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ABSTRACT
Although the motivation to study multiobjective optimiza-
tion algorithms comes from practice, there are only a few
challenging real-world problems freely available to the re-
search community. Because of this, algorithm benchmarking
is performed primarily on artificial test problems. The most
popular artificial test problems have characteristics that are
not well-represented in real-world problems. This and the
predominant inadequate performance assessment methodol-
ogy widen the gap between theory and practice in the field
of multiobjective optimization. The paper suggests to in-
stead compare the algorithms with the anytime performance
benchmarking approach of COCO (the Comparing Continu-
ous Optimizers platform) on more realistic artificial problem
suites as well as suites with diverse real-world problems. By
listing the benefits of sharing the real-world problems with
the community, the paper hopes to encourage domain ex-
perts to embrace this practice.
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1. INTRODUCTION
Most real-world optimization problems found in science and
engineering are inherently multiobjective. For example, the
task of many engineering design problems is to find solutions
of high quality and low cost. Such problems seldom have a
single solution (called the ideal solution) that would opti-
mize all objective simultaneously. Rather, they have (possi-
bly infinitely) many Pareto-optimal solutions that represent
different trade-offs among the objectives. These solutions
form the so-called Pareto set in the decision space and Pareto
front in the objective space.

Evolutionary Multiobjective Optimization (EMO) [4] is one
of the most active research areas that deal with multiobjec-
tive problems. It studies algorithms that make no assump-
tions on the properties of the optimization problems, such
as linearity, continuity and unimodality, and are therefore
applicable to a variety of problems, including black-box op-
timization ones. EMO algorithms have successfully solved
numerous challenging real-world optimization problems [3].

Nevertheless, there is a large gap between theory and prac-
tice in the EMO field (stemming from the one in Evolution-
ary Computation [18]), which is widened by the dominat-
ing (inadequate) paradigm of algorithm performance assess-

ment. The artificial test problems that are being consis-
tently used for benchmarking EMO algorithms have charac-
teristics that are not representative of real-world problems.
They also fail to incorporate the peculiarities of real-world
problems, which means that the algorithms need additional
adjustments before they can be applied to real-world prob-
lems [8]. Furthermore, most studies do not investigate the
influence of the problem dimension on the performance of
the algorithms and the performance assessment is often done
only at a predefined number of evaluations. This makes it
hard to predict which algorithm will perform best on a par-
ticular real-world problem when less evaluations are allowed
than the (high) numbers usually used in the studies.

The COCO platform [2, 10] resolves many of these issues
by providing an alternative to the overused test suites and a
more rigorous approach to algorithm benchmarking. How-
ever, in order to bridge the gap between theory and prac-
tice, multiobjective optimization algorithms should be stud-
ied and compared not only on well-understood and easy-to-
compute artificial functions, but also on real-world problems
with various characteristics. Currently, only a small num-
ber of challenging real-world problems are freely available
to the EMO community, which hinders the development of
algorithms that could be used ‘off the shelf’.

The purpose of this paper is to show the advantages of
benchmarking algorithms on real-world problems and to en-
courage domain experts to share their hardest problems with
the researchers to their mutual benefit.

In the remainder of the paper, we first recall the purpose of
algorithm benchmarking (Section 2). Then, we review the
existing practice of benchmarking multiobjective optimiza-
tion algorithms on artificial test problems and remind of an
available alternative in the form of the COCO platform (Sec-
tion 3). Next, we mention some real-world problems that
have been made publicly available, discuss the benefits of
sharing real-world problems and give recommendations for
proposing new real-world problems and performing bench-
marking with them (Section 4). We conclude with some
closing remarks (Section 5).

2. THE PURPOSE OF ALGORITHM
BENCHMARKING

The no free lunch theorem implies that no optimization algo-
rithm performs best for all possible problems [22]. The ob-
served differences in performance are due to the (more/less)
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successful adaptation of the algorithms to the problem land-
scapes [12]. It is therefore crucial that the test problems used
in comparison studies have characteristics that are represen-
tative of real-world problems.

Algorithm benchmarking, either when comparing variants
of the same algorithm or a novel algorithm to an established
one, can be used to gain an understanding of the algorithms
at hand. However, the ultimate purpose of algorithm bench-
marking is to find the algorithm that is expected to perform
best for a specific target problem—a real-world problem of
interest. This entails that we have

(a) some knowledge about the characteristics of the target
problem,

(b) information on the performance of a number of algo-
rithms on test problems with similar characteristics as
those of the target problem, and

(c) an understanding of what best is, i.e., we can define
and measure the desired algorithm performance.

Then, machine learning methods can be used to select the
most appropriate algorithm for the given target problem [16].

