
ERK'2007, Portorož, B:81-84 81

Optimizing Accuracy and Size of Decision Trees

Tea Tušar

Department of Intelligent Systems

Jožef Stefan Institute

Jamova 39, SI-1000 Ljubljana, Slovenia

tea.tusar@ijs.si

Abstract

This paper presents the problem of finding parame-
ter settings of algorithms for building decision trees
that yield optimal trees—accurate and small. The
problem is tackled using DEMO algorithm, an evo-
lutionary algorithm for multiobjective optimization
that uses differential evolution to explore the deci-
sion space. The results of the experiments on six
datasets show that DEMO is capable of efficiently
solving this problem, offering the users a wide choice
of near-optimal decision trees with different accura-
cies and sizes in a reasonable time.

1 Introduction

Domain experts often use machine learning algo-
rithms for finding theories that would explain their
data. However, they are usually unfamiliar with these
algorithms and do not know how to set their param-
eters in order to produce the desired results. More-
over, they rarely know beforehand exactly what kind
of theory they are looking for. Our approach can
help them by exploring the parameter space of the
learning algorithms while searching for theories with
highest prediction accuracy and lowest complexity.
The resulting set of the best found theories gives the
users the possibility of comparing the theories among
themselves and provides an additional insight into the
data. All this helps the users to choose the theory
that best suits their needs.

In the following, we limit our discussion of ma-
chine learning theories to decision trees for classifica-
tion, where the best trees (or theories) are regarded
as those that are accurate and small. In Section 2 we
define the mentioned optimization problem, review
the related work and show how the DEMO algorithm
can be employed to solve it1. Section 3 presents the
experiments and their results. The paper concludes
with a summary and discussion of future work possi-
bilities in Section 4.

1The source of the DEMO algorithm an be downloaded
from http://dis.ijs.si/tea/research.htm.

2 Accuracy and size as two conflicting

objectives

2.1 Optimization problem

The tackled optimization problem consists of find-
ing the parameter settings of machine learning algo-
rithms in order to construct accurate and small trees
for a given domain. Accuracy is estimated using 10-
fold cross validation, while the size of the tree is equal
to the number of all nodes in the tree. Accuracy must
be maximized and size minimized. We deal with this
problem for the special case of decision trees induced
by the C4.5 algorithm [7], or more precisely, its Java
implementation in the Weka environment [12] called
J48.

When building J48 trees, several parameters need
to be set (see Table 1). The large amount of possible
parameter settings calls for a heuristic method for
solving this problem.

2.2 Related work

Kohavi and John [3] searched for parameter settings
of C4.5 decision trees that would result in optimal
performance on a particular dataset. They consid-
ered four parameters: M , C and S with the same
meaning as described in Table 1, and G—a binary
parameter that determined if the splitting criterion
would be information gain or gain ratio. The opti-
mization objective was ‘optimal performance’ of the
tree, i.e., the accuracy measured using 10-fold cross
validation. The problem was tackled as a discrete op-
timization problem and the best-first search was cho-
sen to explore the parameter space. Experiments on
33 datasets showed that best-first search found bet-
ter parameter settings than the default on nine do-
mains, while on one dataset, default parameter values
yielded better trees than the heuristic search.

Similar experiments were performed by Mlade-
nić [4], who searched for the optimal setting of the m-
value in m-estimate postpruning of decision trees [2].
The sole optimization objective was accuracy esti-
mated with cross validation. She explored the deci-

82

Possible Default
Name values value Description

M – number of instances 1, 2, . . . 2 Minimum number of instances in leaves (higher values result in smaller trees).
U – unpruned trees yes/no no Use unpruned tree (the default value ‘no’ means that the tree is pruned).
C – confidence factor [10−7, 0.5] 0.25 Confidence factor used in postpruning (smaller values incur more pruning).
S – subtree raising yes/no yes Whether to consider the subtree raising operation in postpruning.
B – use binary splits yes/no no Whether to use binary splits on nominal attributes when building the tree.

Table 1: Parameters for building J48 trees.

sion space using different deterministic and stochastic
algorithms. The tests on eight datasets showed that
the problem is rather simple and that all tested algo-
rithms achieved comparable results.

Both mentioned approaches optimized only the
accuracy of the decision trees. To our best knowl-
edge, no work has been done on searching for param-
eter settings of decision tree building algorithms that
would consider accuracy and size of the trees as two
optimization objectives.

Bohanec and Bratko [1] searched for good trade-
offs between accuracy and size of decision trees in
a different way. They presented the OPT algorithm
which explores the space of all trees that can be de-
rived from a complete ID3 tree [6] by pruning, using
dynamic programming. The result is an optimal se-
quence of pruned trees, decreasing in size, such that
each tree has the highest accuracy among all possi-
ble pruned trees of the same size. While OPT works
perfectly for its purpose, it has two serious drawbacks
if it was to be applied to serve our needs. The first
difficulty is its time complexity, which is quadratic
with respect to the number of leaves of the original
ID3 tree. The second disadvantage is that the accu-
racy of the trees is measured on the dataset that was
used for constructing these trees by simply counting
the additional classification errors made with prun-
ing. If a separate test set would be used for estimat-
ing the accuracy, the time needed for building such
trees would increase considerably.

2.3 Optimization with DEMO

DEMO [8, 9] is an evolutionary algorithm for multi-
objective optimization that uses differential evolution
(DE) instead of genetic algorithms (GAs) for explor-
ing the decision space and outperforms state-of-the-
art GA-based algorithms on several multiobjective
benchmark problems [10].

