes help us predict potential advantages and disadvantages for
search methods. We then use a simple deterministic grid-traversing local search
to test our predictions. The CMOPs used in this study are a combination of
eight well known test CMOPs and four new, relatively simple problems with
known properties that can help understand the characteristics of CHTs.

2 Background

2.1 Constrained Multiobjective Optimization Problems

We formulate a CMOP as follows:

minimize f(x) = (f1(x), . . . , fm(x))
subject to gi(x) ≤ 0, i = 1, . . . , p,

(1)

where x = (x1, . . . , xn) ∈ S is a search vector from the search space S, fi : S → R

are objective functions and gi : S → R are inequality constraint functions. We do
not explicitly include equality constraints as they can be formulated as inequality
constraints with the help of a user-defined tolerance value.

The overall constraint violation of solution x is computed with

v(x) =
p∑

i=1

vi(x), (2)

where vi(x) = max (0, gi(x)) is the constraint violation for constraint gi(x).
Given that in this work we do not consider the constraints separately, we will be
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Fig. 1. The four types of CMOPs (adapted from [18]). The Pareto fronts (PFs)
of the unconstrained/constrained problems are shown with thin black/thick orange
lines. (Color figure online)

using the shorter term constraint violation instead of overall constraint violation
to refer to v(x) in the rest of this paper.

A solution x is feasible when it satisfies all constraints, that is, when v(x) = 0.
The set of all feasible solutions is called the feasible region. A solution x ∈ S
dominates another solution y ∈ S when fi(x) ≤ fi(y) for all i = 1, . . . , m and
fj(x) < fj(y) for at least one j = 1, . . . , m. Additionally, a feasible solution
x∗ ∈ S is Pareto optimal if there are no feasible solutions x ∈ S that dominate
x∗. All nondominated feasible solutions represent the Pareto set, and its image
in the objective space is called the Pareto front.

When constraints are added to an otherwise unconstrained multiobjective
optimization problem, this can affect the size and position of its Pareto set and
front. The constraints that influence the Pareto set and front are called active
constraints, while the remaining ones are termed inactive constraints. The degree
of this change is the basis for the classification of CMOPs into types as proposed
by Ma and Wang [18]. Figure 1 shows the four types, which range from no change
to the Pareto front (Type I), to a reduced Pareto front (Type II), a partially
displaced Pareto front (Type III), and finally an entirely different Pareto front
(Type IV).

2.2 Constraint Handling Techniques

Our study comprises six methods for handling constraints in multiobjective opti-
mization. In the following, we describe these CHTs and their known strengths
and weaknesses.

One possible way of handling constraints (or rather, not handling them) is
to simply ignore them and solve the problem as if it was an unconstrained one.
We refer to this technique as constraint violation ignored. While such a strategy
cannot be expected to yield good results on problems with active constraints and
is therefore mostly omitted from comparison studies, it can be rather powerful
for solving CMOPs where the constraints do not severely affect the optima, that
is, problems of Type I (and, to some degree, Type II) [11].
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Another method for handling constraints is to treat the constraint violation
as an additional objective to be minimized1. We call this technique constraint
violation as objective. One often mentioned drawback of this approach is that
the additional objective can make the multiobjective optimization algorithm less
efficient [17].

A very popular technique (due to being the default way of handling con-
straints in the algorithm NSGA-II) is the constrained-domination principle [5].
According to this principle, solution x is preferred to solution y if: (i) solution
x is feasible and solutions y is infeasible, (ii) both solutions are feasible and x
dominates y, or (iii) both solutions are infeasible and x has a lower constraint
violation than y. The method is known to work rather well, except on problems
with multimodal constraint functions [28].

