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Abstract We are concerned with the estimation of copper-graphite joints quality
in commutator manufacturing—a classification problem in which we
wish to detect whether the joints are soldered well or have any of the
four known defects. This quality control procedure can be automated by
means of an on-line classifier that can assess the quality of commutators
as they are being manufactured. A classifier suitable for this task can
be constructed by combining computer vision, machine learning and
evolutionary optimization techniques. While previous work has shown
the validity of this approach, this paper demonstrates that the search
for an accurate classifier can lead to overfitting despite cross-validation
being used for assessing the classifier performance. We inspect several
aspects of this phenomenon and propose to use repeated cross-validation
in order to amend it.

Keywords: Computer vision, Differential evolution, Machine learning, parameter
tuning, Manufacturing, Quality control.
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1. Introduction

In automotive industry, only one part per million of supplied products
is allowed be defective, which yields strict requirements for the involved
manufacturing processes as well as their quality control procedures. We
are interested in the manufacturing of graphite commutators (i.e., com-
ponents of electric motors used, for example, in automotive fuel pumps)
produced at an industrial production plant. More specifically, we wish
to automatically assess the quality of copper-graphite joints in commu-
tators after the soldering phase of this manufacturing process, which is
one of the most critical phases of commutator production.

At present, the soldering quality control at the plant is done manually.
Automated on-line quality control would bring several advantages over
manual inspection. For example, it can promptly detect irregularities
making error resolution faster and consequently saving a considerable
amount of resources. Moreover, it does not slow down the production
line and is cheaper than manual inspection. Finally, it does not suffer
from fatigue and other human factors that can result in errors. This is
why we aim for an automated on-line quality control procedure capable
of determining whether the joints are soldered well or have any of the
four known defects.

Such automation can be implemented on the production line with a
classifier previously constructed on a database of commutator segment
images with known defects (or absence of defects). Three previous stud-
ies [3, 4, 5] have already tackled this problem and in all cases 10-fold
cross-validation (CV) was used as a measure of classifier accuracy. This
work questions 10-fold CV as the measure of choice for such tasks and
proposes actions to deal with the inevitable overfitting issue.

The rest of the paper is structured as follows. Section 2 presents de-
tails of the problem in question, summarizes previous work and outlines
the design of the quality control procedure used in this study. Section
3 is devoted to cross-validation and the overfitting issue. Performed ex-
periments and their results are discussed in Section 4. Finally, Section
5 summarizes the paper and gives ideas for future work.

2. Background

2.1 Soldering in Commutator Manufacturing

The soldering phase in the commutator manufacturing process con-
sists of soldering the metalized graphite to the commutator copper base.
The quality of the resulting copper-graphite joints is crucial since the
reliability of end user applications directly depends on the strength of
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Figure 1: Images of: (a) a graphite commutator, (b) a commutator segment, (c) a
ROI for metalization defect, (d) a ROI for excess of solder, (e) a ROI for deficit of
solder, and (f) a ROI for disorientation.

these joints. After the soldering phase, the commutators are manually
inspected for presence of any defects. Known defects comprise metaliza-
tion defect (presence of visible defects on the metalization layer), excess
of solder (presence of solder spots on the copper pad), deficit of solder
(lack of solder in the graphite-copper joint) and disorientation (disori-
entation between the copper body and the graphite disc). Commutators
are made up of a number of segments, depending on the model (the con-
sidered commutator model from Fig. 1 (a) consists of eight segments).
If a single segment has any of the listed defects, the whole commutator
is labeled as defective and removed from the production process.

Various defects occur in different regions of the commutator segment.
For example, the region where the excess of solder is usually detected is
different from the region where disorientation can be observed. There-
fore, images of commutator segments can be divided into four regions of
interest (ROIs), one for each defect (see Fig. 1).

Because five different outcomes are possible (rare cases where two or
more defects appear on a single commutator segment are labeled with
just one defect and are not differentiated further), we treat this as a
classification problem with five classes. While the manufacturers are
indeed interested in keeping statistics of the detected defects, their main
concern is that no false positives are found. This means that cases when
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a defective commutator is labeled as without defects are to be avoided
as much as possible. This is, of course, very hard to achieve.

2.2 Previous Work

Three previous studies investigated different aspects of this challeng-
ing real-world problem. The initial experiment [4] explored whether
computer vision, machine learning and evolutionary optimization tech-
niques could be employed to find small and accurate classifiers for this
problem. First, images of the copper-graphite joints were captured by
a camera. Next, a fixed set of features were extracted from these im-
ages using digital image processing methods. This data were then used
to train decision trees capable of predicting if a commutator segment
has any of the four defects or is soldered well. The DEMO (Differential
Evolution for Multiobjective Optimization) algorithm [12] was applied
to search for small and accurate trees by navigating through the space
of parameter values of the decision tree learning program. The study
found this setup to be beneficial, but urged to focus future research on
more sophisticated extraction of features from the images as this seemed
to hinder the search for more accurate classifiers.

