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Most real-world engineering optimization problems are inherently multiobjective, for example, searching for trade-off solutions
of high quality and low cost. As no single optimal solution exists for such problems, multiobjective optimizers provide sets of
optimal (or near-optimal) trade-off solutions to choose from.The empirical attainment function (EAF) is a powerful tool that can
be used to analyze and compare the performance of these optimizers. While the visualization of EAFs is rather straightforward
in two objectives, the three-objective case presents a great challenge as we need to visualize a large number of 3D cuboids. This
paper addresses the visualization of exact as well as approximated 3D EAF values and differences in these values provided by
two competing multiobjective optimizers. We show that the exact EAFs can be visualized using slicing and maximum intensity
projection (MIP), while the approximated EAFs can be visualized using slicing, MIP, and direct volume rendering. In addition, the
paper demonstrates the use of the proposed visualization techniques on a steel casting optimization problem.

1. Introduction

When solving engineering optimization problems it is usually
not enough to find the best solution with regard to single
measure of quality, but other objectives, such as other mea-
sures of quality, robustness of the solution or its cost, can be
important too. While traditional approaches were used to
combine all these heterogeneous objectives into a single one
and solve the resulting singleobjective optimization problem,
in the last two decades a lot of research has been directed
into developing algorithms able to tackle these problems in
their true multiobjective form. Most notably, multiobjective
evolutionary algorithms (MOEAs) have proven to be effective
in solving such problems [1, 2].

A MOEA provides a set of trade-off solutions where no
solution from the set is better than any other in all objectives.
This is called an approximation set and MOEAs typically
return a different approximation set in every run. If the per-
formance of aMOEAneeds to be analyzed or compared to the
performance of another algorithm, several differentmeasures
can be adopted [3]. Nevertheless, visualization of approxima-
tion sets can give an important insight into the properties of

the algorithms (or the problem at hand) and is often used
in this regard. While simple scatter plots can visualize 2D
and 3D approximation sets (approximation sets of higher
dimensions that require more sophisticated methods to be
visualized will not be discussed in this paper—the interested
reader is referred to [4] for a comprehensive review of such
methods), scatter plots of multiple approximation sets can
become too cluttered and loose their interpretation potential.
The empirical attainment function (EAF), which assigns to
each vector in the objective space a value signifying how
often the vector was attained by the given approximation sets,
can be used instead [5]. Visualization of 2D EAFs entails
plotting of rectangles in different colors (or shades of gray)
corresponding to EAF values or differences in EAF values and
is rather straightforward to do.

This paper focuses on the visualization of EAFs in the 3D
case, which is more demanding than the 2D case since a large
number of cuboids or rather unions of cuboids need to be first
computed and then visualized. Building on some previous
work [6, 7], we present how the visualization of exact EAFs
cuboids can be done using slicing (showing the 2D images
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Figure 1: Flowchart of EAF visualization depending on the preferences.

obtained by slicing the cuboids at different angles) and max-
imum intensity projection (MIP) [8]. However, if exactness
is not crucial, the 3D objective space can be approximated
using a grid of voxels, that is, values in a 3D grid. The paper
introduces the idea of visualizing approximated EAFs using
slicing, MIP, and direct volume rendering (DVR) [9]. A
flowchart explaining the connections among these methods
is shown in Figure 1. Finally, we demonstrate the use of the
proposed methods on steel casting optimization problem.

The paper is organized as follows. Section 2 details the
background and related work, while Section 3 introduces the
benchmark approximation sets that are used in the rest of
the paper. Visualization of exact and approximated EAFs is
presented in Sections 4 and 5, respectively, and summarized
in Section 6.The steel casting use case is depicted in Section 7.
The paper concludes with final remarks in Section 8.

2. Background and Related Work

In addition to recalling some relations and concepts often
used in multiobjective optimization, this section presents
formal definitions of some new terms related to the EAF,
such as attainment anchors and opposites. It also reviews the
existing methods for visualization of EAFs and concludes
with the presentation of slicing, MIP, and DVR.

2.1. Multiobjective Optimization Concepts. The multiobjec-
tive optimization problem consists of finding the optimum
of a function:

f : 𝑋 → 𝐹,

f : (𝑥
1
, . . . , 𝑥

𝑛
) → (𝑓

1
(𝑥
1
, . . . , 𝑥

𝑛
) , . . . , 𝑓

𝑚
(𝑥
1
, . . . , 𝑥

𝑛
)) ,

(1)

where 𝑋 is an 𝑛-dimensional decision space and 𝐹 is an 𝑚-
dimensional objective space (𝑚 ≥ 2). Each solution x ∈ 𝑋 is
called a decision vector, while the corresponding element z =

f(x) ∈ 𝐹 is an objective vector. Without loss of generality we
assume that 𝐹 ⊆ R𝑚 and all objectives 𝑓

𝑖
: 𝑋 → R are to be

minimized.
As this paper deals with visualization in the objective

space, which can be viewed rather independently from the
decision space, the following definitions are confined to the
objective space.

Definition 1 (Pareto dominance of vectors). The objective
vector z𝐴 = (𝑧
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𝑗
< 𝑧
𝐵

𝑗
.

(2)
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Definition 2 (weak Pareto dominance of vectors). The objec-
tive vector z𝐴 = (𝑧

𝐴

1
, . . . , 𝑧

𝐴

𝑚
) ∈ 𝐹weakly dominates the objec-

tive vector z𝐵 = (𝑧
𝐵

1
, . . . , 𝑧

𝐵

𝑚
) ∈ 𝐹; that is, z𝐴 ⪯ z𝐵, if

𝑧
𝐴

𝑖
≤ 𝑧
𝐵

𝑖
∀𝑖 ∈ {1, . . . , 𝑚} . (3)

Definition 3 (strict Pareto dominance of vectors). The objec-
tive vector z𝐴 = (𝑧

𝐴

1
, . . . , 𝑧

𝐴

𝑚
) ∈ 𝐹 strictly dominates the

objective vector z𝐵 = (𝑧
𝐵

1
, . . . , 𝑧
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𝑚
) ∈ 𝐹; that is, z𝐴7z𝐵, if
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𝐴

𝑖
< 𝑧
𝐵

𝑖
∀𝑖 ∈ {1, . . . , 𝑚} . (4)

Definition 4 (incomparability of vectors). The objective vec-
tors z𝐴 = (𝑧

𝐴

1
, . . . , 𝑧

𝐴

𝑚
) ∈ 𝐹 and z𝐵 = (𝑧

𝐵

1
, . . . , 𝑧

𝐵

𝑚
) ∈ 𝐹 are

incomparable; that is, z𝐴 ‖ z𝐵, if

z𝐴  z𝐵, z𝐵  z𝐴. (5)

Definition 5 (approximation set). A set of objective vectors
𝑍 ⊆ 𝐹 is called an approximation set if z𝐴 ‖ z𝐵 for any two
objective vectors z𝐴, z𝐵 ∈ 𝑍.

Definition 6 (weak Pareto dominance of approximation sets).
The approximation set 𝑍

𝐴
⊆ 𝐹 weakly dominates the

approximation set 𝑍𝐵 ⊆ 𝐹; that is, 𝑍𝐴 ⪯ 𝑍
𝐵, if every z𝐵 ∈ 𝑍

𝐵

is weakly dominated by at least one z𝐴 ∈ 𝑍
𝐴.