3. USING ARTIFICIAL PROBLEMS FOR
ALGORITHM BENCHMARKING

Benchmarking multiobjective algorithms on artificial opti-
mization problems has several advantages. The evaluations
are cheap (computed instantaneously), the characteristics
of the problems can be controlled, and the problems can be
implemented in any programming language. If constructed
with care, the artificial problems can be scaled in the num-
ber of decision variables, constraints and objectives, and the
Pareto sets and fronts can be known, which considerably
facilitates performance assessment.

The main question when using artificial test problems for
benchmarking algorithms is whether they are good repre-
sentatives of real-world problems.

3.1 Issues with the Prevailing Benchmarking
Methodology

Since the introduction of the DTLZ [6] and WFG [13] test
suites in 2001 and 2006, respectively, the vast majority of
studies in EMO have been comparing algorithms on one or
both of these two suites. In fact, they have been overused
to such a degree that we can speculate on overfitting of op-
timization algorithms to these problems. This is especially
concerning because they have some properties that are ben-
eficial when designing test suites, but are not likely to be
found in real-world problems. For example, in order have
a known Pareto set and a controllable shape of the Pareto
front, the problems are parameterized by two sorts of vari-
ables: distance variables, which indicate the distance of a so-
lution from the Pareto front, and position variables, which
indicate the position of a solution along the Pareto front.
The resulting Pareto sets and fronts are much easier to work
with than the irregularly shaped real-world ones.

Many real-world problems have additional difficulties, such
as constraints or a mixed-integer decision space. While there
are some multiobjective test suites with constraints, for ex-

ample the C-DTLZ test suite [15], there is no established
test suite containing mixed-integer problems with multiple
objectives.

Furthermore, although the problems from the mentioned
suites are scalable in the number of variables (the problem
dimension) and the number of objectives, performance stud-
ies rarely investigate the scaling of the algorithms with the
problem dimension. This is usually simply fixed to a value
(often 30), while the number of objectives is being changed.
Such an approach to performance assessment is problematic
as it disregards one of the most defining characteristics of a
problem—its dimension.

Finally, most studies compare the performance of the al-
gorithms only at a specific point in time, determined by
the number of function evaluations. Because they provide
no data on the performance of the algorithms prior to that
moment, the findings of such studies cannot be used to in-
fer algorithm performance when less evaluations are avail-
able, making them effectively useless for the main purpose
of benchmarking mentioned earlier.

3.2 Benchmarking with the COCO Platform
COCO (Comparing Continuous Optimizers) [2, 10] is an
open-source platform for benchmarking black-box optimiza-
tion algorithms. It implements different test problem suites
and provides an anytime performance assessment method-
ology that is in line with the purpose of benchmarking as
described in Section 2. Furthermore, COCO incorporates
the results of various optimization algorithms on its tests
suites that are regularly being collected at BBOB (Black-
Box Optimization Benchmarking) workshops [1] and can be
readily used for comparisons with new algorithms.

In addition to singleobjective test suites, such as the estab-
lished bbob suite [11], COCO currently provides two test
suites with biobjective problems, bbob-biobj with 55 func-
tions and its extended version bbob-biobj-ext with 92 func-
tions [21], each instantiated in six dimensions (n ∈ {2, 3, 5,
10, 20, 40}) and ten instances (small alterations of the func-
tion, such as shifts, etc.). Every biobjective function is con-
structed using two separate bbob functions—one for each
objective. This approach is motivated by the nature of real-
world multiobjective problems, where each objective corre-
sponds to a separate singleobjective function. It is there-
fore closer to real-world conditions than the constructions
with distance and position variables used by the DTLZ and
WFG test suites. However, this approach results in unknown
Pareto sets and fronts, which is not convenient for perfor-
mance assessment purposes. In order to alleviate this issue,
COCO provides approximations of the Pareto fronts for all
problems, collected during several runs of various EMO al-
gorithms. These can be used in plots to showcase the charac-
teristics of the Pareto fronts and to compute the best known
hypervolume [23] values for these problems.

The anytime performance assessment approach from COCO
is based on the notion of runtime, i.e., the number of function
evaluations needed to achieve a target hypervolume (see [9]
and [21] for more details). This makes it possible to study
the results for each problem separately as well as aggregate
them over all problems in a suite. For example, the plot
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Figure 1: Bootstrapped empirical cumulative dis-
tribution of the number of objective function
evaluations divided by dimension for 58 targets
with target precision in {100, 10−0.1, . . . , 10−4.9, 10−5, 0,
−10−5,−10−4.8, . . . ,−10−4.2,−10−4} for 16 algorithms
on all 5-D functions of the bbob-biobj test suite.

in Figure 1 shows the proportion of targets (on the y axis)
that an algorithm is expected to achieve given the number
of function evaluations (divided by the problem dimension,
on the x axis). The plot presents the results aggregated over
all instances of the 5-D functions of the bbob-biobj suite.
Note that such plots allow to compare the performance of
algorithms that were run using a different budget of function
evaluations (up to the minimal common budget).

