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ABSTRACT

Knees in multiobjective optimization are regions on the
Pareto optimal front where a small improvement in one
objective leads to a large deterioration in at least one
other objective. Without any additional knowledge on
the preference of objectives the points on knees can be
preferred to other points on the Pareto optimal front.
Consequently, multiobjective optimization test problems
with knees are very important as they can be used to test
the algorithms’ ability of finding solutions on the knees
of a Pareto optimal front.

Two existing multiobjective optimization test prob-
lems with knees are DEB2DK and DEB3DK with two
and three objectives, respectively. This paper introduces
their scaled versions with four and five objectives. In ad-
dition, Pareto front approximations of these scaled prob-
lems are visualized using visualization with prosections.
Besides properly visualizing the knees, prosections are
able to maintain the dominance relations between most
points in the approximation set.

1 INTRODUCTION

Solving a multiobjective optimization problem requires op-
timization of several conflicting criteria. As a consequence,
the solution to such a problem is not a single point, but rather
a set of points in the decision space, calledPareto optimal
set, which corresponds to thePareto optimal frontin the ob-
jective space. In continuous optimization problems, Pareto
optimal sets and fronts contain an infinite number of points.

Multiobjective optimization algorithms try to find a good
finite approximation to the Pareto optimal front, calledap-
proximation set. Only mutually nondominated points are
placed in the approximation set, where the dominance re-
lation is defined as follows. Pointa dominatespoint b if a
is better than or equal tob in every objective anda , b.
To aid the decision maker who selects the preferred solution
among those from the approximation set, the points in the
approximation sets should have the following properties:

– be located on the Pareto optimal front,
– have the maximum possible spread,
– be well distributed.

While the requirement of a good distribution of points
in approximation sets most often translates into a uniform
distribution, the desired distribution depends heavily onthe
shape of the Pareto optimal front. If, for example, the Pareto
optimal front hasknees(regions on the front where a small
improvement in one objective leads to a large deteriorationin
at least one other objective) [2], it is more important that an
approximation set contains points on these knees than some
uniformly distributed points.

To test whether multiobjective algorithms are able to
find points on the knees of Pareto optimal fronts, Branke
et al. [2] presented a few benchmark optimization prob-
lems with knees (including DEB2DK and DEB3DK), which
are based on the well known DTLZ test problem suite [4].
The problems were defined only for two and three objec-
tives. This paper scales the definition of the DEB2DK and
DEB3DK problems to four and five objectives and presents
also the plots of their approximation sets using the recently
proposed visualization technique called visualization with
prosections [6, 7].

The rest of the paper is structured as follows. Section 2
presents the formal definition and some example plots of the
DEB2DK and DEB3DK test problems, while their scaled
versions are introduced in Section 3. Section 4 is dedicated
to visualization in 4D and 5D, where prosections are used
to visualize their approximation sets. The paper concludes
with final remarks in Section 5.

2 DEB2DK AND DEB3DK

The DEB2DK and DEB3DK multiobjective optimization
problems with knees are formally defined as:
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Note that all objectives need to be minimized. In both
problem definitions,n is the number of dimensions of the
decision space andK is a parameter that together with the
number of objectivesm determines the number of knees in
the Pareto front,Km−1. Figure 1 shows the 2D problem with
one (a) and three (b) knees, and the 3D problem with one (c)
and four (d) knees1.

In addition, we constructed approximation sets for the
problems with one knee. Figure 2 (a) shows an approxima-
tion set consisting of 50 points from the known Pareto opti-
mal front of the 2D problem, while Figure 2 (b) analogously
presents an approximation set consisting of 500 points from
the Pareto optimal front of the 3D problem. The single knee
is clearly visible from both plots.