Definition 7 (ideal point). The ideal point z∗ = (𝑧
∗

1
, . . . , 𝑧

∗

𝑚
)

represents the minimum possible value in each objective
(typically, it cannot be achieved):

𝑧
∗

𝑖
= min {𝑓

𝑖
(x) ; x ∈ 𝑋} ∀𝑖 ∈ {1, . . . , 𝑚} . (6)

Definition 8 (minimal element, minimal set). Let 𝑍 ⊆ 𝐹 be
a set of objective vectors. An objective vector m ∈ 𝑍 is a
minimal element of 𝑍 if

∀z ∈ 𝑍, z ⪯ m ⇒ z = m. (7)

All minimal elements of 𝑍 constitute the minimal set of 𝑍
denoted in this paper by 𝑍

min.

Maximal elements and the maximal set 𝑍
max can be

defined dually.

Definition 9 (Pareto front). The set of Pareto optimal objec-
tive vectors known as the Pareto front can be formally defined
as the minimal set of f(𝑋):

𝑃f = f(𝑋)
min

. (8)

Definition 10 (Edgeworth-Pareto hull). Let 𝑍 ⊆ 𝐹 be an
approximation set. The Edgeworth-Pareto hull (EPH) of 𝑍
includes all objective vectors weakly dominated by 𝑍:

𝑍EPH = {z ∈ 𝐹; exists z ∈ 𝑍 so that z ⪯ z} . (9)

2.2. Empirical Attainment Function. Based on themultiobjec-
tive concept of goal-attainment [5] we say that an objective
vector is attained when it is weakly dominated by an approx-
imation set, that is, when it is contained in the set’s EPH.
The surface delimiting the attained vectors from the ones that
have not been attained by an approximation set is called the
attainment surface and its minimal elements are called the
attainment anchors.

Definition 11 (set boundary). The boundary of a set 𝑍 ⊆ 𝐹 is
the intersection of the closure of 𝑍, 𝑍, with the closure of its
complement, (𝐹 \ 𝑍):

𝜕𝑍 = 𝑍 ∩ (𝐹 \ 𝑍). (10)

Definition 12 (attainment surface, attainment anchors). Let
𝑍 ⊆ 𝐹 be an approximation set. The attainment surface of
𝑍 is the boundary of the EPH of 𝑍:

𝑆
𝑍
= 𝜕𝑍EPH. (11)

Theminimal elements of 𝑆
𝑍
are called attainment anchors and

are equal to the original approximation set 𝑍:

𝐴
𝑍
= 𝑆

min
𝑍

= 𝑍. (12)

Now, imagine that an optimization algorithm is run 𝑟

times, producing 𝑟 approximation sets. Then, each objective
vector can be attained between 0 and 𝑟 times.

Definition 13 (empirical attainment function). For algorithm
A the empirical attainment function of the objective vector
z ∈ 𝑍 ⊆ 𝐹 represents the frequency of attaining z by its
approximation sets 𝑍𝐴

1
, . . . , 𝑍

𝐴

𝑟
:

𝛼
A
𝑟
(z) = 𝛼 (𝑍

A
1
, . . . , 𝑍

A
𝑟
; z) =

1

𝑟

𝑟

∑

𝑖=1

I (𝑍A
𝑖
⪯ {z}) , (13)

where I is the indicator function, defined as

I (𝑏) = {

1, if 𝑏 is true,
0, otherwise,

(14)

and ⪯ is the weak Pareto dominance relation between sets.

This means that for algorithm 𝐴 with approximation
sets 𝑍

𝐴

1
, . . . , 𝑍

𝐴

𝑟
an EAF value from the set of frequencies

{0, 1/𝑟, 2/𝑟, . . . , 1} can be assigned to every vector in the
objective space. Of course, in practice the EAF cannot be
computed for every objective vector and only attainment
surfaces with a constant EAF value (and their corresponding
attainment anchors) are of interest. They are called 𝑘%-
attainment surfaces (also summary attainment surfaces) in
order to distinguish them from the “ordinary” attainment
surfaces of single approximation sets. Vectors in the 𝑘%-
attainment surface are the tightest objective vectors that have
been attained in at least 𝑘% of the runs.
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Figure 2: Four approximation sets in a two-objective optimization
problem, their summary attainment surfaces, and all attainment
anchors. Colors denote areas with equal EAF values (darker colors
correspond to larger values).

Definition 14 (summary attainment surfaces). Let 𝑍
1
, . . . , 𝑍

𝑟

be 𝑟 approximation sets of algorithm𝐴 and 𝛼
𝐴

𝑟
(z) its EAF. Let

the 𝑡/𝑟-superlevel set of 𝛼𝐴
𝑟
be defined as

𝐿
+

𝑡/𝑟
(𝛼

A
𝑟
) = {z ∈ 𝐹; 𝛼

A
𝑟
(z) ≥ 𝑡/𝑟} ∀𝑡 ∈ {1, . . . , 𝑟} . (15)

Then the summary (or 𝑡/𝑟-) attainment surface 𝑆
𝑡/𝑟

is equal to
the boundary of 𝐿+

𝑡/𝑟
(𝛼

A
𝑟
):

𝑆
𝑡/𝑟

= 𝜕𝐿
+

𝑡/𝑟
(𝛼

A
𝑟
) ∀𝑡 ∈ {1, . . . , 𝑟} . (16)

We will use 𝐴
𝑡/𝑟

to denote the attainment anchors of 𝑆
𝑡/𝑟
:

𝐴
𝑡/𝑟

= 𝑆
min
𝑡/𝑟

∀𝑡 ∈ {1, . . . , 𝑟} . (17)

Note how the definition of an attainment surface coin-
cides with the definition of a summary attainment surface
if 𝑟 = 1. In general, the number of all attainment anchors
(including duplicates), 𝑛

𝐴
= ∑
𝑟

𝑡=1
|𝐴
𝑡/𝑟

|, is much larger than
the number of vectors contained in the approximation sets,
𝑛
𝑍

= ∑
𝑟

𝑡=1
|𝑍
𝑡
| (in the context of the EAF computation [10],

vectors from the approximation sets and attainment anchors
were called input and output points, resp.). It has been shown
in [10] that 𝑛

𝐴
∈ 𝑂(𝑟

2
𝑛
𝑍
) for three-objective optimization

problems.

We illustrate these concepts in the two-objective case.
Figure 2 shows an example of four approximation sets
𝑍
1
, . . . , 𝑍

4
(each consisted of four objective vectors indicated

with crosses) and their summary attainment surfaces. Dots
denote all attainment anchors and colors are used to empha-
size areas with equal EAF values (darker colors correspond to
higher values).
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Figure 3: Four approximation sets in a two-objective optimization
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Colored areas show where algorithm 𝐴 outperformed algorithm 𝐵

(green hues) and algorithm 𝐵 outperformed algorithm𝐴 (red hues).

If two algorithms 𝐴 and 𝐵 are run 𝑟 times each, they can
be compared by computing and visualizing their EAF values
𝛼
𝐴

𝑟
and 𝛼

𝐵

𝑟
separately. However, there exists a straightforward

way to directly compare the algorithms by computing EAF
differences, that is, differences in their EAF values [11].