The COCO platform could similarly be used to benchmark
real-world problems.

4. USING REAL-WORLD PROBLEMS FOR
ALGORITHM BENCHMARKING

4.1 Availability of Real-World Problems
Real-world problems can be separated into those whose ob-
jectives and constraints can be given in an analytic form and
others that are truly black-box problems, for example those
that require complex computations or simulations to evalu-
ate the functions and constraints of the problem. Note that
as soon as one function or constraint behaves like a black
box, the entire problem is considered to be a black box.

There are quite a few multiobjective real-world problems
of the first type, i.e., with a known analytic form. See for
example the problems from [5], [7] and [20]. Similarly to
the artificial problems, they can be evaluated quickly and
implemented in any programming language. However, as
recently shown in [20], many such problems are not chal-
lenging enough to distinguish between algorithms and can
therefore be useful for benchmarking purposes only in test
suites containing other, harder problems.

On the other hand, there are also many black-box real-world
problems from various domains, but only a few of them are
freely available to EMO researchers. Here, we briefly men-

tion three that are of different nature, but are very demand-
ing and therefore suitable for algorithm benchmarking:

• The Radar Waveform problem has an integer decision
space that can be scaled from four to 12 decision vari-
ables, and nine objectives [14].

• The HBV Benchmark Problem consists of calibrating
the HBV rainfall–runoff model [19]. It has 14 real-
valued decision variables and four objectives.

• The recently proposed Mazda Benchmark Problem [17]
is a car structure design optimization problem with
222 integer decision variables, two objectives and 54
constraint functions that make it hard to find a feasible
solution.

There are multiple reasons why only a few black-box real-
world problems are being publicly shared. Sometimes, the
companies that have such problems hide them to protect
their trade secrets. Other times, the reasons are of an im-
plementation nature, for example because some proprietary
software is needed to perform the evaluations. It is also pos-
sible that people do not make their problems public simply
because they see no benefit in doing so.

Most of these issues can be amended. If the domain ex-
perts wish to keep the details of the problem hidden, this
can be achieved by sharing an executable program without
the source code. If the companies fear that their competitors
could retrieve useful information already from how the prob-
lem is defined, a simple linear transformation can be used
to transform a box-constrained continuous decision space to
[0, 1]n without affecting the nature of the problem landscape
(an integer or mixed-integer decision space can be handled
in a similar way). Although the least noteworthy, some im-
plementation issues can be hardest to bypass. The best way
might be to use freely available software instead of the pro-
prietary one (this, of course, might not always be possible).
If conceivable, time-consuming evaluations using specialized
software can be replaced by surrogate models as was done,
for example, in [17].

4.2 Benefits of Sharing Real-World Problems
Suppose a real-world problem is interfaced with the COCO
platform and used in the BBOB workshops to benchmark
multiobjective algorithms. This means that the researchers
not only run their algorithms on the problem, but also sub-
mit their results to COCO for use in future comparisons.
The first and most obvious benefit of such a setting is that
the interested EMO community would most likely find bet-
ter solutions to the problem in question than a single team
of researchers. Next, if the problem has some characteris-
tics that are not well-represented in artificial test problems,
such as a mixed-integer decision space, sharing such a prob-
lem will motivate the researchers to adapt their algorithms
to its characteristics. This means that in time, there will
be more versatile algorithms for these kinds of problems to
choose from. Finally, it is likely that in the future, the same
experts who shared this problem, will face another problem
of similar nature. Then, the algorithms that performed best
on the original problem might be readily used on the future
alternative versions of this problem.
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4.3 Recommendations
When proposing real-world benchmark problems, domain
experts should try to make them as flexible as possible. Ide-
ally, it should be possible to instantiate them in a few differ-
ent dimensions and also to create some instances of the same
problem (minor modifications that do not change the nature
of the problems). In addition to providing better grounds
for performance assessment, this might also help to better
understand the problems in question.

When benchmarking EMO algorithms, artificial test suites
with properties reflective of the real-world problems should
be used in order to gain understanding about the algorithms.
In addition, the algorithms should also be tested on real-
world problems to show their applicability in practice. Since
real-world problems come from various domains and might
have particular characteristics, the algorithms should be run
on suites of real-world problems from different domains.

5. CONCLUSIONS
This paper reviewed the many drawbacks of the existing
practice of benchmarking multiobjective algorithms with the
over-used DTLZ and WFG test suites. Using the COCO
platform most can be amended, but the performance assess-
ment is still being done solely on artificial problem functions.
The paper proposes to benchmark algorithms using COCO’s
anytime performance assessment on suites of real-world al-
gorithms in addition to the artificial ones. Some benefits of
sharing real-world problems with the EMO community are
presented in hope to encourage greater exchange of knowl-
edge between academia and industry.
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