The multiobjective version of the epsilon-constraint method [22] could be
viewed as a relaxed variant of the constrained-domination principle, where solu-
tions with the constraint violation lower than a predefined ε ≥ 0 threshold are
treated as feasible. More formally, the epsilon-constraint method prefers solution
x to solution y when: (i) solution x dominates solution y and both have a small
constraint violation (v(x) ≤ ε and v(y) ≤ ε) or the same constraint violation, or
(ii) solution x has a lower constraint violation than solution y. The optimization
methods using the epsilon-constraint CHT usually gradually lower the value of
ε during the algorithm run [2]. Choosing the appropriate starting value for ε as
well as the mechanism to update it is nontrivial and problem-dependent.

Contrary to the methods that keep the objectives separate from the con-
straints, the penalty function transforms the objective values of infeasible solu-
tions x to f ′

i(x) by either using the constraint violation (when there are no
feasible solutions in the current population) or some penalty value that depends
on the value of the objective, the constraint violation and the proportion r of
feasible individuals in the current population [26]:

f ′
i(x) =

{
v(x), if r = 0
(1 − r)v(x) + rfi(x) +

√
fi(x)2 + v(x)2, if r > 0

. (3)

Suitably setting/adjusting the penalty value is recognized as a difficult task [17].
Finally, we also consider stochastic ranking, where the comparison of feasible

solutions is done based on the dominance relation, while the infeasible solutions
are compared either w.r.t. the constraint violation or the dominance relation—
the decision between the two is done randomly [13].

3 Methodology

3.1 Test Problems

In order to explore the effect of CHTs, we need to select some test CMOPs.
Because we aim to understand and visualize their landscapes, we choose prob-
lems with only two variables and two objectives. Ideally, the problems should
1 The alternative variant, where each separate constraint violation is regarded as a

new objective, is not considered in this work.
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have various properties and be of different types [18]. We select eight problems
from the existing well-known CMOP suites (C-DTLZ [15], DAS-CMOP [7], DC-
DTLZ [16] and MW [18]) as well as create four new ones, CBB1–4, where CBB
stands for Constrained BBOB [14] Biobjective (problem).

All four CBB problems were created by adding constraints to the first
instance of the 2-D bbob-biobj problem F1 (the double sphere problem) [3].
This is one of the easiest biobjective problems to solve as the Pareto set and
front are linear and the problem landscape is unimodal (but not separable).
However, when adding constraints to such a problem, it can become more diffi-
cult to solve while at the same time still easy to understand and interpret, which
is why we created the CBB problems and added them to our test problem set.

The constraint function used in CBB1 is linear. It intersects the Pareto set
of F1 in such a way that the Pareto set of CBB1 consists of two connected linear
parts. The constraint functions in the case of CBB2 and CBB3 are created by
slightly shifting a single Gaussian peak function [12] with the same mean but
a different covariance matrix, yielding in one case a problem of Type III (the
Pareto set of CBB2 is formed by two linear parts of the original problem and
one spherical that connects them) and in the other case a problem of Type IV
(the entire Pareto set of F1 is infeasible, the Pareto set of CBB3 consists of three
disconnected spherical regions). Finally, CBB4 uses the inverted Gaussian peak
function with three peaks as the constraint function (because the function is
inverted, the peaks now form the feasible region). Again, the entire Pareto set of
the original problem is infeasible, which yields a Type IV problem, whose Pareto
set consists of two disconnected spherical regions. The exact definitions of con-
straints for problems CBB1–4 are provided in the supplementary material [24].

Thus we have 12 test problems in total, three of each type: Type I:
DAS-CMOP3, DAS-CMOP5, MW14, Type II: C2-DTLZ2, DAS-CMOP1, DC1-
DTLZ1, Type III: CBB1, CBB2, MW3, and Type IV: CBB3, CBB4 and MW11.