Definition 15 (EAF differences). Assume that algorithms 𝐴

and 𝐵 are run 𝑟 times each. The EAF differences between
algorithms𝐴 and𝐵 are defined for each objective vector z ∈ 𝑍

as

𝛿
𝐴−𝐵

𝑟
(z) = 𝛼

𝐴

𝑟
(z) − 𝛼

𝐵

𝑟
(z) . (18)

Note that EAF differences need to be computed for
all attainment anchors of the combined 2𝑟 approximation
sets. Defined in this way, the differences can adopt values
from the set {−1, −(𝑟 − 1)/𝑟, . . . , 0, 1/𝑟, . . . , 1}. Positive EAF
differences correspond to areas in the objective space where
the algorithm𝐴 outperforms the algorithm 𝐵, while negative
EAF differences denote areas in the objective space where
the algorithm 𝐵 outperforms the algorithm 𝐴. Naturally,
where the differences are zero, both algorithms attain the area
equally well.

Let us focus on the example from Figure 3, where algo-
rithms𝐴 and𝐵 solving a two-objective optimization problem
produced two approximation sets each. The lines show the
overall summary attainment surfaces. The colored areas
emphasize areas of the objective space where algorithm 𝐴

outperformed algorithm𝐵 (green hues) and areaswhere algo-
rithm𝐵 outperformed algorithm𝐴 (red hues).We can readily
notice that algorithm 𝐴 is more successful in optimizing the
first objective, while algorithm𝐵 attains better lower values of
the second objective. This small example nevertheless shows
that visualization of 2D EAF differences can be very helpful
when analyzing and comparing the results of two algorithms.
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We can safely assume that we are interested in a limited
portion of the objective space, for example, the one enclosed
by reference vectors r1 and r2, where r17r2. Then, areas
with equal EAF values/differences correspond to unions of
rectangles in 2D and unions of cuboids in 3D [7]. If we
allow overlapping, then each rectangle or cuboid between
the 𝑡/𝑟- and (𝑡 + 1)/𝑟-attainment surfaces, where 𝑡 ∈

{1, . . . , 𝑟−1}, can be defined by two vertices: one from the 𝑡/𝑟-
attainment surface and the other from the (𝑡+1)/𝑟-attainment
surface (Figure 4 shows 2D areas between 25%- and 50%-
attainment surfaces). While the lower vertices correspond
to the attainment anchors of the 𝑡/𝑟-attainment surface, the
upper vertices are not the attainment anchors of the (𝑡+1)/𝑟-
attainment surface but their opposite. The opposite can be
defined for an arbitrary approximation set as follows.

Definition 16 (approximation set opposite). Let reference
vectors r1 and r2, where r17r2, define the boundaries of the
observed objective space

𝑅 = {z ∈ 𝐹; 𝑧
𝑖
∈ [𝑟
1

𝑖
, 𝑟
2

𝑖
] ∀𝑖 ∈ {1, . . . , 𝑚}} . (19)

Let 𝑍 ⊆ 𝑅 be an approximation set enclosed in this space
with the attainment surface 𝑆

𝑍
. The opposite 𝑂

𝑅

𝑍
of the

approximation set 𝑍 within the observed objective space 𝑅

is the maximal set of 𝑆
𝑍
∩ 𝑅:

𝑂
𝑅

𝑍
= (𝑆
𝑍
∩ 𝑅)

max
. (20)

Finding the opposites of attainment anchors in 2D is
rather trivial [7]. The computation of opposites (and the cor-
responding cuboids) for the 3D case is more demanding and
is presented in detail in Section 4.1.

Finally, let us recall the formal definition of the hypervol-
ume indicator [12], which is often used to measure the quality
of approximation sets.

Definition 17 (hypervolume indicator). Let again reference
vectors r1 and r2, where r17r2, define the boundaries of the
observed objective space

𝑅 = {z ∈ 𝐹; 𝑧
𝑖
∈ [𝑟
1

𝑖
, 𝑟
2

𝑖
] ∀𝑖 ∈ {1, . . . , 𝑚}} . (21)

The hypervolume indicator 𝐼
𝐻
of an approximation set 𝑍 ⊆ 𝑅

can be formulated via the empirical attainment function of𝑍
as

𝐼
𝐻
(𝑍) = ∫

z∈𝑅
𝛼 (𝑍; z) 𝑑z. (22)

2.3. Visualization of EAFs. 2D EAFs are most often visual-
ized through best, median, and worst summary attainment
surfaces corresponding to 1/𝑟%, ∼50%, and 100%-attainment
surfaces, respectively. The first attempt to visualize 3D sum-
mary attainment surfaces is documented in [13]. At the time,
an efficient algorithm for computing 3D attainment anchors
was not yet available, so separate summary attainment sur-
faces were approximated by discretizing the objective space
using a grid. Assume the 𝑡/𝑟-attainment surface needs to
be visualized. The algorithm examines the objective space
for each objective separately. First, it finds the intersections
between all approximation sets and the lines stemming from
the 2D grid of the remaining two objectives. Then, the
intersections on each of these lines are counted and if they
amount to 𝑡, a marker is drawn at the corresponding height.
Combining these markers by considering all objectives yields
informative visualization of the chosen 3D summary attain-
ment surface. Years later, an efficient algorithm for computing
attainment anchors and their EAF values for the 3D case was
finally provided [10, 14]. The attainment function tools from
[14] were used to compute all EAF values in this paper.

While [10] offers an estimation of the number of attain-
ment anchors also for the general 𝑚D case, where 𝑚 > 3,
no algorithm for computing 4D EAFs exists yet. As a conse-
quence, we do not discuss visualization of EAFs beyond 3D.

Recently, the idea of visualizing EAF differences in addi-
tion to EAF values was introduced in [11]. When visually
comparing algorithms 𝐴 and 𝐵, four plots can be produced,
each corresponding to one of the values of 𝛼

𝐴, 𝛼𝐵, 𝛿𝐴−𝐵,
and 𝛿

𝐵−𝐴. All attainment anchors are plotted using gray-
shaded dots, where the shade corresponds to the value of the
chosen function (𝛼𝐴, 𝛼𝐵, 𝛿𝐴−𝐵, or 𝛿𝐵−𝐴). On top of this, the
best, median, andworst overall summary attainment surfaces
are drawn. Examples from [11, 15] show that this kind of
visualization can be very useful in exploratory analysis.

Building on this work we have performed some initial
research on visualizing 3D EAFs using slicing and maximum
intensity projection in [6, 7].These twomethods, followed by
direct volume rendering, are introduced next.

2.4. Slicing. This is a simple method where spatial data is
sliced using a plane. Then, the intersection of the plane with
the data is visualized in 2D. In its most general form, slicing
can be applied to any kind of spatial data; that is, the data does
not have to be represented by voxels.
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While the plane used in slicing is most often axis-aligned,
the nature of multiobjective optimization problems yields the
need for a plane that always contains one axis and the origin
of the objective space (which usually corresponds to the
ideal point) and intersects all summary attainment surfaces.
Therefore (similarly to the prosection plane used in [4, 16]),
the slicing plane cuts the objective space at an angle 𝜑 ∈

(0
∘
, 90
∘
).

While not used for visualizing attainment surfaces, the
interactive decision maps (IDMs) are related to slicing using
axis-aligned planes [17]. They visualize a number of axis-
aligned sampling surfaces of the EPH and use different colors
to represent each slice. As the surface of 𝑍EPH is exactly the
attainment surface of 𝑍, it should be rather straightforward
to apply this method for visualizing attainment surfaces.