3 SCALING TO 4D AND 5D

As stated in [2], the DEB2DK and DEB3DK problems are
based on the scalable DTLZ problems [4] and can thus be in
turn scaled to any number of objectives. Here we present
their scaled versions in four and five objectives, named
DEB4DK and DEB5DK, respectively:

DEB4DK
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1The ranges of objectives of the DEB2DK and DEB3DK problems in
this paper differ from the ones presented in [2]. This might bedue to an
unwanted integer division in the original implementation of these two prob-
lems (more specifically, in the calculation of theg(x) function).
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(a) DEB2DK with K = 1 (one knee)

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50
f1

f 2

knees

(b) DEB2DK with K = 3 (three knees)
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(c) DEB3DK with K = 1 (one knee)
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(d) DEB3DK with K = 2 (four knees)

Figure 1: Pareto optimal fronts for different DEB2DK and
DEB3DK problem instances.
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Figure 2: Approximation sets of the DEB2DK and DEB3DK
problems with one knee.
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Again, n is the number of dimensions of the decision
space andK controls the number of knees in the Pareto front.
The scaling is performed by adding new objectives in spheri-
cal coordinates following the increment of dimension. Also,
ther(x) function is updated to include more individualr i(xi)
functions, while the constant in ther i(xi) functions is modi-
fied to match the corresponding dimension. The only unaf-
fected function isg(x).

As in the DTLZ problems, the Pareto optimal fronts
of all four problems are achieved when the solutionsx =
(x1, . . . , xm−1, xm, . . . , xn) equal (x1, . . . , xm−1,0.5, . . . , 0.5).

4 VISUALIZING IN 4D AND 5D

There exist many methods for visualizing approximation sets
in 4D and 5D (see [7] for a comprehensive review). How-
ever, only a few, for example, level diagrams [1], the hyper-
radial visualization [3] and visualization with prosections
[6, 7], are able to show knees of approximation sets. This
paper presents the visualization of approximation sets of the
scaled problems using prosections.

The termprosectionmeansprojection of asection[5]
and the idea of visualization with prosections is to visualize
only a section of the space at a time. All points that fall in
this section are projected to one less dimension, while the
others are discarded.

The section to be projected is defined using two param-
eters: angleϕ and section widthd (see Figure 3). If we
wish to perform prosection on the planef1 f2 with origin 0,
the section is defined as| f1 sinϕ − f2 cosϕ| ≤ d. In the 4D
case, all points in this section are mapped using the follow-
ing function:

( f1, f2, f3, f4) 7→ ( f1 cosϕ + f2 sinϕ, f3, f4)

In the 5D case, prosection needs to be applied twice (the sec-
ond time on the planef3 f4). Using the angleψ and section
width e, the section now comprehends all points for which
| f1 sinϕ − f2 cosϕ| ≤ d and | f3 sinψ − f4 cosψ| ≤ e. These
points are mapped using:

( f1, f2, f3, f4, f5) 7→ ( f1 cosϕ+ f2 sinϕ, f3 cosψ+ f4 sinψ, f5)

f1

f2

ϕ

d
d

0 1
0

1

Figure 3: The section and projection used in the visualization
with prosections.

The Pareto optimal fronts of the DEB4DK and DEB5DK
test problems were sampled using 3,000 and 10,000 points,
respectively. These approximation sets are visualized with
prosections in Figure 4. In the 4D case, the angleϕ = 45◦

and section widthd = 2 are used. In the 5D case,ϕ = ψ =
45◦ andd = e= 3. As we can see, the knee is clearly visible
in both plots, which resemble very much the DEB3DK plot
from Figure 2 (b).
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Figure 4: Prosections of approximation sets of the DEB4DK
and DEB5DK test problems with one knee.

As formally proven in [7], besides maintaining well the
shape of the visualized approximation set and the distribu-
tion of its points, prosections are able to preserve most of the
dominance relations between vectors. This is especially im-
portant when comparing multiple approximation set—using
prosections, several approximation sets can be visualizedsi-
multaneously.

The drawback of prosections is that only a portion of the
space is visualized at a time. This requires to explore more
than a single angle to gain a full understanding of an approx-
imation set. See [7] for suggestions on how to tackle this
issue.

5 CONCLUSION

In [2], the scalable DTLZ test problems were used to form
two new multiobjective test problems with knees, called
DEB2DK and DEB3DK. While declared scalable to multi-
ple objectives, no formal definition of such scaled test prob-
lems was given. This paper presented the scaled problems in
4D and 5D, named DEB4DK and DEB5DK. As the Pareto

optimal fronts of 4D and 5D problems cannot be simply
plotted (in the way we did with DEB2DK and DEB3DK),
we sampled the fronts to obtain two approximation sets.
These were then visualized using prosections, which cor-
rectly showed the location of knees in the two approximation
sets.
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