
Initial Experiments in Visualization of Empirical Attainment
Function Differences using Maximum Intensity Projection

Tea Tušar
Department of Intelligent Systems

Jožef Stefan Institute, and
Jožef Stefan International Postgraduate School

Jamova cesta 39
SI-1000 Ljubljana, Slovenia

tea.tusar@ijs.si

Bogdan Filipič
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ABSTRACT
In multiobjective optimization, the Empirical Attainment
Function (EAF) can be used to determine which areas of the
objective space are attained by an optimization algorithm.
If two algorithms are to be compared, differences in EAF
values show which areas of the objective space are more often
attained by one of the algorithms. While the visualization
of EAF values and differences is rather straightforward in
2D, the 3D case presents a great challenge as we need to
visualize a large number of 3D cuboids. This paper presents
a method for computing the cuboids with constant EAF
values and reports on initial experiments using Maximum
Intensity Projection, a very-well known volume rendering
technique used in medicine.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms

Keywords
Multiobjective optimization, Empirical attainment function,
Visualization, Maximum intensity projection

1. INTRODUCTION
Real-world optimization problems often consist of two,

three or even more conflicting objectives that cannot be
simply aggregated into a single value. Therefore, the op-
timization algorithms used for solving these problems offer
a set of trade-off solutions, where no solution from the set is
better than any other in all objectives. This is called an ap-
proximation set. If the algorithm is stochastic, as is the case
with evolutionary multiobjective algorithms generally used
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for such problems [1], it returns a different approximation
set in every run.

Whether constructing a new optimization algorithm or
improving an existing one, researchers need tools to assist
them in the comparison between algorithms. While the per-
formance of algorithms can be (and most often is) mea-
sured using different performance metrics, visualization of
their approximation sets can give important insight into the
properties of the algorithms (or the problem at hand) and
inspire ideas for further improvement. In two- and three-
objective optimization, the easiest way to visualize an ap-
proximation set is by simply plotting each solution it con-
tains1. Such plots can also be used to visually compare two
or more approximation sets, for example, each from a differ-
ent optimization algorithm. However, there is a limitation
to this technique—if an optimization algorithm is run mul-
tiple times and the resulting approximation sets are to be
visualized simultaneously, the produced output can become
too cluttered and loose its interpretation potential.

This difficulty can be overcome with the use of the Em-
pirical Attainment Function (EAF), which assigns to each
vector in the objective space a value signifying how often
the vector was attained by the given approximation sets [3].
In the 2D case, the performance of an algorithm represented
by several approximation sets can be visualized by plotting
rectangles of different colors (or gray shades) representing
different EAF values. Similarly, two algorithms can be com-
pared by showing differences in these values [4, 6]. Such
plots are very informative, providing an easy to understand
visualization of the areas of the objective space where one
algorithm outperforms the other one (and vice versa).

In the 3D case, however, visualization of EAF values and
differences is less trivial. The attained areas are not rectan-
gles, but cuboids, or rather, unions of cuboids, which need
to be computed first. If the approximation sets of one al-
gorithm consistently outperform the approximation sets of
another algorithm, the positive EAF differences between the
two algorithms look similar to a 3D ‘cloud’ of cuboids where
the cuboids with the highest values lie in the center of the
cloud, surrounded by cuboids with gradually decreasing val-
ues. Direct volume rendering of such clouds would show only
the outer cuboids that correspond to smaller differences be-

1Approximation sets of higher dimensions that require more
sophisticated methods to be visualized will not be discussed
in this paper. The interested reader is referred to [7] for a
comprehensive review of such methods.
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tween the algorithms and are thus less interesting than the
inner cuboids. This paper tackles the task of visualizing
clouds of cuboids so that the cuboids with highest values
have precedence over those with lower values. In previous
work, we have sliced through the clouds of EAF values and
differences under different angles and visualized the slices
obtained in this way [6]. Here, we limit ourselves to the
visualization of EAF differences using the Maximum Inten-
sity Projection (MIP) method [8], which gives us a kind of
‘X-ray’ visualization of the cloud, where the cuboids with
highest EAF differences are best seen. The analogy with
X-rays is not coincidental as MIP is mostly used in medi-
cal imaging [5]. The MIP visualization nicely complements
the slices, and taken together, the visualizations give a good
idea of the 3D cloud of cuboids.