2.5. Maximum Intensity Projection. Maximum intensity pro-
jection (MIP) is a volume rendering method for spatial data
represented by voxels. The method inspects voxels in direc-
tion of parallel rays traced from the viewpoint to the projec-
tion plane and takes the maximum value encountered in the
voxels along a ray as the projection value for the ray.

The method, originally called maximum activity projec-
tion (MAP) [8], was proposed for 3D image rendering in
nuclear medicine and tested in tomographic studies. It was
later accepted not only in medical imaging, but also in scien-
tific data visualization in general.

The advantages of MIP are its simplicity and efficiency
and the ability of achieving high contrast, which arises from
the fact that maximum voxel values are projected. On the
other hand, as a limitation, the resulting projections lack the
sense of depth of the original data (see [18, 19] for attempts
to remedy this issue). Moreover, the viewer cannot distin-
guish between left and right and front and back. As an
improvement, animations are usually provided, consisting of
a sequence of MIP renderings at slightly different viewpoints,
which results in the illusion of rotation.

2.6. Direct Volume Rendering. Direct volume rendering
(DVR) [20] is another volume rendering method based on
the voxel representation of data that is often used for visual-
ization in medicine and science. It can generate very appeal-
ing results by employing advanced shading techniques and
can achieve real-time interactive rendering. DVR is able to
produce images of volumetric datawithout the need to explic-
itly extract geometry or surfaces (hence the name direct).

First, each voxel value is assigned color and opacity (the
RGBA value) by means of a chosen transfer function. The
transfer function can be a simple ramp, a piecewise linear
function, or an arbitrary table (the problem of specifying a
good transfer function is a research area on its own [21, 22]).
Then, one of the following techniques is used to project the
RGBA values to the screen: ray casting (for only ray casting
is used in this paper, any mention of DVR can be understood
to refer to ray-casting DVR from now on), splatting, shear-
warp factorization, or texture-based volume rendering. In
ray casting [9], viewing rays are traced from the viewpoint
through the volume, accumulating color and opacity values
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Figure 5: The linear and spherical approximation sets used in all
visualization examples in Sections 4 and 5.

at each sample position along the ray. The final RGB values
shown in the image are computed from the accumulated
RGBA values using the volume rendering integral [23].

3. Benchmark Approximation Sets

In order to show the outcome of different visualization
methods, we need some approximation sets to visualize. The
two sets of approximation sets used in this paper are not
products of optimization algorithms but rather benchmark
approximation sets with known properties used for visualiza-
tion purposes [7]. They are shown in Figure 5.

The first set consists of five linear approximation sets with
a uniform distribution of vectors that satisfy the constraint

3

∑

𝑖=1

𝑧
𝑖
= 𝑐
𝐿
. (23)

In order to simulate the behavior of a stochastic algorithm,
the values 𝑐

𝐿
follow the normal distribution 𝑁(1, 0.05). The

second set contains five spherical approximation sets with a
nonuniform distribution of vectors where only few vectors
are located in themiddle of the approximation set, whilemost
of them are near its corners. The vectors from the spherical
approximation sets satisfy the constraint

3

∑

𝑖=1

𝑧
2

𝑖
= 𝑐
2

𝑆
, (24)

where 𝑐
𝑆
∼ 𝑁(0.75, 0.05). Each individual approximation set

contains 100 objective vectors.
The values of 𝑐

𝐿
and 𝑐

𝑆
were chosen so that the sets

are intertwined; in one region, the linear approximation sets
dominate the spherical ones, while in others, the spherical
sets dominate the linear ones. This assures that there will
always be visible EAF differences between the two sets of
approximation sets.
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Input: Sets of attainment anchors 𝐴
1
, . . . , 𝐴

𝑟
and 𝑎

reference vector r2, for which 𝐴
1
⪯ ⋅ ⋅ ⋅ ⪯ 𝐴

𝑟

and z7 r2 for all z ∈ 𝐴
𝑖
, 𝑖 = 1, . . . , 𝑟

Output: The set of cuboids 𝐶
𝐴
𝑟+1

← {r2};
r1 ← z∗;
foreach adjacent pair of sets 𝐴

𝑖
and 𝐴

𝑖+1
, 𝑖 ∈ {1, . . . , 𝑟}

do
𝑂 ← opposite(𝐴

𝑖+1
, r1, r2);

foreach z ∈ 𝐴
𝑖
do

𝑂

← {o ∈ 𝑂; z7 o};

foreach o ∈ 𝑂
 do

𝐶 ← 𝐶∪ cuboid(z, o, value(z));
end

end
end

Algorithm 1: Computing the cuboids.

We will use 𝛼𝐿
5
and 𝛼

𝑆

5
to denote EAF values of the linear

and spherical approximation sets, respectively. In addition,
𝛿
𝐿−𝑆

5
and 𝛿

𝑆−𝐿

5
will denote differences between those values.

4. Visualizing Exact EAFs

Exact EAFs can be represented as unions of cuboids with
values corresponding to either EAF values of one algorithm
or EAF differences between two algorithms.This section will
first show the procedure for computing the cuboids from the
given attainment surfaces and then present visualization of
these cuboids using slicing and MIP.

4.1. Computing the Cuboids. The algorithm for computing
EAFs [10] takes as input a series of approximation sets
𝑍
1
, . . . , 𝑍

𝑟
and returns as output a series of sets containing

attainment anchors𝐴
1
, . . . , 𝐴

𝑟
that define the corresponding

summary attainment surfaces and for which the following
holds: 𝐴

𝑖
⪯ 𝐴
𝑖+1

for 𝑖 ∈ {1, 2, . . . , 𝑟 − 1}. From these sets of
attainment anchors and a reference vector r2 that limits the
observed objective space, the cuboids can be computed. We
propose a very simple algorithm for this purpose that uses the
first set of attainment anchors and the opposite of the second
set of attainment anchors to compute overlapping cuboids
(see Algorithm 1).

First, a set containing only the given reference vector r2 is
added at the end of the input set of attainment anchors, so that
any cuboids ranging from the last set of attainment anchors
to r2 can also be computed. Then, the reference vector r1
needed for computation of the opposites is set to be equal
to the ideal point. Next, the main loop iterates through all
adjacent pairs of sets 𝐴

𝑖
and 𝐴

𝑖+1
and computes the opposite

of𝐴
𝑖+1

usingAlgorithm 2. For each attainment anchor z ∈ 𝐴
𝑖

all dominated vectors from the opposite are stored in𝑂
. Each

pair (z, o), where o ∈ 𝑂
, represents the two vertices required

to define the cuboid. In addition, the cuboid is given a value:
either the EAF value or the EAF difference in z.

Input: Approximation set 𝐴 and reference vectors r1 and
r2, for which r1 ⪯ z7 r2 for all z ∈ 𝐴

𝑖
, 𝑖 = 1, . . . , 𝑟

Output: The opposite 𝑂
𝑂 ← {r2};
foreach z ∈ 𝐴 do

𝑂

← {o ∈ 𝑂; z7 o};

𝑂 ← 𝑂 − 𝑂
;

foreach o ∈ 𝑂
 do

o𝑛1 ← (𝑧
1
, 𝑜
2
, 𝑜
3
);

o𝑛2 ← (𝑜
1
, 𝑧
2
, 𝑜
3
);

o𝑛3 ← (𝑜
1
, 𝑜
2
, 𝑧
3
);

for 𝑖 ← 1 to 3 do
if ¬ redundant (o𝑛𝑖 , r1, 𝑂) then

𝑂 ← 𝑂 ∪ {o𝑛𝑖 };
end

end
end

end

Algorithm 2: Computing the opposite of a 3D approximation set.