The second study [5] presented a different setup for the automated
quality control procedure to address the issues from the first study. In-
stead of optimizing decision tree parameter values, differential evolution
(DE) [13] was used to search for the best settings of image processing
parameters such as filter thresholds. Tuning of these parameters can be
a tedious task prone to bias from the engineers that usually do it by
trial-and-error experimentation. Moreover, the choice of right features
is crucial for obtaining a good classifier.

The single classification problem with five classes was split into four bi-
nary classification subproblems, where each subproblem was dedicated to
detecting one of the four defects and used data only from the correspond-
ing ROI. In addition, instead of classification accuracy, the measure to be
optimized was set to a function penalizing the portion of false negatives
100 times harder than the portion of false positives. The study found
that the new combination of computer vision, machine learning and
evolutionary optimization techniques was powerful and achieved some
good results. While optimization with DE always found better parame-
ter settings for image processing methods than those defined by domain
experts, some subproblems proved to be harder than others. For exam-
ple, detection of commutator segments with excess of solder achieved
a satisfactory accuracy, while the detection of metalization defects did
not.
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The third study [3] investigated the correctness of the implicit assump-
tion from [5] that only features of the subproblem-specific ROI would
influence the outcome of the classifier for that subproblem. The study
found that features from other ROIs can be important as well, suggest-
ing that it might be better not to split the classification problem into
subproblems at all.

While being otherwise rather different, all three mentioned studies
used 10-fold CV to estimate the performance of the employed classifiers.
In this paper we wish to test if such evaluation of classifiers is appropriate
when performing optimization based on this measure.

2.3 Design of the Automated Quality Control
Procedure

The automated quality control procedure considered in this paper is
very similar to the one presented in [5]. Again computer vision, machine
learning and evolutionary optimization methods are combined in the
search for the best settings for image processing parameters. In short,
the procedure design consists of the following steps:

1 Determine a set of image features.

2 Use an evolutionary algorithm to search for the values of image
processing parameters that result in the highest fitness. Evaluate
each solution using these steps:

(a) Based on the chosen parameter values, use the image process-
ing methods to convert each image of a commutator segment
into a vector of feature values.

(b) Construct a classifier (in our case a decision tree) where the
vectors of feature values serve as learning instances. Estimate
the classifier accuracy and use this value as solution fitness.

3 Choose the best found classifier and the corresponding image pro-
cessing parameter values to detect defects in images of new com-
mutator segments as they are being manufactured.

Let us now describe the steps of processing commutator segment im-
ages, building decision trees and optimizing classifier performance in
more detail.

2.3.1 Processing commutator segment images. Processing
of images is the most time-consuming task of our procedure and is done
in several steps. First, the image of a commutator segment needs to
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be properly aligned. Next, the four ROIs shown in Fig. 1 need to be
detected. This is done by applying four predefined binary masks to
the image, one for each ROI. Each of the ROIs is further processed as
follows. Depending on the ROI, the image in RGB format is converted
into a gray-scale image by extracting a single color plane. Based on
expert knowledge, red is used for all ROIs except the ROI for excess of
solder, which uses the blue color plane.

The final three steps require certain parameters to be set. A 2D me-
dian filter of size 1× 1, 3× 3 or 5× 5 is applied to reduce noise. Next, a
binary threshold that can take values from {1, 2, . . . , 256} is used to elim-
inate irrelevant pixels. Finally, an additional particle filter is employed
to remove all particles (connected pixels with similar properties) with
a smaller number of pixels than a threshold value from {1, 2, . . . , 1000}.
Note that because of the diversity of the defects, it is reasonable to
assume that these three image processing parameters should be set in-
dependently for each ROI. This means that in total 12 image processing
parameters need to be set.

After these image processing steps, the chosen set of features are ex-
tracted from the image of each ROI. We use the same set of features as
in [5, 3]:

– number of particles,

– cumulative size of particles in pixels,

– maximal size of particles in pixels,

– minimal size of particles in pixels,

– gross/net ratio of the largest particle,

– gross/net ratio of the cumulative size of particles.

To summarize, computer vision methods are used to convert each
commutator segment image into a vector of 24 feature values.

2.3.2 Building decision trees. Commutator segment images
with known classes are used to construct a database of instances, upon
which a machine learning classifier can be built. We chose decision
trees since they are easy to understand and implement in the on-line
quality control procedure. In accordance with the guidelines from [3],
we do not split the machine learning problems into subproblems, but use
all instances and all ROIs to build a single classifier with five classes:
no defect, metalization defect, excess of solder, deficit of solder and
disorientation.