The next section provides some background on the rela-
tions used in multiobjective optimization, the EAF and the
MIP method. Section 3 is devoted to solving a subproblem
in the visualization of EAF differences—the computation of
the attained area, which in turn requires finding the oppo-
site of an approximation set. Section 4 demonstrates how
MIP can be used for visualizing EAF differences. Finally,
Section 5 concludes the paper with ideas for future work.

2. BACKGROUND

2.1 Relations in Multiobjective Optimization
The multiobjective optimization problem consists of find-

ing the optimum of a function

f : X → F

f : (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where X is an n-dimensional decision space, and F is an m-
dimensional objective space (m ≥ 2). Each solution x ∈ X
is called a decision vector, while the corresponding element
z = f(x) ∈ F is an objective vector. Without loss of gener-
ality we assume that F ⊆ Rm and all objectives fi : X → R
are to be minimized.

As this paper deals with visualization in the objective
space, which can be viewed rather independently from the
decision space, the following definitions are confined to the
objective space.

Definition 1 (Weak Pareto dominance of vectors).
The objective vector zA = (zA1 , . . . , z

A
m) weakly dominates

the objective vector zB = (zB1 , . . . , z
B
m), i.e. zA � zB, if

zAi ≤ zBi for ∀i ∈ {1, . . . ,m}.

Definition 2 (Strict Pareto dominance of vectors).
The objective vector zA = (zA1 , . . . , z

A
m) strictly dominates

the objective vector zB = (zB1 , . . . , z
B
m), i.e. zA ≺≺ zB, if

zAi < zBi for ∀i ∈ {1, . . . ,m}.

Definition 3 (Incomparability of vectors). The objec-
tive vectors zA = (zA1 , . . . , z

A
m) and zB = (zB1 , . . . , z

B
m) are

incomparable, i.e. zA ‖ zB, if

zA � zB and zB � zA.

Definition 4 (Approximation set). A set of objective
vectors Z ⊆ F is called an approximation set if zA ‖ zB for
any two objective vectors zA,zB ∈ Z.

Definition 5 (Weak Pareto dominance of approxima-
tion sets). The approximation set ZA weakly dominates the
approximation set ZB, i.e. ZA � ZB, if every zB ∈ ZB is
weakly dominated by at least one zA ∈ ZA.

2.2 Empirical Attainment Function
The attainment function is based on the multiobjective

concept of goal-attainment [3]: an objective vector is at-
tained when it is weakly dominated by the approximation
set returned by an optimization algorithm. If the algorithm
is run r times, each objective vector can be attained between
0 and r times. The empirical attainment function of the ob-
jective vector z gives the frequency of attaining z by the
approximation sets Z1, . . . , Zr:

αr(z) =
1

r

r∑
i=1

I (Zi � {z}) ,

where I is the indicator function, defined as

I(b) =

{
1 if b is true,

0 otherwise,

and � is the weak Pareto dominance relation between sets.
Every vector in the objective space is thus assigned an

EAF value from the interval [0, 1]. Of course, in practice
the EAF cannot be computed for every objective vector, but
only the boundaries of the regions of the objective space with
a constant EAF value are of interest. They are called k %-
attainment surfaces (also summary attainment surfaces) and
consist of the tightest objective vectors that have been at-
tained in at least k % of the runs. The attainment surfaces
are well-defined by a finite set of objective vectors that we
call attainment anchors2. Attainment anchors include other
vectors beside the vectors from the approximation sets. Fon-
seca et al. [2] provided efficient algorithms for computing at-
tainment anchors and their EAF values for the 2D and 3D
cases.

Consider the example shown in Figure 1, where three ap-
proximation sets contain four objective vectors each (de-
noted with circles). The lines represent three attainment
surfaces that partition the objective space into areas with
distinct EAF values. The attainment anchors define these
surfaces and are shown with circles and dots (the dots are
those that are not present in the approximation sets).