Note that there might be multiple cuboids stemming
from the same attainment anchor (see the analog example
of multiple rectangles in Figure 4)—we call this a union of
cuboids. This is not a problem since all such overlapping
cuboids have the same value (if they did not have the same
value, another attainment anchor would have already split
the cuboid). The result of Algorithm 1 is a set of cuboids (or
unions of cuboids).

Next, we show with the help of Figure 6 how to find the
opposite of a 3D approximation set. Imagine a single cuboid
defined by the reference vectors r1 and r2. The opposite is
initialized to {r2}. Every time a vector from 𝑍 is “cut into”
the existing cuboid, the vectors strictly dominated by it are
removed from the opposite and new vectors are added to the
opposite. Assume we have already performed this step for
vectors z1 and z2 (see Figure 6(a)) and vector z3 is next in line
(see Figure 6(b)). First, we delete from the opposite all vectors
that are strictly dominated by the current vector z (thismeans
that in our example we delete vector o4 but not o5). Next,
for every deleted vector o we create three new vectors in the
following way:

o𝑛1 = (𝑧
1
, 𝑜
2
, 𝑜
3
) ,

o𝑛2 = (𝑜
1
, 𝑧
2
, 𝑜
3
) ,

o𝑛3 = (𝑜
1
, 𝑜
2
, 𝑧
3
) .

(25)

Finally, each of these vectors is added to the opposite if it
is not redundant. This means that it has to contribute to the
opposite (it cannot be coplanar with r1 or collinear with any
of the vectors from the existing opposite). In our example, we
add to the opposite vectors o6 and o7 but not o8 = (2, 6.5, 5)

(not pictured in the figure) as it is collinear with o5 and thus
redundant.When these steps have been taken for every vector
from 𝑍, the resulting set 𝑂 represents the opposite of 𝑍. See
Algorithm 2 for the algorithmic notation of the described
procedure.
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Figure 6: Two steps in the construction of the opposite of the approximation set 𝑍.

As we cannot visualize the entire (infinite) objective
space, Algorithms 1 and 2 use two reference vectors r1 and r2
to limit it. In order to preserve all information, they need to
be set in such a way that r1 ⪯ z7r2 for all attainment anchors
z. While the ideal point is the most sensible choice for r1, we
can choose any objective vector dominated by all attainment
anchors for r2.

The presented approach for computing the cuboids is
very simple and easy to implement but comes at high
computational cost. Computing the cuboids between two sets
of 𝑛 attainment anchors has the worst-case computational
complexity of𝑂(𝑛

3
), which means that all cuboids between 𝑟

pairs of attainment surfaces can be computed in𝑂(𝑟𝑛
3
) time.

However, in practice, the loop foreach o ∈ 𝑂
 do in Algo-

rithm 2 is executed only a few times for each z ∈ 𝐴, meaning
that in practice the computational complexity is quadratic in
the attainment anchors set size (the check for redundancy still
takes linear time).

Another possible approach would be to deal only with
nonoverlapping cuboids, which is somewhat similar to the
problem of computing the hypervolume indicator in 3D.
In future work we wish to investigate if a more efficient
algorithm for our problem could be found by, for example,
modifying the space-sweep algorithm from [24], which
computes the hypervolume indicator in the 3D case with the
computational complexity of only 𝑂(𝑛 log 𝑛). If this would
be possible, the total cost of computing the cuboids would
be 𝑂(𝑟𝑛 log 𝑛). However, time complexity is not the only
important aspect in the computation of cuboids. We would
also like to study which method would yield a lower number
of cuboids as this considerably affects the tractability of their
visualization.

4.2. Visualizing Cuboids Using Slicing. In this paper, the
slicing plane is aligned with one of the three axes (assume for
now that this is 𝑓

3
), includes the origin r1, and cuts through

the underlying plane (𝑓
1
𝑓
2
) at some angle 𝜑 ∈ (0

∘
, 90
∘
). In

this way, each slice always captures all attainment surfaces.

f1

f2

f3

r1

o
o



zz 

𝜑

Figure 7: A cuboid sliced using the plane aligned with 𝑓
3
that slices

the𝑓
1
𝑓
2
plane under angle.The cuboid vertices z and o are projected

to 3D rectangle vertexes zand o, respectively.

Slicing through the objective space containing a large
number of cuboids means that only those cuboids that
intersect the slicing plane are visualized. When a cuboid is
sliced, the result is a rectangle in 3D (see the example in
Figure 7). Two steps are needed to compute this rectangle in
2D. First, we need to calculate the projected cuboid vertices
z and o yielding the rectangle in 3D, and second, we need to
rotate the vertices by angle −𝜑 to get z and o. Depending
on the angles

𝜑z = arctan(

𝑧
2
− 𝑟
1

2

𝑧
1
− 𝑟
1

1

) ,

𝜑o = arctan(

𝑜
2
− 𝑟
1

2

𝑜
1
− 𝑟
1

1

) ,

(26)

this is done in the following way:

z =
{
{
{

{
{
{

{

(𝑟
1

1
+

𝑧
2
− 𝑟
1

2

tan𝜑

, 𝑧
2
, 𝑧
3
) , if 𝜑z ≥ 𝜑,

(𝑧
1
, 𝑟
1

2
+ (𝑧
1
− 𝑟
1

1
) tan𝜑, 𝑧

3
) , if 𝜑z < 𝜑,
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Figure 8: Slices of the exact 3D EAF values and differences for the benchmark approximation sets under two angles. Darker colors represent
higher EAF values/differences.

o =
{
{
{

{
{
{

{

(𝑜
1
, 𝑟
1

2
+ (𝑜
1
− 𝑟
1

1
) tan𝜑, 𝑜

3
) , if 𝜑o ≥ 𝜑,

(𝑟
1

1
+

𝑜
2
− 𝑟
1

2

tan𝜑

, 𝑜
2
, 𝑜
3
) , if 𝜑o < 𝜑,

z =

{
{
{
{
{

{
{
{
{
{

{

(𝑟
1

1
+

𝑧
2
− 𝑟
1

2

sin𝜑

, 𝑧
3
) , if 𝜑z ≥ 𝜑,

(𝑟
1

1
+

𝑧
1
− 𝑟
1

1

cos𝜑
, 𝑧
3
) , if 𝜑z < 𝜑,

o =

{
{
{
{
{

{
{
{
{
{

{

(𝑟
1

1
+

𝑜
1
− 𝑟
1

1

cos𝜑
, 𝑜
3
) , if 𝜑o ≥ 𝜑,

(𝑟
1

1
+

𝑜
2
− 𝑟
1

2

sin𝜑

, 𝑜
3
) , if 𝜑o < 𝜑.

(27)

When slicing through a union of cuboids stemming from
the same vertex z, some of the projected vertices o can be
redundant. In order to decrease the number of total rectangles
to plot, it is therefore sensible to keep only nonredundant
vertices o (those that are nondominated with regard to the
inverted weak dominance relation ⪰).

The cuboids can be visualized by slicing them at different
angles, thus showing different parts of the objective space.We
present visualization using slicing of our benchmark approx-
imation sets at angles 𝜑 = 5

∘ and 𝜑 = 45
∘. The EAF values 𝛼𝐿

5

and 𝛼
𝑆

5
are shown separately, while the EAF differences 𝛿𝐿−𝑆

5

and 𝛿
𝑆−𝐿

5
are presented on the same plot (see Figure 8).

