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ABSTRACT

When analyzing the performance of a bi-objective optimiza-
tion algorithm, the empirical attainment function (EAF) is
often used to visualize the attained parts of the objective
space. Similarly, when comparing two algorithms, the dif-
ferences in EAF values can be used to show the parts of the
objective space in which the first algorithm outperforms the
second one, and vice versa. This paper proposes to visualize
the EAF values and differences also when assessing algo-
rithms that optimize three criteria. This can be achieved by
cutting through the 3D EAF's using multiple cutting planes
and presenting the resulting intersections in 2D. The ap-
proach is described in detail and demonstrated on two arti-
ficial Pareto front approximations.
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1. INTRODUCTION

The most common means of tackling multiobjective opti-
mization problems is using stochastic population-based algo-
rithms, such as evolutionary algorithms [1]. A single run of
such an algorithm results in a set of solutions whose images
approximate the Pareto-optimal front: this is called an ap-
prozimation set. Their stochastic nature implies that multi-
ple runs of these algorithms result in different approximation
sets. Although many measures exist to assess the quality
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of approximation sets (from which the quality of the algo-
rithm is usually inferred), visualizing them can provide ad-
ditional important information. For example, visualization
can be used to [6]: estimate the location, range and shape
of the Pareto front, assess conflicts and trade-offs between
objectives, select preferred solutions, monitor the progress
or convergence of an optimization run, assess the relative
performance of different optimization algorithms, etc.

While simple scatter plots can be used to visualize 2D and
3D approximation sets, visualization of multiple approxima-
tion sets is far more demanding. The empirical attainment
function (EAF), which describes the probabilistic distribu-
tion of the approximation sets, can be used for this purpose
[3]. A good example of using EAFS’ values, as well as dif-
ferences between EAFs for visualizing the performance of
multiobjective optimization algorithms, is presented in [7].
The present paper extends the work from [7] by proposing
an alternative way to visualize 2D EAFs and, more impor-
tantly, focusing on the visualization of 3D EAFs.

The paper is further organized as follows. Section 2 for-
mally defines the EAF, followed by a brief review of the
related work. Section 3 presents and demonstrates the ap-
proach for visualizing the EAF, first for the 2D case and then
for the 3D one. Section 4 offers some concluding remarks.

2. BACKGROUND

2.1 Empirical Attainment Function

Consider a multiobjective optimization problem in which
all criteria must be minimized. Let us first recall the weak
dominance relation defined separately for vectors and ap-
proximation sets [5]. The objective vector z weakly domi-
nates the objective vector w (z < w) if and only if z; < w;
for all objectives j. The approximation set Z weakly domi-
nates the approximation set W (Z < W) if and only if every
vector z € Z is weakly dominated by at least one vector
weWw.

The attainment function is based on the multiobjective
concept of goal-attainment [3]: an objective vector is at-
tained when it is weakly dominated by the approximation
set returned by the multiobjective optimization algorithm.
If the algorithm is run n times, each objective vector can
be attained between 0 and n times. The empirical attain-
ment function of the objective vector z gives the frequency



of attaining z by the approximation sets Xi,..., X,:

an(z) = %ZI(XZ- < {z}),

where I is the indicator function, defined as

1 if b is true,
0 otherwise,

I(b) =
and < is the weak dominance relation between sets.

For visualization purposes, we are often interested in ar-
eas of the objective space with a constant value of the EAF.
A k %-attainment surface (also referred to as the summary
attainment surface) consists of the tightest objective vectors
that have been attained in at least k % of the runs. Such
an attainment surface divides the objective space into two
parts: the first is where the objective vectors have been at-
tained in at least k % of the runs, and the second is where
the objective vectors were attained in fewer than k& % of the
runs. When visualizing the EAF of an algorithm with n
approximation sets, the best, median, and worst summary
attainment surfaces are shown most frequently, which cor-
respond to £ %, 50 % and 100 %-attainment surfaces, re-
spectively.

In the pairwise comparison of two different algorithms,
the differences between EAFs can be used to visualize areas
in which the algorithms differ from each other the most. If
only the visualization of statistically significant differences in
EAF values is required, statistical tests need to be performed
prior to visualization, and only the vectors with statistically
significant differences need to be visualized.

