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Abstract

Recently, a new suite of bi-objective mixed-integer test problems (bbob-biobj-mixint)
was introduced and integrated into the COCO platform (github.com/numbbo/coco/). How-
ever, no algorithm data was provided yet for this suite. This report presents a new algorithm
for solving mixed-integer problems called BBDEMO (Black Box Differential Evolution for Mul-
tiobjective Optimization). It extends the Black Box Differential Evolution algorithm to multi-
objective problems. We show the performance of BBDEMO and a baseline random search on
the problems from the bbob-biobj-mixint suite. The results of both algorithms are available
to be included in future benchmarking studies using the bbob-biobj-mixint suite.
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1 Introduction

The development of new optimization algorithms requires testing, or benchmarking, them on a
number of test problems. In the field of multi-objective optimization this is almost exclusively
done on two problem suites, DTLZ [1] and WFG [2]. The specialization to these two suites of
test problems has been so severe that the state-of-the-art multi-objective optimization algorithms
are in all likelihood overfitting to these problems. This is particularly concerning since the DTLZ
and WFG problems possess some artificial properties that are useful when designing test suites,
but are not likely to occur in real-world problems. Therefore, we cannot expect algorithms that
perform well on such problems to also perform well on real-world problems. Furthermore, both
suites consist of only continuous problems, but we know that many real-world optimization prob-
lems are in fact mixed-integer (contain continuous as well as integer variables). The lack of test
suites with mixed-integer problems is hindering research in this direction.

In addition, the comparison methodology most often used in contemporary benchmark stud-
ies does not provide a lot of useful information. Although the problems from the DTLZ and WFG
test suites are scalable, they are only rarely used with more than the ‘default’ problem dimension.
The algorithms are compared after an arbitrary large number of function evaluations and their
convergence graphs are only seldom shown. All this is steering the research efforts of the com-
munity away from being useful in efficiently solving the real-world multi-objective optimization
problems.

Our previous workwas focused on introducing new, real-world-inspired problem suites and in-
tegrating them in the COCO (Comparing Continuous Optimizers, https://github.com/numbbo/
coco) platform [3]. COCO makes it easy to inspect the results of multiple algorithms on separate
functions, groups of functions with similar properties and even all functions of the suite by aggre-
gating algorithm results. Automatically produced plots for different dimensions showing the con-
vergence of the algorithms facilitate understanding of the algorithm performance and learning
lessons from test problems that can then be employed to solving real-world problems of various
properties and dimensions. While two of the newly proposed suites (rw-top-trumps-biobj and
rw-mario-gan-biobj [4]) implement real-world problems and are therefore a welcome contribu-
tion to the research community, the biggest niche inmulti-objective optimization benchmarking is
targeted by the bbob-biobj-mixint suite [5] that consists of scalable mixed-integer bi-objective
problems. The paper [5] presented single- and bi-objective suites of mixed-integer problems,
but did not provide any algorithm data for the bi-objective ones. This is rectified by the present
report.

In this work we introduce a new algorithm for solving multi-objective optimization problems
called BBDEMO (Black Box Differential Evolution for Multiobjective Optimization) that was de-
signed with mixed-integer problems in mind. We show its results on the bbob-biobj-mixint
suite using the random search algorithm as baseline. In addition to presenting BBDEMO, the
main purpose of this study is to provide algorithm data for this problem suite and share it with
the research community to facilitate future benchmark studies.

The remainder of this report is structured as follows. After some preliminary information
on multi-objective optimization problems and related work in Section 2, Section 3 details the
BBDEMO algorithm. Then, Section 4 shortly summarizes the properties of the latest suites of
bi-objective test problems in COCO. The experiments using the bbob-biobj-mixint suite are
described in Section 5, while their results are presented in Section 6. The paper ends with con-
cluding remarks in Section 7.
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2 Preliminaries

We first give some background information about multi-objective optimization problems, the
dominance relation and hypervolume indicator. Then we place the BBDEMO algorithm in the
context of related work.