From the plots of EAF values it is easy to distinguish
linear sets (green hues) from the spherical ones (red hues)
as the shape of the sets is readily visible. We can also see that
the two best spherical approximation sets are better than the
remaining three by a solidmargin.While these plots provide a
lot of information by themselves, the comparison between the
sets is best visualized using EAF differences.They nicely show
regions in the objective space where linear sets outperform
the spherical ones and vice versa.

Note that in order to fully explore the entire objective
space, slicing planes at several different angles should be
performed. Also, one might want to consider slicing planes
aligned to the axis 𝑓

1
or 𝑓
2
, too. However, as our benchmark

approximation sets are rather symmetrical, there is no need
to do this here.

4.3. Visualizing Cuboids Using MIP. As explained in Sec-
tion 2.5, MIP shows only the maximum value encountered
on rays from the viewpoint to the projection plane. This
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(a) MIP of 𝛿𝐿−𝑆
5

(b) MIP of 𝛿𝑆−𝐿
5

Figure 9: MIP of exact 3D EAF differences between the benchmark approximation sets.

means that it is not sensible to use this method for visualizing
EAF values as most of the objective space has the maximum
value and the resulting visualization would not be very infor-
mative. However, MIP seems a good choice for visualizing
EAF differences where the highest values are of most inter-
est as they represent the largest differences between the algo-
rithms.

MIP could be used to visualize cuboids of different values
by sorting the cuboids so that those with higher values would
be put on top of those with lower values. However in general,
the 3D plotting tools capable of visualizing cuboids render
them in a sequence that tries to maintain some notion of
depth (cuboids near the viewpoint are shown in front of the
cuboids further away) and do not allow for custom sorting of
the cuboids according to their values. Therefore, this sorting
can only be done after the viewpoint has been set and the
cuboids are already projected to 2D. At that time we can
choose to visualize them in the order of ascending values,
which (although a bit cumbersome) effectively achieves the
MIP visualization of the cuboids.

Another difficulty in usingMIP for visualizing exact EAF
differences is that we need to visualize a large number of
cuboids, which can be challenging to do.Whilemany of them
are completely covered by cuboids with larger values and
could therefore be spared without altering the final image,
removal of such cuboids is not trivial as it depends also on
the position of the viewpoint.

Nevertheless, we present visualization of exact EAF dif-
ferences usingMIP in Figure 9.The differences 𝛿𝐿−𝑆

5
and 𝛿
𝑆−𝐿

5

need to be visualized separately in order to avoid overlapping
of cuboids. The MIP visualizations are very informative; we
can easily see which parts of the objective space are better
attained by the linear approximation sets and which by the
spherical approximation sets. As is typical with MIP, while
we are able to “see through the cuboids,” we loose the sense
of depth. Although it is inevitable to lose some information
when projecting 3D structures onto 2D, this can be amended
by combining two visualization techniques: MIP and slicing.
Together they give a good idea of the 3D “cloud” of cuboids.

5. Visualizing Approximated EAFs

If we wish to visually compare the outcome of two algorithms
and are not interested in the details of such a visualization, we

can use approximated instead of exact EAFs. Approximation
means that the objective space is discretized into a grid of
voxels (similarly to what was proposed in [13]). This section
first presents how such discretization is performed and then
illustrates visualization of approximated EAFs using slicing,
MIP, and DVR.

5.1. Discretization into Voxels. A voxel is a single point on a
regularly spaced 3D grid of V

1
× V
2
× V
3
voxels. Recall that,

based on the reference vectors r1 and r2, the 3D observed
objective space 𝑅 is defined as

𝑅 = {z ∈ 𝐹; 𝑧
𝑖
∈ [𝑟
1

𝑖
, 𝑟
2

𝑖
] ∀𝑖 ∈ {1, 2, 3}} . (28)

If 𝑅 is a cube, V
1
= V
2
= V
3
; otherwise, some care must be

taken to ensure that the grid of voxels is truly regular. Either
𝑅must be normalized prior to approximation or the number
of voxels in each dimension V

𝑖
must be set to be proportional

to 𝑟
2

𝑖
− 𝑟
1

𝑖
for all 𝑖 ∈ {1, 2, 3}. Note that a voxel represents only

a single point not a volume. How this missing information is
reconstructed depends on the visualization method.

From the observed objective space 𝑅 the grid of V
1
× V
2
×

V
3
voxels is constructed so that the voxel at grid position

(𝑘
1
, 𝑘
2
, 𝑘
3
) has the following coordinates:

(

(𝑟
2

1
− 𝑟
1

1
) (2𝑘
1
− 1)

2V
1

,

(𝑟
2

2
− 𝑟
1

2
) (2𝑘
2
− 1)

2V
2

,

(𝑟
2

3
− 𝑟
1

3
) (2𝑘
3
− 1)

2V
3

) ,

(29)

where 𝑘
𝑖
∈ {1, . . . , V

𝑖
} for 𝑖 ∈ {1, 2, 3}.

Computing voxel values when the cuboids have already
been computed is rather straightforward. Iterating over all
cuboids, the voxels that are “covered” by the cuboid adopt its
value. If we are not interested in visualizing the exact EAFs
(and therefore have not computed the cuboids), we can com-
pute the voxel values directly from the set of approximation
sets. The value of each voxel is set to either EAF value or EAF
difference by counting how many approximation sets weakly
dominate it.
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Figure 10: Slices of exact and approximated 𝛿
𝐿−𝑆

5
and 𝛿

𝑆−𝐿

5
at angle 𝜑 = 5∘ showing the approximation error.

5.2. Visualizing Voxels Using Slicing. For visualization using
slicing we assume that the whole volume of the voxel has the
same value as its center.Therefore, slicing of voxels is done in
the same way as slicing of cuboids (see Section 4.2). In order
to avoid showing plots that are very similar to those presented
in Figure 8, Figure 10 shows only the slices of 𝛿𝐿−𝑆

5
and 𝛿
𝑆−𝐿

5
at

angle 𝜑 = 5
∘ produced using different discretizations.

We can see that by refining the discretization we get
results that are increasingly similar to the exact EAFs. As we
believe that for the purpose of this study the discretization
into 1283 voxels suffices, we will use this discretization in the
remainder of the paper.

5.3. Visualizing Voxels Using MIP. Visualizing voxels using
MIP is trivial with a tool supporting such visualization, as
there are no additional parameters to set. We use a volume
rendering engine called Voreen [25, 26] to produce the MIP
images from Figure 11 and all DVR images.

Figure 11 shows the MIP for 𝛿
𝐿−𝑆

5
and 𝛿

𝑆−𝐿

5
and we can

see that although these are approximations of the images
presented in Figure 9, the results are quite similar.

5.4. Visualizing Voxels Using DVR. Visualization using
DVR is a bit trickier as we need to define the transfer func-
tion that assigns color and opacity to each voxel value.
In our case, voxel values are discrete as they equal either the
EAF values or the EAF differences, which makes this task
easier.