3.2 CMOP Landscape Visualization

First, we wish to visualize the problem landscapes of our 12 test problems (see
Fig. 2). We can do so by approximating the search space with a grid of points. In
this study, we always use a grid of 301 × 301 points2. We handle separately the
feasible and infeasible regions of each problem. The feasible regions are visualized
using the dominance rank ratio [3,10], which computes for each point on the grid
the number of other grid points that dominate it and then visualizes them as a
ratio of all grid points—using blue hues in the logarithmic scale to emphasize
smaller values. The darker the color, the closer a point is to the Pareto set.
Points with a domination rank of zero are Pareto optimal and visualized in
black. The points in the infeasible regions are colored in red hues according

2 Note that using a grid approximation inevitably results in some artifacts. For exam-
ple, a linear Pareto set is in reality a line, but because of the approximation, some
points adjacent to this line also result as nondominated, yielding a ‘thick line’. The
coarser the grid, the larger the artifacts.
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Fig. 2. Problem landscape plots for all 12 CMOPs used in this study. Each three
problems of the same type are placed in the same row (from Type I at the top to Type
IV at the bottom). Blue hues show the dominance rank ratio [3,10] in the feasible
regions with black denoting the Pareto set. Red hues show the constraint violation in
the infeasible regions. (Color figure online)



Visual Exploration of the Effect of Constraint Handling in MO 9

to their constraint violation values. Here, darker colors signify larger constraint
violations. As we can see from Fig. 2, the chosen problems form a diverse selection
of landscapes with various properties and Pareto set shapes.

Next, we want to see what becomes of the problem landscape when viewed
from the perspective of a particular CHT. To this end, we compute for each
CHT the rank that the CHT would assign to each point on the grid (compared
to other points). Then, we visualize the ratio of this rank in blue hues (similarly
as for the feasible problem regions of the original problem). Again, black is used
to denote the grid points with the lowest rank—the optimal points according to
the CHT. In this way, we gain a CHT-based problem landscape that assigns a
single value to each grid point. We will show the visualizations of these landscapes
in Sect. 4.2.

Note that if the Pareto set according to the CHT does not contain the entire
Pareto set of the original problem, we can expect that an optimization algorithm
using this CHT will have issues with convergence to the Pareto set.

3.3 Local Search

While already the visualization of a CHT-based landscape and comparison to
the original problem landscape gives a good idea of some of the issues that a
search method would encounter if it was used to find the optimum of such a
problem, we wish to quantify these effects. Since any mechanism of a search
method affects the behavior and interpretation of its results, we resort to a very
simple, deterministic procedure—local search with a Moore neighborhood (each
inner grid point in 2-D has eight neighbors).

Given a starting point on the grid, the local search iteratively moves to the
best neighboring grid point that is not worse that the current point until a
stopping criterion has been reached. The stopping criteria are: (i) the current
point is optimal in the CHT-based landscape, (ii) the current point is better than
all neighbors (it is a local optimum) (iii) all neighboring points have already been
visited (to avoid cycling). In order to assure that this procedure is deterministic,
the neighbors are always inspected in the same order (the north neighbor first
then the rest in clockwise order) and an earlier neighbor always takes precedence
over a later one when the ranks are tied among neighbors.

We can compute several quantities from a local search path on a CHT-based
problem landscape. First, we can check (and visualize) if the final point of the
path is Pareto optimal in the original landscape. If so, the path is denoted
as successful (shown in orange) and the final point is visualized with a star.
Otherwise, the path is deemed unsuccessful (shown in red) and the final point
is denoted as a cross. In addition, simulating an optimization algorithm that
chooses the best solution from its entire archive, we also record how many of the
points on the path are Pareto optimal in the original landscape and how many
are feasible. Of course, we also measure the path length (the number of points
on the path).



10 T. Tušar et al.

4 Experiments

4.1 Experimental Setup

In our experiments, we apply the six CHTs from Sect. 2.2 to the 12 test problems
from Sect. 3.1. We normalize both objectives and constraint violations to [0, 1]
before computing the CHT-based landscapes. There are no parameters to be
set for the first three CHTs: constraint violation ignored, constraint violation
as objective, and constraint-domination principle. We set the ε of the epsilon-
constraint method to the 5th percentile of the constraint violation value of all
infeasible grid points to mimic the initial parameter setting from [6]. Note that
we do not vary the ε, therefore the epsilon-constraint method landscape in our
study should be regarded as the landscape seen by the search method at the
beginning of the optimization. Given that we do not use a population-based
algorithm, we set the proportion r to the proportion of feasible points on the
grid for the penalty function [26]. Finally, we use the recommended setting of 0.45
for the probability of comparing infeasible solutions according to the objective
values in stochastic ranking [20].