Now imagine that two algorithms, A and B, are run r
times each. This yields two sets of approximation sets. The
algorithms can be compared by computing their EAF val-
ues αA

r and αB
r separately. However, there exists a straight-

forward way to directly compare the algorithms by joining
their approximation sets [4]. First, the overall attainment
surfaces for the 2r approximation sets need to be computed.
Then, for each attainment anchor z, the difference in EAF
values can be calculated by counting the number of times
each of the algorithms managed to attain that anchor and
subtracting the two numbers:

δA−B(z) = rαA
r (z)− rαB

r (z).

Defined in this way, the differences can adopt values from
{−r, . . . , 0, . . . , r}. Positive EAF differences denote areas in

2These vectors are called output points in the context of the
EAF computation [2], where the input points represent the
objective vectors from the approximation sets.
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Figure 1: Attainment surfaces for three approxima-
tion sets. The circles labels denote the different ap-
proximation sets. All circles and dots represent the
attainment anchors.

the objective space where the algorithm A outperforms the
algorithm B, while negative EAF differences denote areas in
the objective space where the algorithm B outperforms the
algorithm A. Naturally, where the differences are zero, both
algorithms attain the area equally well.

In order to visualize the EAF differences, the attained ar-
eas need to be computed. As presented later, this is easier to
do in 2D, where these areas are unions of rectangles, than
in 3D, where the areas are unions of cuboids, and require
the computation of a opposite of an approximation set. Ad-
ditional practical difficulties in visualizing EAF differences
arise from the high number of attainment anchors l. As
proven in [2], in the 2D case, l ∈ Θ(ra), while in the 3D
case, l ∈ O(r2a), where r is the number of approximation
sets (runs) and a the total number of objective vectors con-
tained in the approximation sets. In Section 4 we will see on
an example how these bounds on the number of attainment
anchors translate to actual figures.

2.3 Maximum Intensity Projection
Maximum intensity projection (MIP) is a volume render-

ing method for spatial data represented by voxels, i.e. val-
ues in a 3D grid. The method inspects voxels in direction
of parallel rays traced from the viewpoint to the projection
plane, and takes the maximum value encountered in the vox-
els along a ray as the projection value for the ray (see the
schematic presentation in Figure 2).

The method, originally called maximum activity projec-
tion (MAP) [8], was proposed for 3D image rendering in
nuclear medicine and tested in tomographic studies. It was
later accepted not only in medical imaging, but in scientific
data visualization in general.

The advantages of MIP are its simplicity and efficiency,
and the ability of achieving high contrast, which arises from
the fact that maximum voxel values are projected. On the
other hand, as a limitation, the resulting projections lack
the sense of depth of the original data. Moreover, the viewer
cannot distinguish between left or right and front and back.

Viewpoint

Projection plane

Figure 2: Schematic presentation of MIP.

Figure 3: CT of a mouse visualized using MIP at
two different viewpoints, c©Christian Lackas.

As an improvement, animations are usually provided, con-
sisting of a sequence of MIP renderings at slightly different
viewpoints, which results in the illusion of rotation (see an
example of visualization using MIP at two different view-
points in Figure 3).

3. COMPUTING THE ATTAINED AREA
Before tackling the visualization of EAF differences, let us

focus on the problem of computing the areas attained by the
anchors, which are unions of rectangles in 2D, and unions of
cuboids in 3D. Consider two consecutive attainment surfaces
Z1 and Z2. Each rectangle (or cuboid) between the two
attainment surfaces is defined by exactly two vectors—one
attainment anchor from Z1 and a dominated vector from Z2.
We call these ‘dominated vectors’ the opposite of the set of
anchors.

3.1 Opposite of an Approximation Set
The oppositeO of an approximation set Z depends only on

Z and two reference vectors r1 and r2 denoting the bound-
aries of the observed objective space ({r1} � Z � {r2}).
The attainment surface of the approximation set Z divides
the observed objective space in two areas—vectors in the
first area are not attained by Z, while vectors in the sec-
ond area are attained by Z. The opposite O is the set of
vectors that would yield the same attainment surface, i.e.
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Algorithm 1: Computing the opposite of a 2D approx-
imation set.