Figures 12 and 13 show visualization using DVR of
the EAF differences between the two benchmark approxi-
mation sets 𝛿

𝐿−𝑆

5
and 𝛿

𝑆−𝐿

5
, respectively. The first five plots

in both figures show the voxels with a single value from
{1/5, . . . , 5/5}. The transfer functions used to obtain these
plots are simple piecewise linear functions that set the opacity
of voxels of the desired value to 1 and the opacity of all
other voxels to 0. In this way, we are able to visualize each
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(a) MIP of 𝛿𝐿−𝑆
5

(b) MIP of 𝛿𝑆−𝐿
5

Figure 11: MIP of approximated 3D EAF differences between the benchmark approximation sets.

(a) DVR of 𝛿𝐿−𝑆
5

= 1/5 (b) DVR of 𝛿𝐿−𝑆
5

= 2/5 (c) DVR of 𝛿𝐿−𝑆
5

= 3/5

(d) DVR of 𝛿𝐿−𝑆
5

= 4/5 (e) DVR of 𝛿𝐿−𝑆
5

= 5/5 (f) DVR of 𝛿𝐿−𝑆
5
∈ {1/5, 5/5}

Figure 12: DVR of approximated 3D EAF differences between the linear and spherical benchmark approximation sets 𝛿𝐿−𝑆
5

.

of the values separately, which is reflected in the nice and
informative plots in Figures 12 and 13.

The biggest advantage of DVR is that, by setting the
transfer function “the right way,” it is possible to see inside the
visualized volume. This was attempted on the plots shown in
Figures 12(f) and 13(f), which show completely opaque voxels
with value 5/5 and almost transparent voxels with value 1/5

(both plots are rotated to give a nicer view of inner voxels).
In contrast to MIP, DVR can be used for visualizing EAF

values, too. Figure 14 shows an example of such a visualization
for the spherical approximation sets, where only the values
𝛿
𝑆

5
∈ {1/5, 4/5} are shown (opacity is set to 0.3 for these two

values and to 0 for all other values).

6. Discussion

Let us summarize the properties of all presented visualiza-
tion methods (see also Table 1). Slicing is a rather simple
method that enables visualization of exact EAF values and
differences. Its biggest advantage is its accuracy; it enables a
detailed analysis of the approximation sets in the same way
that can be done for 2D EAFs. Its biggest drawback is that
it is able to visualize only one slice at a time. Generally, the
approximation sets are not as symmetrical as in our bench-
mark case; therefore, multiple slices are needed to sufficiently
inspect the EAFs. Also, note that the meaning of the angle 𝜑
changes if the observed objective space has different ranges
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Table 1: Summarized properties of the presented visualization methods.

Slicing MIP DVR

Exact EAF values

+ Enables detailed analysis of the
approximation sets
− Visualizes only one slice at a
time

− Not sensible to use since
usually a large portion of the
objective space has the
maximum EAF value

− Not possible to use

Exact EAF
differences

+ Enables detailed analysis of the
approximation sets
+ Capable of simultaneously
visualizing positive and negative
differences without overlapping
− Visualizes only one slice at a
time

+ No parameters to set
+ Shows all values in a single
image
− No sense of depth
− Feasible only for a limited
number of cuboids (impractical)

− Not possible to use

Approximated EAF
values

− No need to use it on the
approximation as it works well
for exact EAFs

− Not sensible to use since
usually a large portion of the
objective space has the
maximum EAF value

+ Nice visualizations
+ Enables looking through the
volume and preserves the sense
of depth
− Requires definition of the
transfer function

Approximated EAF
differences

− No need to use it on the
approximation as it works well
for exact EAFs

+ No parameters to set
+ Shows all values in a single
image
− No sense of depth

+ Nice visualizations
+ Enables looking through the
volume and preserves the sense
of depth
− Requires definition of the
transfer function

(a) DVR of 𝛿𝑆−𝐿
5

= 1/5 (b) DVR of 𝛿𝑆−𝐿
5

= 2/5 (c) DVR of 𝛿𝑆−𝐿
5

= 3/5

(d) DVR of 𝛿𝑆−𝐿
5

= 4/5 (e) DVR of 𝛿𝑆−𝐿
5

= 5/5 (f) DVR of 𝛿𝑆−𝐿
5
∈ {1/5, 5/5}

Figure 13: DVR of approximated 3D EAF differences between the spherical and linear benchmark approximation sets 𝛿𝑆−𝐿
5

.

(if 𝑅 is not a cube, it is not cut exactly in half by the plane at
angle 𝜑 = 45

∘). While slicing can be used also for visualizing
approximated EAFs, there is no need to do so as it works well
for exact EAFs.

It is not reasonable to use MIP for visualizing EAF values
since usually a large portion of the objective space has the
maximumEAF value and such plots are not very informative.
While MIP can be used for visualizing exact EAF differences,
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Figure 14: DVR of approximated 3D EAF values of the spherical
benchmark approximation sets for 𝛼𝑆

5
∈ {1/5, 4/5}.

it works much better on the approximated case, for which it
was conceived. Visualizing 3D cuboids is rather impractical
(especially for a very large number of cuboids) and requires
sorting of cuboids with regard to their value in order to pro-
duceMIP image.However,MIP can easily be used to visualize
approximated EAF differences as it has no parameters to set.
Its biggest advantage is that it combines all values in a single
image giving precedence to largest differences (which are
the most important when visualizing EAF differences), while
its the biggest disadvantage is the lost sense of depth.

Finally, DVR can be used to visualize approximated EAFs.
It produces nice and informative visualizations of both the
EAF values and differences. With an insightful setting of the
transfer function it is even possible to “look through” the
cloud of cuboids. The need to define the transfer function
is at the same time the biggest disadvantage of DVR as it
might be demanding for a user not familiar with the method.
Nevertheless, it is much easier to find the right transfer
function for EAFs than, for example, for some medical data,
as EAFs take only discrete values.

7. Steel Casting Use Case

This section shows how the described visualization methods
can be used on a real-world optimization problem with three
objectives from a previous study [27].

7.1. The Steel Casting Problem. Continuous casting of steel is
a complex metallurgical process where molten steel is cooled
and shaped into semimanufactures of desired dimensions.
Cooling is done using water in the primary and secondary
cooling subsystems. Primary cooling is performed in the
mold, while secondary cooling comprehends wreath cooling
at the exist from the mold, and spray cooling of the strand.

The goal is to set the parameters of this process (casting
speed,mold outlet coolant temperature, andwreath and spray
coolant flows (see Table 2)) in such a way that the quality
of the cast steel is as high as possible. The quality of steel is
defined by the following three objectives: distance from
desired metallurgical length (the length of the liquid core in
the strand), distance from desired shell thickness (thickness
of the solid shell at mold exit), and distance from desired

Table 2: Steel casting process parameters.

Parameter Lower
bound

Upper
bound Disc. step

Casting speed (m/min) 1.5 2.0 0.01
Mold outlet coolant temp. (∘C) 33 35 1
Wreath coolant flow (m3/h) 10 40 5
Spray coolant flow (m3/h) 25 65 5

Table 3: Variables defining the optimization objectives.

Variable Lower
bound

Upper
bound

Desired
value

Metallurgical length (m) 10 11 10
Shell thickness (mm) 11 15 13
Surface temperature (∘C) 1115 1130 1122.5

surface temperature at a predefined point in the strand.
Table 3 details the variables defining these optimization
objectives.Their bounds and desired values were determined
by domain experts.