2.2 Related Work

Computation of the EAF in more than two dimensions is
a non-trivial task. Probably for this reason, one of the first
approaches to visualizing 3D summary attainment surfaces
used an even, grid-based sampling of the surface, which did
not require the surface to be computed exactly [4]. More re-
cently, an efficient algorithm for computing the exact EAF
for optimization problems with three objectives was pre-
sented [2].

However, the task of visualizing an attainment surface (or
equivalently, an approximation set) is quite different from vi-
sualizing EAF values and differences, since this information
adds an additional dimension. Therefore, the visualization
methods that are usually used for visualizing approximation
sets (see [9] for a comprehensive review) cannot be used for
this purpose.

To the best of our knowledge, visualization of EAF values
and differences has previously been attempted only for the
2D case. In [7], for example, the difference between EAFs
are plotted in order to aid the experimental analysis of al-
gorithms on bi-objective optimization problems.

3. PROPOSED VISUALIZATION METHOD

We start by demonstrating how the 2D EAF values and
differences can be visualized, and then extend this approach
to the visualization in 3D.

3.1 The 2D Case

Since each summary attainment surface divides the ob-
jective space into two parts, we can visualize it either by
plotting the surface or by coloring one (the dominated) part
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of the space. The latter is easily done with multiple colored
(or gray-shaded) rectangles that have one corner in each ob-
jective vector from the summary attainment surface and the
other in the upper right corner of the visualized part of the
objective space. The color (or gray shade) of the rectangles
can represent the EAF value of the summary attainment
surface. If this is done for all summary attainment surfaces
of an algorithm in order from the best to the worst, the re-
sulting plot provides a good idea of the distribution of the
EAF values in the objective space.

In the same way, differences between EAF values for two
algorithms can be visualized for each algorithm separately.
Here, it is important to use colors (or gray shades) only for
the positive differences for the algorithm in question (in-
dicating the portions of the space in which this algorithm
outperforms the other one), and to use white rectangles for
the areas with non-positive differences.

Assume we wish to visualize the EAF values and their dif-
ferences of two algorithms run n times on a given bi-objective
optimization problem. The approach is as follows:

1. Combine all approximation sets and compute the over-
all summary attainment surfaces.

For each objective vector with a different EAF value,
count the number of times the approximation sets of
the first algorithm attained that vector, and the num-
ber of times the approximation sets of the second al-
gorithm attained it. Mark also the differences between
these two numbers.

Plot the computed EAF values separately for each al-
gorithm using shaded rectangles. Plot atop the best,
median, and worst summary attainment surfaces.

Plot the differences of the EAF values separately for
each algorithm using shaded rectangles. Plot atop the
best, median, and worst summary attainment surfaces.

We demonstrate the proposed visualization method on
two artificial sets of approximation sets that do not result
from true multiobjective optimization algorithms. This pro-
vides good control over the sets’ properties, which suits our
demonstration purposes. The first set of approximation sets,
which is called uniform, contains vectors that have an almost
uniform distribution in the objective space. The distribu-
tion of vectors in the second (nonuniform) set of approxi-
mation sets is nonuniform with only few vectors located in
the middle of the approximation set and most of them near
its corners. This second set contains spherical benchmark
approximation sets from [9]. All approximation sets have
a concave spherical shape and contain 25 vectors each, in-
cluding the vectors (0,1) and (1,0), which means that the
approximation sets are normalized to [0, 1]2. Each set of
approximation sets contains 30 approximation sets that are
comparable to 30 runs of a multiobjective optimization al-
gorithm (see Figure 1).

Figure 2 presents the best, median, and worst summary
attainment surfaces for the uniform and nonuniform sets
that were computed separately for each of the two sets. This
figure shows how the uniform approximation sets are better
at attaining the middle part of the objective space.

The EAF values and differences for these two sets are pre-
sented in Figures 3 and 4. Note that these plots show the
overall summary attainment surfaces computed for both sets
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Figure 1: All vectors in the 2D uniform and nonuni-
form approximation sets.
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Figure 2: The best, median, and worst summary
attainment surfaces generated separately for the 2D
uniform and nonuniform approximation sets.

together, which is the reason why the summary attainment
surfaces in these two figures are different from the ones in
Figure 2. Plots of the EAF differences provide more infor-
mation on the approximation sets than could be gathered
from the plots in Figures 1, 2, and 3. For example, while
it is again obvious that the uniform approximation sets are
better at attaining the middle of the objective space, the
nonuniform approximation sets receive better results at the
extremities. This was not obvious from either the summary
attainment surface plots or the plots of EAF values.