Input: Approximation set Z and reference vectors r1

and r2 such that {r1} � Z � {r2}
Output: The opposite O

Sort the vectors from Z in ascending order of the first
objective to obtain Z = {z1, . . . , zk};
O ← {};
if z11 6= r11 then

O ← {(z11 , r22)};
end
for i← 2 to k do

O ← O ∪ {(zi1, zi−1
2 )};

end

if zk2 6= r22 then
O ← O ∪ {(r21, zk2 )};

end
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Figure 4: Example of a 2D approximation set Z =
{z1, . . . , z4} and its opposite O = {o1, . . . ,o4} with re-
gard to reference vectors r1 and r2.

divide the observed objective space in exactly the same ar-
eas, if the minimization problem would be transformed into
a maximization problem.

In 2D, computing the opposite of an approximation set
Z given two reference vectors r1 and r2 is very simple (see
Algorithm 1 and Figure 4 for an example). First, the vectors
in the approximation set Z are sorted with regard to their
values in the first objective. Then for each vector zi ∈ Z,
a vector oi in the opposite O is created by ‘raising’ zi to
match the second objective value of its predecessor zi−1.
The first vector has no predecessor, therefore it is raised
to the level of the second reference vector r2. In addition,
the last vector of the opposite is created by combining the
first objective value of the r2 and the second objective value
of the last vector from Z. The first and last vectors are
retained in the opposite only if they are strictly dominated
by the first reference vector r1 (this is the reason why there
is no o5 = (10, 0) in the example from Figure 4).
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Figure 5: Example of a 3D approximation set Z =
{z1, . . . , z15} and its opposite O = {o1, . . . ,o8} with
regard to reference vectors r1 = (0, 0, 0) and r2 =
(10, 10, 5) (not pictured).
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Figure 6: An intermediate step in the construction
of the opposite of set Z from Figure 5 showing the
opposite for the set {z5,z6}.

While finding the opposite of a 3D approximation set is
more demanding, there exists an elegant way to do it. We
will explain it with the help of Figures 5, 6 and 7. Again,
we know the approximation set Z and two reference vectors
r1 and r2. The desired outcome is shown in Figure 5. It
can be constructed gradually, by taking into consideration
one vector from Z at a time. Note that the vectors from Z
do not need to be sorted.

Imagine a single cuboid defined by the reference vectors
r1 and r2. The only vector in the opposite at this point
is r2. Every time a vector from Z is ‘cut into’ the existing
cuboid, new vectors are added into the opposite. Assume
we have already performed this step for vectors z5 and z6

(see Figure 6) and vector z9 is next in line (see Figure 7).
First, we delete from the opposite all vectors that are strictly
dominated by the current vector z (this means that in our
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Figure 7: An intermediate step in the construction
of the opposite of set Z from Figure 5 showing the
opposite for the set {z5,z6,z9}.

Algorithm 2: Computing the opposite of a 3D approx-
imation set.

Input: Approximation set Z and reference vectors r1

and r2 such that {r1} � Z � {r2}
Output: The opposite O

O ← {r2};
foreach z ∈ Z do

O′ ← {o ∈ O;z ≺≺ o};
O ← O −O′;
foreach o ∈ O′ do

on1 ← (z1, o2, o3);
on2 ← (o1, z2, o3);
on3 ← (o1, o2, z3);
for i← 1 to 3 do

if ¬ coplanar(oni , r1) ∧ ¬ collinear(oni , O)
then

O ← O ∪ {oni};
end

end

end

end

Algorithm 3: Computing the attained areas between
two attainment surfaces.
Input: Attainment surfaces Z1 and Z2, for which

Z1 � Z2, and reference vector r2

Output: The set of attained areas A

r1 ← component-min(Z1);