We repeat local search 100 times, starting from 100 equally-spaced points on
the grid for each combination of CHT and test problem. While the CHT-based
landscapes are static for all steps of the local search for the first five CHTs, we
use ten different stochastic ranking landscapes (in a loop) to mimic its stochastic
behavior (each local search step uses one of the landscapes in turn).

4.2 Results and Discussion

CHT-Based Landscapes. We first inspect the CHT-based landscapes of the
Type II problem CBB1, which is the easiest to understand (see the blue-hued
landscapes in Fig. 3 and ignore the orange and red lines for now). When the
constraint violation is ignored, the landscape obviously matches that of the orig-
inal problem F1, for which the Pareto set is linear. As approximately 2/3 of the
apparent (as perceived by the CHT) Pareto set lie in the infeasible region, any
search method that would ignore the constraint violation would spend a lot of
effort in the infeasible region, making it inefficient.

When the constraint violation is treated as an objective, something interest-
ing happens. The Pareto set of this CHT-based landscape contains not only the
original Pareto set, but also a large region of otherwise infeasible solutions, which
are nevertheless nondominated in the resulting 3-D objective space. While this
does not happen on our problems of Type I and II, it appears on all six problems
of Type III and IV. This would likely mislead a search method to regard a part
of the infeasible region as optimal, which means that any optimization algorithm
that uses this CHT needs to additionally check for feasibility of the apparent
optimal solutions in order to be efficient.

Next, the landscapes of the constraint-domination principle, the epsilon-
constraint method and the penalty function look very similar. However, note
that the ‘line’ that we see in the landscape of the epsilon-constraint method
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Fig. 3. Plots of the CHT-based landscapes for Type III problem CBB1 (in blue hues)
for the six considered CHTs. Black denotes the Pareto set of these landscapes. Orange
and red lines show the paths of local optimization starting in 100 different points shown
with dots. If the path ends in a point that is optimal in the original problem landscape,
the line is orange and it ends with a star, otherwise the line is red and it ends with a
cross. (Color figure online)
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does not match the feasible space boundary from Fig. 2 (the former is placed
slightly higher than the latter). This means that for this CHT, the apparent
Pareto set is misplaced, making the landscape misleading to the search method.
This is why the optimization algorithms that employ this CHT need to gradu-
ally reduce the value of ε to 0 during the run, which then corresponds to the
constraint-domination principle. Also, note that the penalty function-based land-
scape is also slightly different as the infeasible region of the original problem is
darker close to the feasible space boundary. This adds some nonlinearity to the
landscape with unclear influence on a search method.

The first landscape of stochastic ranking (of the ten used) clearly shows that
the values of the infeasible region are randomly selected for each point separately
between the original dominance rank and the constraint violation. This makes
its landscape more rugged than the original one, which can pose problems to
methods prone to get stuck in local optima.

Local Search Paths. If we now look at the local search (LS) paths in Fig. 3
(orange and red lines), we can confirm that these results are mostly in accordance
with our predictions (LS with constrained violation ignored and constraint vio-
lation as objective is inefficient, LS with the epsilon-constraint method performs
worse than with the constraint-domination principle and stochastic ranking is
debilitating for local search in the infeasible region; we did not foresee the dam-
aging effect of the penalty function CHT).

Similar reasoning about CHT-based landscapes and the corresponding local
search paths could be applied also to the remaining problems. However, due to
the lack of space we refer to the supplementary material [24] for these results.