2.1 Multi-objective optimization problems

An m-objective mixed-integer problem can be formally defined as

min (f1(x), . . . , fm(x))

where fj : Zk × R(n−k) → R j = 1, . . . ,m

fj : x 7→ fj(x) j = 1, . . . ,m

xi ∈ [xmin
i , xmax

i ] ∩ Z i = 1, . . . , k

xi ∈ Di ⊆ R(n−k) i = k + 1, . . . , n

The problem entails minimization of the given function(s) where the first k variables are integer
and the last n − k continuous. If k = 0, the problem is continuous and if k = n, it is integer. A
continuous variable i can be box-constrained, i.e.,Di = [xmin

i , xmax
i ], or (partially) unconstrained.

If m = 1, the optimization problem is single-objective and if m ≥ 2, it is multi-objective.
Solutions to a multi-objective optimization problem can be compared using the dominance

relation. We say that solution x dominates solution y, x ≺ y, if x is not worse than y on any
objective and better on at least one. If neither x ≺ y nor y ≺ x, the solutions are mutually
non-dominating. If a solution has no dominating solutions, it is non-dominated. The set of all
non-dominating solutions is called the Pareto set. Its image in the objective space is the Pareto
front.

Quality indicators can be used to assess and compare sets of solutions to multi-objective op-
timization problems. Among the many available ones, the hypervolume indicator [6] is the only
one that is strictly Pareto-compliant [7]. For a given set of pointsA and a reference point, it gives
the volume of the portion of the objective space that is dominated by A and limited by the refer-
ence point. Given the set A, the hypervolume improvement of solution a equals to the increase of
hypervolume if a is added to A.

2.2 Related work

Differential Evolution (DE) [8] is one of the most well-known single-objective algorithms. It be-
came very popular due to its simplicity and efficiency and has been the subject of many studies
and extensions since its first introduction. One of the prominent extensions that adapted DE to
solve multi-objective optimization problems is Differential Evolution for Multiobjective Optimiza-
tion (DEMO) [9], which combines the search mechanism of DE with the environmental selection
of NSGA-II [10]. However, DE also has known drawbacks, for example, its performance is not
invariant under an orthogonal rotation. In order to rectify this (and some other issues of the orig-
inal algorithm), one of the original authors of DE recently presented a new, simplified version of
DE called Black Box Differential Evolution (BBDE) [11], whose performance is invariant under a
number of transformations, including an orthogonal rotation.

The main idea behind the BBDEMO algorithm is to extend BBDE to multi-objective optimiza-
tion in a similar way in which DE was extended to DEMO. However, instead of requiring an elab-
orate environmental selection, the problem of minimizing two objectives is transformed to the
single-objective problem of maximizing the uncrowded hypervolume improvement, an extension
of the hypervolume improvement presented in [12].
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3 The BBDEMO algorithm

The BBDEMO algorithm is conceived as a multi-objective variant of the BBDE algorithm [11].
It generates solutions similarly to the single-objective BBDE algorithm and compares them us-
ing the uncrowded hypervolume improvement [12]. To avoid premature convergence to a local
optimum, perturbation of solutions is performed whenever a lack of diversity in the population
is detected. The BBDEMO algorithm is outlined in Algorithm 1, while the separate procedures
for offspring creation, repair and perturbation as well as for updating the parent population are
given in Algorithms 2, 3, 4 and 5, respectively.