Note that the classifier predicts defects on commutator segments. For
the final application, predictions for all segments of a commutator need
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to be aggregated in order to produce a prediction for the commutator as
a whole. While this might be straightforward to do, it is not the focus
of this paper. We first wish to find good classifiers on the segment level
before dealing with any meta-classifiers.

2.3.3 Optimizing classifier performance. Classifier perfor-
mance can be measured in several ways, ranging from classification ac-
curacy to the F-measure to other, even custom functions that depend
on the domain (as was done for the two-class case in [5]). While we
acknowledge that a similar custom function would be beneficial also for
our five-class problem, where false ‘no defect’ classifications bear more
serious consequences than other types of misclassifications, classification
accuracy is chosen for now, since it is easier to interpret. Classification
accuracy is estimated with 10-fold CV, which is a popular technique for
predicting classifier performance on unseen instances and has been used
also in the three previous studies [4, 5, 3].

In order to find the values of image processing parameters that will
result in a classifier with high accuracy, an evolutionary algorithm is
employed to search in the 12-dimensional space of image processing pa-
rameter values.

3. The Pitfalls of Overfitting

When building a classifier, some of the data is used for training the
classifier, while the rest is used for testing its performance. Ideally, we
would like both sets to be fairly large, since a lot of data is needed to
train a classifier well, and a lot of data is needed to truthfully predict
how it will perform on unseen instances. However, in reality, the data is
often scarce and certain compromises need to be made.

One of the most popular approaches to estimate classifier performance
is k-fold cross-validation, where the data is split into k sets of approx-
imately equal cardinality. Next, k − 1 of the sets are used for training
the classifier, while the remaining set is used for testing its performance.
This is repeated k times so that each set is utilized for testing exactly
once. The average of all performance results is then used to estimate
the accuracy of the classifier built on the entire data.

This and other cross-validation techniques (see [1] for a survey) were
envisioned in order to avoid overfitting, i.e., constructing classifiers that
describe noise in the data instead of the underlying relationships, since
a classifier that overfits the training data performs poorly on unseen
instances. This happens, for example, if the classifier is too complex.
However, it has been long known [6] that there exists another source
of overfitting that takes place despite cross-validation—if we compare a
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high number of classifiers on a small set of instances, the best ones are
usually those that overfit these instances.

This means, for example, that if an optimization algorithm that can
produce thousands or even millions of solutions is used to find the best
classifier for a problem, this best found classifier almost surely overfits
the test data. Note however, that our study does not compare multiple
classifiers on the same data. Our optimization problem resembles more
that of feature selection where a subset of features needs to be found so
that classifiers using these features will achieve good performance. The
main difference to the standard feature selection is that we are perform-
ing feature selection in subgroups—for each of the 12 image processing
parameters (one subgroup) we need to select exactly one among all pos-
sible values. The danger of overfitting despite using cross-validation has
been noticed for feature selection problems as well [11].

In the following we present the results achieved with 10-fold CV for
estimating classifier performance on our optimization problem, which
show overfitting patterns, and analyze increased pruning and repeated
cross-validation as possible alternatives to amend this issue.

4. Experimental Study

4.1 Experimental Setup

The experiments were performed on the commutator soldering domain
from previous studies that contains 363 instances with uneven distribu-
tion of classes (see Table 1).

Table 1: The commutator soldering domain.

Class Number of instances Frequency [%]

No defect 212 58.4
Metalization defect 35 9.6
Excess of solder 35 9.6
Deficit of solder 49 13.5
Disorientation 32 8.8

Total 363 100.0

All computer vision methods were implemented using the Open Com-
puting Language (OpenCL) [7], or more precisely, the OCL program-
ming package [8], an implementation of OpenCL functions in the Open
Computer Vision (OpenCV) library [9].
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The decision trees were built using the J48 algorithm from the Weka
machine learning environment [16], which is a Java implementation of
Quinlan’s C4.5 decision tree building algorithm [10]. The trees were
constructed with default J48 parameter values except for the increased
pruning case (more details are given in Section 4.3).

For optimization we use a self-adaptive DE algorithm called jDE [2]
with a population of 80 solutions. The stopping criterion for the algo-
rithm was set to 1000 generations. For each set of experiments nine runs
have been performed and all presented results show the average values
over the nine runs.

4.2 Results of Single Cross-Validation

First, we look at what happens when single 10-fold CV is used to
estimate classifier accuracy (see top plot in Fig. 2). The black line shows
that jDE is able to find increasingly more accurate classifiers as the
evolution progresses. In order to check if these classifiers present signs of
overfitting, we perform the following additional assessment. For each run
and each best classifier from the population, we estimate the classifier
using 10-fold CV ten more times. The span of these accuracies averaged
over the nine runs is presented in red.