Our approach differs from that in [7] in that we use rect-
angles instead of shaded points to visualize the EAF differ-
ences. Figure 6 shows a zoomed-in region of the objective
space with the EAF differences from the point of view of the
uniform approximation sets, plotted first using points and
then rectangles. Plotting the EAF differences using rectan-
gles is not only the correct way to visualize them (the EAF
differences are never limited to the vector in question; in-
stead they cover an area), but it is also more clear. In fact,
the points with different EAF values are not close enough to
accurately represent the distribution of EAF differences in
the objective space, and the presence of ‘white spots’ further
hinders interpretation.

3.2 The 3D Case

The EAF values and differences can be calculated effi-
ciently for algorithms that solve optimization problems with
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Figure 3: The EAF values for the combined 2D uni-
form and nonuniform approximation sets (see Fig-
ure 5 for the scale of the gray shades).
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Figure 4: The differences of the EAF values between
the 2D uniform and nonuniform approximation sets
(see Figure 5 for the scale of the gray shades).
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Figure 5: The scale of gray shades used in the plots
throughout the paper (the absolute number between
0 and 30 means either the EAF value or the EAF
difference).
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Figure 6: Comparison of the result obtained by plot-
ting differences using points and rectangles.



three objectives, as shown in [2]. However, the visualization
of such values is demanding, as they cannot simply be plot-
ted in 3D. To solve this problem, we take inspiration from
visualization with prosections [8, 9], where cuts in the objec-
tive space are used to plot approximation sets in one fewer
dimension. Essentially, the idea here is to use cutting planes
to cut through the 3D objective space of the EAF values (or
differences) and visualize the resulting intersections in 2D.
If we wish to visualize the EAF values and their differences
of two algorithms run n times on a given three-objective
optimization problem, the approach is as follows:

1. Combine all approximation sets and compute the over-
all summary attainment surfaces.

. Select the cutting planes of interest.

. Compute the intersections between each summary at-
tainment surface and each cutting plane. Each inter-
section consists of the tightest objective vectors on the
cutting plane, with the same EAF value as the sum-
mary attainment surface.

. For each objective vector in the intersection, count the
number of times that the approximation sets of the
first algorithm attained that vector, and the number
of times that the approximation sets of the second al-
gorithm attained the vector. Mark also the differences
between these two numbers.

. Plot the computed EAF values of the vectors in the in-
tersection using shaded rectangles for each algorithm
and each cutting plane separately. Plot atop the in-
tersections of the best, median, and worst summary
attainment surfaces with the cutting plane.

. Plot the differences of EAF values of the vectors in
the intersection using shaded rectangles for each algo-
rithm and each cutting plane separately. Plot atop the
intersections of the best, median, and worst summary
attainment surfaces with the cutting plane.

Figure 7 helps to explain the procedure for computing the
intersections between an arbitrary attainment surface and
a cutting plane. Here, the attainment surface is defined by
12 objective vectors. When the cutting plane cuts through
the attainment surface, only some of the vectors (the eight
that are additionally denoted as considered vectors) have
the potential to affect the intersection. We compute the
intersection between the attainment surface formed only by
the considered vectors and the cutting plane and only retain
the nondominated intersection vectors (the four dots from
Figure 7). Figure 8 provides a more detailed step-by-step
description of this procedure.

For demonstration purposes, we again use 30 uniform and
30 nonuniform concave spherical approximation sets. This
time, however, each approximation set consists of 125 vec-
tors normalized to [0, 1]*. Figure 9 shows the 3D plots of the
uniform and nonuniform approximation sets, together with
an example of a cutting plane.

The relatively symmetrical nature of the considered ap-
proximation sets means that there is no need to visualize
many cutting planes (as might be required in a general case).
We chose to cut through the plane fif2 at three angles: 5°,
25° and 45°. We used these cutting planes and the proposed
method to obtain the plots presented in Figures 10 and 11.
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Figure 7: Intersection between the cutting plane and
the attainment surface (see text for more informa-
tion).