Algorithm 1: BBDEMO
Input: Population size, stopping criterion, perturbation parameters
Output: Pareto set approximation

1 Create initial population of random solutions P
2 Evaluate all solutions in P
3 Create initial archive of non-dominated solutions A
4 while stopping criterion not met do
5 b← the best solution from P
6 Initialize candidate population C ← {}
7 forall parents p ∈ P do
8 Create candidate c from parent p and best solution b (see Algorithm 2)
9 Repair the candidate c if necessary (see Algorithm 3)

10 Add c to C
11 end forall
12 Perturb the candidates c ∈ C (see Algorithm 4)
13 Evaluate all candidates c ∈ C
14 Update the parent population P and archive A (see Algorithm 5)
15 end while
16 return P

The BBDEMO algorithm starts by filling the initial parent populationP with random solutions.
Then, the solutions are evaluated and added to the archive of non-dominated solutionsA. Further
steps are performed until a stopping criterion is met, which usually depends on to the number
of performed evaluations. In each of the steps, a population of candidates C is first created from
the parent population P. It is then perturbed and evaluated. Finally, the parent population and
the archive are updated with the candidates that outperform their parents. When the algorithms
concludes, it returns the last parent population P.

The creation of candidates is detailed in Algorithm 2. It is a variant of the BBDE/target-to-
best strategy [13], where the candidate is computed as a linear combination of the parent p, the
best solution in the population b and two different random solutions p1 and p2. There are no
additional constraints on the solutions p1 and p2, which means one (or both) of them could equal
the parent and/or the best solution. The factors F1 and F2 used in the linear combination are
sampled from the log-normal distribution with exp(N (0.1, 0.5)). This parameter setting favors
larger values compared to the ‘default’ log-normal distribution exp(N (0, 1)).

The candidate creation ignores the bounds of the search space, therefore it can (and often
does) happen that the candidate falls out of these bounds. The repair procedure that is normally
used in DE simply crops all the values that exceed the bounds to those bounds. However, such a
repair disturbs the rotational invariance of the candidate creation [13]. To amend this issue, BB-
DEMO uses the repair procedure presented in Algorithm 3, which makes sure that the direction
of the candidate (from the perspective of the parent) remains intact after the repair. The proce-
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Algorithm 2: Candidate creation
Input: Population P, parent p, best solution b
Output: Candidate solution

1 p1, p2 ← two different random solutions from P
2 F1, F2 ← two random values sampled from XF ∼ exp(N (0.1, 0.5))
3 c← p + F1(b− p) + F2(p1 − p2)
4 return c

dure first collects the coefficients that would crop the separate candidate values to the bounds
of the search space. If the candidate is entirely contained in the search space, nothing needs to
be done and the procedure ends there. However, if at least one of the coefficients differs from 1,
the repair is triggered and the candidate is scaled using the parent as the origin and the minimal
value of the repair coefficients for the scaling factor.

Algorithm 3: Candidate repair
Input: Candidate c, parent p
Output: Repaired candidate

1 Initialize repair vector r ← 1n

2 forall variables i ∈ {1, . . . , n} where ci 6= pi do
3 if ci < xmin

i then
4 ri ←

pi−xmin
i

pi−ci
5 else if ci > xmax

i then
6 ri ←

xmax
i −pi
ci−pi

7 end if
8 end forall
9 if r 6= 1n then

10 c← p + (c− p) min
i

ri

11 end if
12 return c

One known issue of DE-like candidate creation is that the solutions often lose diversity (all
solutions in the population eventually share the same value of one or more variables). Because
candidates are created by linear combination of existing solutions, once this happens, the di-
versity cannot be recovered. This is exacerbated by the BBDE approach, which gets rid of the
mutation step as it is rotationally invariant, and further by the target-to-best strategy which ac-
celerates the convergence to the best solution in the population. Therefore, BBDEMO includes a
perturbation procedure (that could also be regarded as mutation), with the aim of adding diver-
sity to the population. At the beginning of this procedure (see Algorithm 4), the need to perform
perturbation is checked. This means that for each of the variables, we compute the standard
deviation of the variable values in the candidate population. If the standard deviation is smaller
than some threshold, the variable is stored to a list of variables that require perturbation. If af-
ter going through all of the variables this list is empty, the procedure stops without preforming
any perturbation. If, on the other hand, this list is non-empty, the perturbation is applied to the
variables with lacking diversity using two helper values. The first is a random value sampled
from the normal distribution N (0, 1), while the second one depends on whether the variable is
an integer one or a continuous one. The two cases are handled separately to assure that integer
variables (which are also most prone to diversity loss) actually get perturbed. If at the end of the
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Algorithm 4: Perturbation of the candidate population
Input: Candidate population C, perturbation parameters s̄, dint, dcont
Output: Perturbed candidate population