Local Search Summary Results. The information summarizing the perfor-
mance of local search paths can help us further analyze the CHTs. Figure 4 shows
the number of optimal solutions vs. the proportion of feasible solutions for LS
with each CHT on each problem. The number of optima is counted separately
for the entire path (filled markers) and separately for just the ending path point
(hollow markers). Note that these two quantities differ only for LS with con-
straint violation ignored and with the epsilon-constraint method, and only for
Type III and IV problems. This happens because these two CHTs fail to guide
local search on these problems, but still manage to cross the true Pareto set
along the way.

Concentrating on the outcomes regarding the optimality of solutions (the
y axis of plots in Fig. 4) we can immediately observe that the absolute worst
results (regardless of the CHT) are achieved on DAS-CMOP5 and DC1-DTLZ1,
which are multimodal and thus detrimental to local search. These two problems
therefore do not help our analysis. Disregarding them, we can see the trend
that the number of optimal solutions diminishes with increasing problem type,
which could be expected. The relatively poor performance of local search with all
CHTs except of the constrained-domination principle on the most basic problem
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Fig. 4. The number of optimal solutions (y axis) vs. the proportion of feasible solutions
(x axis) for local search with each CHT on each problem. Filled markers denote the
number of all optimal solutions on the path, while the hollow markers show the number
of final optimal solutions (the two differ only for constraint violation ignored and the
epsilon-constraint method on problems of Type III and IV). (Color figure online)

CBB1 is quite disappointing. It shows that the constrained-domination principle
is hard to beat and the other CHTs still have room for improvement.

We can further see that ignoring constraint violations is a very good strategy
for solving problems of Type I, which confirms the results from [11]. Not so
surprisingly, it is also one of the best CHTs for some Type II and III problems
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(those for which the intersection between the unconstrained and constrained
Pareto set is large).

The performance of LS with constraint violation as objective never stands out
(it is always in the middle). Similarly holds for LS with the epsilon-constrained
method on problems of Type I, II and III (for Type IV, it shows a very poor
performance). We also observe that the performances of LS with the constrained-
domination principle and with the penalty function are mostly very similar with
just a few exceptions. There (on C2-DTLZ2, CBB1 and MW11), the penalty
function-based landscape is visibly different from the one by the constrained-
domination principle, which has the undesired effect of guiding the local search
away from the optima. These two CHTs are the only ones with a potential to
solve Type IV problems with LS. Finally, the performance of LS with stochastic
ranking is solidly among the worst.

If we look at the same results from the point of view of feasibility, we can
see that, due to the 100 equally-spaced starting points of local search, there is
generally not a large difference in the proportion of feasible solutions among the
different CHTs. One (not so obvious) outlier here is LS with stochastic ranking,
whose relatively good proportion of feasible solutions despite the otherwise poor
performance stems from very short paths in the infeasible regions (the local
search quickly becomes trapped in local optima of this very rugged landscape)
rather than the CHT guiding the search towards the feasible region.

5 Conclusions

In this paper we proposed to look more closely at the various CHTs used for
solving CMOPs in order to gain insight into their strenghts and weaknesses. This
can help us devise better CHTs in the future, as well as find (more) appropri-
ate search methods for particular CHTs. For example, we saw that constraint
violation as objective requires additionally checking for feasibility, the epsilon-
constraint method shifts the location of the apparent Pareto set and that the
rugged landscape of stochastic ranking calls for a search method that can avoid
being stuck in local optima. Our analysis has additionally confirmed findings
from previous work [11,23] that problems of Type I (as well as some problems
of Type II and III) are not helpful for benchmarking optimization algorithms on
CMOPs as simply ignoring the constrains performs equally well.

As this work was limited to 2-D search and objective spaces we will consider
generalizing our methodology to higher dimensions in the future. We would also
like to similarly visualize the effects of dynamically changing CHTs and put more
focus on local Pareto sets (possibly by using visualizations from [21] or [8]).
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