Input: The attainment surface defined by vectors x1,...,
x) and the cutting plane, which cuts the plane fif2
with origin a = (a1, az2,a3) at angle ¢.

1. Separate the vectors @1, ..., x; in two sets depending
on whether they are located on the left or right side of
the cutting plane (from the origin point of view).

2. Sort the vectors on the left of the cutting plane by
their ascending value in the objective fs.

Check the set elements in this order and discard all
vectors having the value in objective f2 greater than
the previous kept vector.

Compute the intersection between each remaining vec-
tor « and the cutting plane in the following way:

) T2, «’B3>

5. Sort the vectors on the right of the cutting plane by
their ascending value in the objective f3.

T2 —a
(le,IQ,JJ;g) — (CL1 +4 w22
tan ¢

Check the set elements in this order and discard all
vectors having the value in objective fi greater than
the previous kept vector.

Compute the intersection between each remaining vec-
tor & and the cutting plane in the following way:

(21,22, 23) = (1,02 + (1 — a1) tan @, x3)

Unite all intersection vectors in a single set and keep
only the nondominated ones.

Perform dimension reduction by rotating the resulting
intersection vectors & by angle —¢:

(1,22, 23) — (\/(1:1 —a1)? — (w2 — a2)2,a;3>

Ouput: The nondominated intersections in 2D.

Figure 8: The procedure for computing the inter-
section between an attainment surface and a cutting
plane.
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Figure 10: The EAF values for the combined 3D uniform and nonuniform approximation sets (see Figure 5

for the meaning of the gray shades).
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+
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Figure 9: All vectors in the 3D uniform and nonuni-
form approximation sets and the cutting plane,
which cuts the plane fif> at angle 25°.

The plots at the 5° angle are very similar to the 2D ones.
Again, the uniform approximation set is better at covering
the middle of the objective space and worse at covering its
extremities. At the 25° and 45° angles, the differences are
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even greater in favor of the uniform approximation sets. Be-
cause the nonuniform sets are more condensed in the upper
part of the objective space, we might expect them to cover
this part of the objective space better than the uniform sets
also at angles 25° and 45°. It is interesting to note that this
is clearly not the case at angle 45°.

Finally, it is worth making a note on the complexity of
the proposed method. For this purpose, we use the notation
from [2], where n is the number of all approximation sets,
m is the total number of objective vectors in n approxima-
tion sets, and | = O(n?m) is the number of overall objective
vectors defining the summary attainment surfaces. Accord-
ing to [2], it takes O(n®*mlogm) time to compute all of the
summary attainment surfaces. The procedure for computing
the intersections (see Figure 8) requires O(I?) = O(n*m?)
time in the worst case because of the nondominated sort-
ing needed at the end. In practice, however, the required
time is much smaller since the considered vectors that are
included in nondominated sorting are far less than I. There-
fore, in practice, the sorting of all vectors performed at the
beginning of the procedure, which takes O(llog!) time in the
worst case, is actually the most computationally demanding
step. Counting the EAF values and differences for each al-
gorithm would require O(ml) = O(n*m?) time in the worst
case; however, in practice, the time spent is again much less.

Regardless of the worst case computational complexity,
an average PC computed all the data needed for the pre-
sented plots within a matter of seconds. Some additional
time, again measured in seconds, was needed to produce
the plots' (plotting rectangles instead of points does take
slightly longer).

LAll plots in the paper were produced using the gnuplot
plotting program.
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Figure 11: The differences of the EAF values between the 3D uniform and nonuniform approximation sets

(see Figure 5 for the meaning of the gray shades).

4. CONCLUSION

When comparing two multiobjective optimization algo-
rithms, it is important to be able to visualize their differ-
ences. We presented a way to do this for the 3D case by
using cutting planes to cut through the 3D objective space
with EAF differences and visualizing the resulting intersec-
tions in 2D. The visualization method has been described
in detail and demonstrated on the comparison of uniform
and nonuniform approximation sets. The complexity of this
method is comparable to that of computing the summary
attainment surfaces, which means it is efficient enough to
be used in practice.

Our future work will use this visualization method to gain
additional knowledge when comparing two algorithms on
real-world optimization problems with three objectives.
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