1 Initialize set of variables to be perturbed I ← {}
2 forall variables i ∈ {1, . . . , n} do
3 V ← values of the i-th variable for all c ∈ C
4 s← standard deviation of V
5 if s ≤ s̄ then
6 Add i to I
7 end if
8 end forall
9 if I 6= {} then

10 forall c ∈ C do
11 forall variables i ∈ I do
12 r ← random value sampled from Xr ∼ N (0, 1)
13 if i is an integer variable then
14 ci ← ci + rdint
15 else
16 ci ← ci + rdcont(xmax

i − xmin
i )

17 end if
18 end forall
19 Repair the candidate c if necessary
20 end forall
21 end if
22 return c

perturbation a candidate falls out of the bounds of the search space, it is repaired.
After all the candidates are evaluated, the parent population needs to be updated. As depicted

in Algorithm 5, this is done by comparing each candidate c with its parent p and determining
which of them is better. A helper variable u is used to store whether the candidate should replace
its parent. First, the candidate and parent are compared with regard to the dominance relation.
If the candidate dominates the parent, u is set to 1. If the parent dominates the candidate, u is
given the value of 0. If neither of the two relations holds, the parent and candidate are compared
with regard to how much they would contribute to the archive. We use the measure known as the
uncrowded hypervolume improvement [12] denoted here by h to assess their contribution. If a
solution is not dominated by the archive, its h value equals the ‘usual’ hypervolume improvement.
If, on the other hand, the solution is dominated by the archive, h amounts to the negative distance
to the archive.

The comparison with the uncrowded hypervolume improvement occurs as follows. First,
a copy of the archive called A′ is created and used to compute the uncrowded hypervolume
improvement for the parent p. If hA′(p) is positive, this means that the parent is included in
the archive. In order to make the comparison with the candidate fair, we remove the parent
from the temporary archive. Next, we compute the uncrowded hypervolume improvement for
the candidate with regard to the temporary archive A′. The variable u takes on the value 1 if
the candidate’s uncrowded hypervolume improvement is greater than that of the parent and 0
otherwise. If at the end of the procedure u equals 1, the candidate is better than the parent and
replaces it. It is also added to the original archive A (note that such an addition is effective only
if the candidate is not dominated by the archive). Because at the end the true archive is updated,
the next candidate-parent pair will be compared with regard to this new archive. This ensures
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Algorithm 5: Update of the parent population and the archive
Input: Parent population P, candidate population C, archive A
Output: Updated parent population

1 forall pairs (p ∈ P, c ∈ C) do
2 if c ≺ p then
3 u← 1
4 else if p ≺ c then
5 u← 0
6 else
7 A′ ← a copy of the archive A
8 hA′(p)← the uncrowded hypervolume improvement of p with regard to A′
9 if hA′(p) > 0 then

10 A′ ← A′ without the parent p
11 end if
12 hA′(c)← the uncrowded hypervolume improvement of c with regard to A′
13 if hA′(c) > hA′(p) then
14 u← 1
15 else
16 u← 0
17 end if
18 end if
19 if u = 1 then
20 p← c
21 Add c to A
22 end if
23 end forall

that each comparison is performed with maximal information about the state of the archive.
The updating procedure of BBDEMO seems needlessly complex. Note that the steps in lines

2–6 could be removed without affecting its outcome. However, dominance comparisons between
two solutions are computationally cheaper than handling the archive and computing the un-
crowded hypervolume improvement, therefore we added these additional steps to make the al-
gorithm more efficient. Similarly holds for the check performed in line 9.