O ← opposite(Z1, r
1, r2);

foreach z ∈ Z1 do
O′ ← {o ∈ O;z ≺≺ o};
foreach o ∈ O′ do

A← A ∪ new-area(z,o, value(z));
end

end

example we delete vector o4, but not o5). Next, for every
deleted vector o we create three new vectors in the following
way:

on1 = (z1, o2, o3)

on2 = (o1, z2, o3)

on3 = (o1, o2, z3)

Finally, each of these vectors is added to the opposite if
it is not coplanar with r1 and not collinear with any of the
vectors from the current opposite. In our example, we add to
the opposite vectors o6 and o7, but not o8 = (2, 6.5, 5) (not
pictured in the figure) as it is collinear with o5. When these
steps have been taken for every vector from Z, the resulting
set O represents the opposite of Z. See also Algorithm 2 for
the algorithmic notation of the described procedure.

Note that the same idea of cutting into the objective space
could also be used for the 2D case. However, Algorithm 1 is
so simple that there is no need to look for an alternative.

3.2 From Opposites to Areas
Let us return to the example of two consecutive attain-

ment surfaces Z1 and Z2. If the opposite O of Z2 is known,
it is rather straightforward to compute the attained areas
between Z1 and Z2 and can be done in a uniform way for
both the 2D and 3D case (see Algorithm 3). For every at-
tainment anchor z ∈ Z1 and every vector o ∈ O that is
strictly dominated by z, an area enclosed by these two vec-
tors is added to the set of attained areas.

In addition, each area can be associated with a value—
either the EAF value of the difference between EAF values of
the attainment anchor z. While some areas might overlap,
this is not a problem since all overlapping areas have the
same value (if they did not have the same value, another
anchor vector would have already split the area).

The Algorithm 3 computes the attained areas between two
consecutive attainment surfaces. In order to compute the
areas for the whole objective space, we need to iterate the
algorithm over all consecutive pairs of attainment surfaces.

4. VISUALIZING EAF DIFFERENCES
USING MAXIMUM INTENSITY
PROJECTION

The procedure for visualizing EAF differences between
two sets of approximation sets consists of the following steps:

1. Combine all approximation sets and calculate the EAF
values and the differences in those values.

2. Compute the cuboids between all pairs of attainment
surfaces.

3. Plot separately the cuboids with positive and negative
EAF differences using MIP.

Let us assume we wish to plot the cuboids using a standard
plotting tool able to visualize 3D data. Usually, the 3D ren-
dering tools do not allow for cuboids with larger EAF differ-
ences to cover those with smaller EAF differences, as is the
principle of MIP, but visualize the cuboids in a sequence that
maintains some notion of depth (cuboids near the viewpoint
are shown in front of the cuboids further away). Therefore,
MIP can be performed only after the viewpoint has been set
and the cuboids are plotted onto 2D. Now we can choose to
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Figure 8: Areas in the objective space where the
linear approximation sets outperform the spherical
ones as shown by MIP (darker areas denote larger
differences).

visualize them in a predefined order from the smallest to the
largest EAF difference. If plotted in this way, cuboids with
larger EAF differences cover those with smaller differences,
effectively achieving the MIP visualization of the cloud of
cuboids.

Now, let us demonstrate the visualization of EAF differ-
ences by means of MIP on an example. The attainment
surfaces used in this example are not the product of opti-
mization algorithms, but rather benchmark approximation
sets with known properties used for visualization purposes
[7].

The first set consists of five linear approximation sets with
a uniform distribution of vectors that satisfy the constraint

3∑
i=1

zi = cL.

In order to simulate the behavior of a stochastic algorithm,
the values of cL for different sets follow the normal distribu-
tion with mean 1 and variance 0.05. The second set contains
five spherical approximation sets with a non-uniform distri-
bution of vectors where only few vectors are located in the
middle of the approximation set, while most of them are near
its corners. The vectors from the spherical approximation
sets satisfy the constraint

3∑
i=1

z2i = c2S,

where the values of cS for each of the five sets follow the
normal distribution with mean 0.75 and variance 0.05. Each
individual approximation set contains 100 objective vectors.

The values of cL and cS were chosen so that the sets are
always intertwined—in one region, the linear approximation
sets dominate the spherical ones, while in others, the spher-
ical sets dominate the linear ones. This means that there
will be visible differences in EAF values for the two sets of
approximation sets.