The increasing gap between the black line and the red area means
that classifiers that are good on the default split of instances into cross-
validation sets perform considerably worse when they are tested again on
ten different cross-validation splits, i.e., the classifiers overfit the default
cross-validation split. This happens because we are exploring a large
number of classifiers and incidentally optimize them also with regard to
the default cross-validation split.

Note that this kind of overfitting is different to the ‘usual’ one, where
the classifier overfits the given instances. While we are probably experi-
encing both, we cannot know about the second one without testing the
classifiers on a large number of unseen instances, which we unfortunately
do not posses. We have experimented with reserving a small part of data
for validation purposes as was done in [14], but found that this approach
is not suitable for our case because of the small number of instances at
our disposal. Since we have five classes with uneven distribution of
instances, it proved very difficult to find representative instances for val-
idation. Without a representative validation set the resulting estimation
of overfitting can be too biased to rely on.
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Figure 2: Experimental results of single cross-validation (top plot), increased pruning
(middle plot) and repeated cross-validation (bottom plot). The black line shows
the best classification accuracy found by jDE, while the red and yellow ares denote
the span of accuracy values when the current-best classifier is re-estimated using
additional cross-validation. All plots show average values over nine runs.
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4.3 Results of Increased Pruning

Next, we investigate whether increased pruning of decision trees can
help improve their generalization ability in our case. Note that the
original decision trees (the J48 trees with default parameter settings)
used in the previous experiments were also pruned. Here, we intensify
the pruning by increasing the m parameter of the J48 algorithm that
defines the minimal number of instances in any tree leaf from 2 to 5. The
results of these experiments are presented in the middle plot in Fig. 2.

While the gap between the single cross-validation and the re-estimation
using repeated cross-validation is smaller than in the previous experi-
ments, the overfitting is still obvious. We can conclude that increased
pruning does not alleviate much the overfitting brought by optimization.

4.4 Results of Repeated Cross-Validation

Finally, we explore the case when the fitness of the decision trees built
with default parameter values is determined as the average of 10 different
assessments by 10-fold CV. Again, we perform an additional assessment
of the classifiers. This time we add to the repeated cross-validation 20
new estimations (for a total of 30) to see how they compare. The bottom
plot in Fig. 2 shows there are no big differences when additional cross-
validation results are added, indicating that repeated cross-validation
is less prone to overfitting brought by optimization than single cross-
validation. The average accuracy of the current-best classifiers over 10
and 30 repetitions are very similar, which suggests 10 repetitions can be
chosen over 30 as they require less time.

These results seem to contradict the ones presented in [15], however
this is not the case. In a series of experiments, [15] compares the esti-
mates of classification accuracy from single 10-fold CV, 10-fold CV re-
peated 10 times and 10-fold CV repeated 30 times to a simulated ‘true’
performance of the classifier on unseen data. The results show that al-
though the confidence interval narrows when increasing the number of
cross-validation repetitions, this does not necessarily mean that the ac-
curacy estimate will converge to the ‘true’ accuracy. The authors argue
that the reason for this behavior is that the same data is continuously
being resampled in repeated cross-validations. The experiments in [15]
tackle the ‘usual’ overfitting problem, which is not the subject of this
paper. We are concerned with the overfitting brought by optimization
and find that repeated cross-validation can alleviate it.
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5. Conclusion

We have presented a challenging real-world problem of estimating the
quality of the commutator soldering process. We wish to find a classifier
able to distinguish among joints soldered well and those that have one of
the four possible defects. The problem is tackled using a combination of
computer vision, machine learning and evolutionary optimization meth-
ods. In essence, we are searching for parameter settings of computer
vision methods that can yield a highly accurate classifier.

Since an optimization algorithm that explores a large number of so-
lutions to this problem is being used, we have been confronted with the
problem of overfitting. We performed some experiments that have shown
how overfitting can be detected and discussed on possible ways to amend
it. From the results we conclude that repeated cross-validation can be
used to diminish the overfitting bias brought by optimization. However,
this results cannot be generalized to other machine learning problems
without additional experiments that include a number of other datasets.
This is a task left for future work.

The presented real-world problem is not yet solved and we can see
many directions for future work. First, since the accuracies achieved
are still not good enough for automotive industry standards, our main
focus will be to try to improve on that (possibly by not producing even
more overfitting). This can be tried, for example, by choosing other
image features in addition to the six we have right now, or by trying
more sophisticated classifiers than decision trees. Also, we intend to
consider other measures of classifier performance beside accuracy. For
example, we could use a specialized aggregation function or try to use
a multiobjective approach. Finally, we will have to eventually combine
the classifications of individual commutator segments into a single clas-
sification of the commutator as a whole.
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