The implementation of the BBDEMO algorithm is available in Python from https://dis.ijs.
si/tea/research.htm.

4 The new COCO bi-objective test suites

In the last few years, the COCO platform has been extended to include the following new bi-
objective test suites1:

• The bbob-biobj-ext [14] suite extends the bbob-biobj suite by adding combinations of
single-objective functions previously missing from the suite. It contains 92 continuous func-
tions in six dimensions (2, 3, 5, 10, 20, 40) and 15 instances.

• The bbob-biobj-mixint [5] suite consists of mixed-integer problems created by partially
discretizing the continuous problems of the bbob-biobj-ext suite. It also contains 92 func-

1COCO has also recently acquired a number of new single-objective suites, but we omit them here since this report
is focused on bi-objective problems.

8



tions in six dimensions and 15 instances, however the dimensions are higher (5, 10, 20,
40, 80, 160) since 4/5 of the variables are integer.

• The rw-mario-gan-biobj [4] suite contains real-world problems of finding playable levels
for the Mario platform game. It incorporates ten continuous functions in four dimensions
(10, 20, 30, 40) and seven instances. Two of the functions are computed directly, while the
evaluation of the remaining eight functions requires simulations of game play and therefore
takes a longer time to evaluate.

• The rw-top-trumps-biobj [4] suite comprises integer real-world problems of fine-tuning
the values on the cards of a Top Trumps deck. It contains three functions in four dimensions
(88, 128, 168, 208) and five instances. The first function is computed directly, while the
remaining two are calculated based on the simulation results.

The first two suites are available in the COCO platform at https://github.com/numbbo/
coco, while the last two can be accessed from https://github.com/ttusar/coco/tree/gbea.

In the remainder of this report, we limit ourselves to the bbob-biobj-mixint suite.

5 Experimental setup

The experiments were performed on the first five instances of all 92 functions in four dimensions
of the bbob-biobj-mixint test suite. The two algorithms were run for a fixed budget of 2000n
function evaluations where n ∈ {5, 10, 20, 40} is the problem dimension.

While random search has no additional parameters, the parameters of BBDEMO were set as
follows:

• Population size = 20,

• Diversity threshold s̄ = 10−3,

• Perturbation parameter for integer variables dint = 3,

• Perturbation parameter for continuous variables dcont = 10−2.

6 Results

We first show aggregated results in the form of ECDF (Empirical Cumulative Distribution Func-
tion) plots as produced by COCO and then view the results on some of the selected separate
problems in more detail.

6.1 Aggregated results

Figure 1 shows the aggregated results over all functions and the first five instances for each of
the four dimensions.

We can see that at the beginning, BBDEMO performs similarly to random search, which is
understandable, since its first population is created randomly. Then, as the search progresses,
BBDEMOmoves away from random search. The difference between the two algorithms increases
with increasing dimension, due to random search performing poorly in higher dimensions. We
also see that the chosen budget of 2000n function evaluations is not necessarily enough for BB-
DEMO to converge, especially on 40-D problems.

We know the optima of each objective function separately (the two extreme points), but not
the combined Pareto fronts, i.e., the true optima for the problems in the bbob-biobj-mixint

9



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

RS

BBDEMObbob-biobj-mixint f1-f92, 5-D
71 targets: 100..1e-05
4, 5 instances

v2.3.3.472, hv-hash=e643af81350174cb

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS

BBDEMObbob-biobj-mixint f1-f92, 10-D
71 targets: 100..1e-05
4, 5 instances

v2.3.3.472, hv-hash=e643af81350174cb

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS

BBDEMObbob-biobj-mixint f1-f92, 20-D
71 targets: 100..1e-05
4, 5 instances

v2.3.3.472, hv-hash=e643af81350174cb

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS

BBDEMObbob-biobj-mixint f1-f92, 40-D
71 targets: 100..1e-05
3, 5 instances

v2.3.3.472, hv-hash=e643af81350174cb

Figure 1: Empirical cumulative distribution of the number of objective function evaluations di-
vided by dimension for 72 targets with target precision in {10−5, 10−4.9, 10−4.8, . . . , 10−1.9, 102}
for all functions in dimensions n ∈ {5, 10, 20, 40}.

test suite are unknown. Therefore, these plots show the achievement of performance targets
relative to the unachievable optimum of reaching the ideal point. Since the true optima could be
quite different from one function to the next (and sometime this holds for different instances of
the same function), it is hard to compare among themselves these performances over different
functions.