If a parameter setting yields values outside the boundary
constraints presented in Table 3, it is deemed infeasible. The
objectives of the feasible solutions are computed by

𝑓
𝑘
=




𝑦
𝑘
− 𝑦
∗

𝑘






∀𝑖 ∈ 1, 2, 3, (30)

where 𝑦
𝑘
is the value of the observed variable and 𝑦

∗

𝑘
is its

desired value.
As real-world experimentation with parameter settings is

expensive and time-consuming and could also be dangerous,
we have simulated it using a numerical model of steel casting
based on a meshless technique for diffusive heat transport
[28]. One simulation of the steel casting process takes
approximately 2 minutes on a standard desktop computer.

Two instances of this optimization problem were studied:
discrete and continuous.The discrete problem instancewas set
by domain experts as presented in Table 2 in such a way that
all possible solutions (9639 in total) could be explored.While
the discrete problem instance enables the rough exploration
of the objective space, the continuous problem instancewhere
any value within the variable bounds could be chosen is the
one we wish to solve.

7.2. Results of Optimization Algorithms. Thediscrete problem
instance was solved using the exhaustive search (ES) algo-
rithm. These solutions form the Pareto front of the discrete
problem instance and we wanted to see whether an algorithm
tackling the continuous problem instance could come close to
this Pareto front.

We chose the algorithm DEMO (differential evolution
for multiobjective optimization) [29], which is a MOEA
algorithm that uses differential evolution [30], to explore the
decision space for the continuous problem instance. DEMO
was run five times, each time exploring 3200 solutions. More
detailed information on the employed experimental setup can
be found in [27].
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Figure 15: The best solutions found by ES on the discrete problem
instance and by DEMO on the continuous problem instance (all five
runs shown).

Themajority of the explored solutionswere infeasible. For
example, out of 9639 solutions found by ES only 1242 were
feasible and of those only 72 were mutually nondominated.
DEMO was solving an extended problem and therefore
found more nondominated solutions: on average, 645 per
run (although their number varied significantly over different
runs).

First, we visualize all final (feasible and nondominated)
solutions found by both algorithms in Figure 15. We can
see that ES found two distinct subsets of solutions. A more
detailed analysis of results revealed that they correspond
to two of the three mold outlet coolant temperatures (the
remaining one always produces infeasible solutions). Since
DEMO was not bound by this discretization, it was able to
find solutions also around these subsets. Both algorithms
found a few solutions with low distances from desired shell
thickness that are rather “detached” from the rest. They
actually lie on a larger disconnected region of the Pareto front
of which just this minor part is feasible.

This visualization is able to show that DEMO is able to
reach the Pareto front of the discrete problem and is therefore
a good choice for solving this problem. However, there are
two aspectswe are interested in that are hard to infer from this
visualization alone (they could, of course, be computed from
the solutions). First, we wish to see whether different runs of
DEMO produce similar results. Visualizing all five approxi-
mation sets together with differentmarkers or visualizing one
approximation set at a time does not provide a good means
for comparison. Second, although the approximation sets
found by DEMO look linear, they are in fact slightly convex
making it very hard to see (even by rotating the objective
space) whether results by ES are in fact dominated by those
by DEMO. We will try to find the answers to these questions
using the proposed visualization methods.

In order to use the proposed visualization methods to
visualize the results of ES and DEMO, we need to address
two issues. The first issue is the uneven ranges of the attain-
ment surfaces, which are important when computing voxels.

(a) DVR of 𝛿DEMO−ES
5

(b) DVR of 𝛿ES−DEMO
5

Figure 16: DVR of approximated 3D EAF differences between the
two algorithms for all values in {1/5, . . . , 5/5}.

As we can infer from Table 3, the observed objective space is
equal to [0, 1] × [0, 2] × [0, 7.5]. Moreover, the feasible results
found by the two algorithms actually lie in an even smaller
cuboid contained in [0, 0.6] × [0.5, 2] × [0, 7.5]. If the number
of voxels was proportional to the objective ranges, the first
two objectives would be discretized too roughly. Therefore,
we choose to normalize the objective vectors with regard to
[0, 0.6] × [0.5, 2] × [0, 7.5]. The second issue is the uneven
number of runs of both algorithms (ES was run once). To
leave the meaning of the EAFs differences intact, we copy the
results by ES to get five runs in total. This seems a reasonable
approach as the deterministic ES would actually produce five
equal results if it was run five times.

Now, visualization methods as described in Sections 4
and 5 can be used on these results. Figure 16 presents the
DVR of approximated EAF differences between the two
algorithms, 𝛿DEMO−ES

5
and 𝛿

ES−DEMO
5

, which gives us a general
idea of their performance. However, this does not answer
our two questions. To check the repeatability of DEMO, we
need to inspect the difference between the best and worst
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(a) DVR of 𝛼DEMO
5
∈ {1/5, 4/5}

(b) DVR of 𝛼DEMO
5
∈ {1/5, 5/5}

Figure 17: DVR of approximated 3D EAF values of DEM.

summary attainment surfaces. The narrow layer between
𝛼
DEMO
5

= 1/5 and 𝛼
DEMO
5

= 4/5 as well as 𝛼DEMO
5

= 1/5 and
𝛼
DEMO
5

= 5/5 (see Figure 17) suggests that although DEMO’s
approximation sets were of considerably different cardinality,
they attain a similar portion of the objective space. This is
further confirmed by amore detailed inspection using slicing
at angles 𝜑 = 25

∘ and 45
∘ (see Figure 18), which shows that

only a small border of the attained objective space is attained
less than five times (denoted by light green hues).

Finally, MIP can be used to check whether DEMO ever
finds better solutions than those found by ES. If this was not
the case, each solution found by ES would have exactly one
union of cuboids (albeit small) for which 𝛿

ES−DEMO
5

= 5/5.
As accuracy is important in this case (small cuboids can be
omitted if the discretization into voxels is not fine enough),
we useMIP on exact EAF differences. Figure 19 clearly shows

0
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Figure 18: Slices of exact 3D EAF values of DEMO at two angles.

that although 𝛿
ES−DEMO
5

= 5/5 for some solutions, this does
not hold for all of them, meaning that DEMO was actually
able to find solutions that dominate those by ES. This was of
course possible only because DEMOwas solving an extended
instance of the problem.

8. Conclusions

When comparing the results of multiobjective optimization
algorithms it is important to be able to visualize them as
this can provide new information regarding the algorithms
or the given problem. If the algorithms are stochastic, the
EAF can be used to describe how well the algorithms attain
the objective space with their multiple approximation sets.
Visualization of EAFs is rather straightforward in 2D but
presents a challenge in 3D as multiple cuboids need to be
visualized.
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Figure 19:MIP of exact 3DEAF differences between ES andDEMO,
𝛿
ES−DEMO
5

.

This paper presented how these cuboids can be computed
and visualized using slicing and MIP. If accuracy of visual-
ization is not crucial, the EAF values and differences can be
approximated by discretizing the objective space into a grid
of voxels. In this way, visualization can be performed using
slicing,MIP, andDVR.Wehave shownhow all thesemethods
perform on two sets of benchmark approximation sets and
discussed their advantages and disadvantages.

In addition, we demonstrated the use of slicing, MIP,
and DVR on a real-world optimization problem solved by
exhaustive search andMOEA algorithm.We have shown that
these powerful visualization methods are able to give a new
insight regarding the performance of the algorithms that can-
not be otherwise seen using solely “standard” visualization of
approximation sets.

In the future, we wish to find amore efficient way to com-
pute the cuboids either by improving the provided algorithm
or by adjusting existing efficient algorithms for hypervolume
calculation to suit our needs.
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