Figure 8 shows the areas of the objective space where
the linear approximation sets outperform the spherical ones.
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Figure 9: The intersection between the cuboids
showing outperformance of the linear approximation
sets with the plane crossing the origin and cutting
the xy plane at the angle of 45◦.
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Figure 10: Areas in the objective space where the
spherical approximation sets outperform the linear
ones as shown by MIP (darker areas denote larger
differences).

Here the cloud of cuboids is nicely visualized. We can see
that the largest values are in its center, surrounded by de-
creasing values. Nevertheless, this MIP visualization shares
the same disadvantages as MIP visualizations in medicine—
because we can see through the cloud of cuboids, we loose
the sense of depth. While it is inevitable to lose some infor-
mation when projecting 3D structures onto 2D, this can be
amended by combining two visualization techniques—MIP
and slicing through the cloud, which visualizes the intersec-
tion between the cuboids and the cutting plane (see [6] for
details and the example of such a cut in Figure 9). Now we
can see that the cloud is not round at its side closest to the
origin, but flat as the best approximation sets in that area
of the objective space are the linear ones.

Similarly, we can use MIP to visualize the areas of the ob-
jective space where the spherical approximation sets outper-
form the linear ones (see Figure 10). As it could be expected,
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Table 1: The number of attainment anchors and cuboids depending on the number of approximation sets.

No. of No. of all No. of attainment No. of cuboids No. of cuboids No. of cuboids
sets vectors anchors with δL−S 6= 0 with δL−S > 0 with δL−S < 0
10 1 000 8 093 22 577 14 470 8 107
20 2 000 49 044 91 088 58 392 32 696

we can see that the spherical sets dominate the linear ones
only near the corners of the objective space.

Finally, a note on the complexity of such visualizations.
In our example we have used two sets of five approximation
sets, each containing 100 objective vectors. In addition, we
have performed the same experiments on two sets with ten
approximation sets, again containing 100 objective vectors
each. Table 1 collects the number of objective vectors, at-
tainment anchors and cuboids in each experiment. As we
can see, the number of attainment anchors significantly in-
creases with the growing number of approximation sets (as
already mentioned in Subsection 2.2). What these num-
bers mean in practice is that it is very difficult to visualize
all areas with non-zero EAF differences when dealing with
ten or more runs per algorithm since this entails visualizing
approximately 50 000 cuboids. As we are usually interested
mainly in the areas where the differences between algorithms
are large (or even statistically significant), one possibility is
to remove the cuboids with smaller EAF differences before
visualization with MIP, thus decreasing their number.

The Algorithm 3 constructing the cuboids allows them to
overlap. As we can see from Table 1, this happens very of-
ten (there are between two and three cuboids per attainment
anchor). It might be interesting to explore if posing a re-
striction on overlapping would bring better results in terms
of faster rendering of the cuboids. While non-overlapping
cuboids would be smaller (and therefore easier to visualize),
they might increase in number, which makes it hard to pre-
dict if such a procedure would be advantageous.

5. CONCLUSION
We have tackled the visualization of 3D EAF differences

between two optimization algorithms, which consists of two
subproblems. In order to show the EAF differences, the
objective space needs to be first divided into cuboids with
constant differences. Second, to compute these cuboids, the
opposites of all attainment anchors must be found. We have
presented algorithms to solve these subproblems and shown
some preliminary results of the visualization with MIP on
two sets of benchmark approximation sets.

In the future, we intend to provide more combined MIP
and slicing visualization examples, including those from real-
world optimization problems. Also, the algorithms presented
in this paper could probably be further improved, for ex-
ample, by storing the already computed relations between
objective vectors. Additionally, it might be interesting to
explore a completely different approach where the objec-
tive space would not contain exact cuboids, but would be
discretized into voxels with values approximating the EAF
differences in the covered area. While any discretization
would surely yield only an approximation of the true cloud
of cuboids, it could provide better efficiency. Moreover, ex-
isting MIP rendering software could then be used to visualize
the voxels (including interactive rotations).
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