6.2 Separate results

In order to learn more about the performance of BBDEMO, we look at the Pareto front approxi-
mations achieved by both algorithms for some selected separate functions.

Figure 2 shows the performance of BBDEMO and random search in the objective space for the
first instance of function f1 (the double sphere function). We can see that BBDEMO converged
quite well in lower dimensions (the front is smooth and we know that this function has no local
optima that could trap an optimization algorithm, so it must have converged to the Pareto front).
We also see how the distance between the fronts attained by the two algorithms increases with
increased problem dimension.

In some of the 5-D functions, random search is able to get very close to the front discovered
by BBDEMO. An example of this is shown in Figure 3, where we see instances 1 and 2 of the f11
(Separate ellipsoid/Separate ellipsoid) function. On a few of the harder functions, for example
f87 (101-peaks Gallagher/21-peaks Gallagher) presented in Figure 4, the fronts by random search
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Figure 2: Pareto front approximations in objective space for the first instance of the Sphere/
Sphere function (f11) in dimensions n ∈ {5, 10, 20, 40}.
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Figure 3: Pareto front approximations in objective space for the first two instances of the Sphere/
Sphere function (f1) in 5-D.

and BBDEMO are non-dominated. This rarely happens in dimensions higher than five.
In dimensions larger than ten, the results achieved by the two algorithms differ so much that

11



0 10 20 30 40 50 60

300

310

320

330

340

350

360

370

bbob-biobj-mixint
f=87 i=1 d=5

RS
BBDEMO

370 360 350 340 330 320
50

60

70

80

90

100

110

120

bbob-biobj-mixint
f=87 i=2 d=5

RS
BBDEMO

130 140 150 160 170 180
50

40

30

20

10

0

10

20

30

bbob-biobj-mixint
f=87 i=3 d=5

RS
BBDEMO

60 50 40 30 20

150

140

130

120

110

100

90

80

70

bbob-biobj-mixint
f=87 i=4 d=5

RS
BBDEMO

120 130 140 150 160 170

110

120

130

140

150

160

170

180

bbob-biobj-mixint
f=87 i=5 d=5

RS
BBDEMO

Figure 4: Pareto front approximations in objective space for instances four and five of the 101-
peaks Gallagher/21-peaks Gallagher function (f87) in 5-D.
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Figure 5: Pareto front approximations in objective space for the first instance of the Ellip-
soid/Discus function (f70) in 40-D. On the left hand side, the unscaled objective space and on
the right hand side, differences to the best points achieved in logarithmic scale.

we need to use a logarithmic scale in the objective space (showing the difference from the best
point achieved) in order to be able to zoom in on BBDEMO’s performance. See Figure 5 for the
performance by the two algorithms on the first instance of f70 (Ellipsoid/Discus) in 40-D. Based
on the front ruggedness we can speculate that BBDEMO has not yet converged to the Pareto front
on this problem.

7 Conclusions

We have introduced the BBDEMO algorithm that generates solutions similarly to the single-
objective BBDE algorithm and compares them using the uncrowded hypervolume improvement.
We have shown its results on the recently proposed bbob-biobj-mixint suite of mixed-integer
test functions using random search as a baseline. Since at present a good approximation of the
Pareto sets and fronts for these problems is still unknown, we cannot know how well BBDEMO is
doing. These first results can nevertheless be very useful for future benchmarking studies.
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