Since we want to help the users of machine learn-
ing algorithms to find good trees without having to
search for the right parameter settings manually, we
must be careful not to demand from them to set the
parameters of DEMO instead. This is why we chose a
single parameter setting of DEMO for all the experi-
ments performed on this problem. This setting was in
no way fitted to the domains used and should there-

fore be appropriate for any classification domain.
We used the Lamarckian repair procedure to round

the values of the variable M to the first nearest in-
teger and the Baldwinian repair procedure for the
binary variable C. The other parameters of DEMO
were set as follows:

– population size = 20,

– number of generations = 25,

– DE selection scheme = DE/rand/1/bin,

– scaling factor F = 0.6,

– probability in binomial crossover CR = 0.6,

– environmental selection procedure = strength
Pareto approach (as in SPEA2).

3 Experiments and results

In the experiments, we compare trees found by
DEMO to trees found by random search of the de-
cision space and the default tree—the tree that is
constructed using the default parameters of J48. Be-
cause datasets can be very large and consequently
the time to build a single J48 tree very long, we limit
the number of generated trees by DEMO and random
search to 500 each. While this was often not enough
for DEMO to converge, we had to persist in the low
number of evaluations to provide the final solutions
in a reasonable time. Out of all trees, only the non-
dominated ones are presented in the results. Because
DEMO and random search are stochastic algorithms,
they were run 10 times on each dataset.

All algorithms were run on six datasets. The first
(EDM) refers to process parameter selection in elec-
trical discharge machining [11], while the other five
(dermatology, nursery, splice, vehicle and vowel) were
obtained from the UCI repository [5].

Figure 1 shows the default tree and the trees found
in the best run of DEMO and random search (accord-
ing to the IH indicator). The comparison between the
trees found by the two heuristic methods and the de-
fault tree shows that the default tree is often larger
and less accurate than the other trees. On the der-
matology, nursery, splice and vehicle datasets DEMO
always finds trees that weakly dominate the default
tree, while this happens in at least half of the runs on

83

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

EDM

default
random search

DEMO
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

dermatology

default
random search

DEMO
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

nursery

default
random search

DEMO

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

splice

default
random search

DEMO
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

vehicle

default
random search

DEMO
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

vowel

default
random search

DEMO

Figure 1: Objective values of trees found by the algorithms on the six chosen datasets. The size of trees is
placed on the abscissa, while classification accuracy is represented on the ordinate.

the EDM and vowel datasets. In some of the runs,
even trees found by random search dominate the de-
fault tree. This proves that it is indeed important for
the users of the J48 algorithm to try some other pa-
rameter setting beside the default one when building
a decision tree model. Additional significance tests
have shown that while DEMO outperforms random
search with regard to some performance indicator on
the five UCI datasets (see [9] for more details on
these experiments), there is no significant difference
between the algorithms on the EDM dataset.

In a single run of DEMO and random search, 500
parameter settings were inspected by each algorithm.
Since all experiments were repeated 10 times, the al-
gorithms jointly built 10000 decision trees for each
dataset. This gives us the possibility to look at the
decision space of the optimization problem and see
if there exist specific parameter settings that induce
good decision trees. To this end we gathered all 10000
decision trees for each dataset and denoted which of
them are dominated and which are not. Since the de-
cision space is five-dimensional, it cannot be simply
presented here. Therefore, we only show its projec-
tion on the two-dimensional space, defined by the pa-
rameters M and C, where the parameter U is set to
no (only trees subject to postpruning are considered).

Inspecting the plots of dominated and nondomi-
nated trees in Figure 2 we can easily see that the
parameter M has a big influence on the size and ac-
curacy of the trees, while the effect of the parameter
C seems to be much smaller. This causes the vertical
‘stripes’ of nondominated trees. When M is large, the

trees are subject to heavy prepruning, which leaves
little or no room for postpruning. This is why the
‘stripes’ are so well defined for large values of M .
When M is smaller, the quality of trees depends also
on the parameter C. Note that the quality of trees is
always influenced also by the other three parameters
(U , S and B), whose values are not shown in these
plots.

The plots indicate that nondominated trees can
be found at almost any point in the decision space
and that their location depends very much on the
dataset. Consequently, no general rule for predict-
ing the optimal parameter values can be found. This
gives additional evidence that searching for param-
eters of decision tree building algorithms has to be
performed for every dataset separately.

4 Conclusion

The proposed real-world optimization problem
consists of finding the parameter settings of a ma-
chine learning algorithm that result in accurate and
small decision trees. The results of the performed
experiments on six real domains showed that DEMO
is capable of efficiently solving this problem, offering
the users a wide choice of near-optimal decision trees
with different accuracies and sizes to choose from.
Such an approach for searching accurate and simple
theories could be extended to other machine learning
algorithms.

Another direction for future work is to use DEMO

84

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200

EDM

dominated nondominated

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 30 60 90 120 150 180

dermatology

dominated nondominated

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1000 2000 3000 4000 5000 6000

nursery

dominated nondominated

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 300 600 900 1200 1500

splice

dominated nondominated

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400

vehicle

dominated nondominated

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 150 300 450

vowel

dominated nondominated

Figure 2: Dominated (grey) and nondominated (black) trees found by DEMO and random search for various
values of parameters M (on the abscissa) and C (on the ordinate), while U is set to no.

for optimizing more than two objectives for the con-
sidered problem. In the case of decision trees, for
example, the users might want to optimize also some
other objective beside accuracy and size, such as the
‘degree of interestingness’ of the induced models, es-
timated in terms of presence or absence of some at-
tributes in the models.

References

[1] M. Bohanec and I. Bratko. Trading accuracy for
simplicity in decision trees. Machine Learning,
15(3):223–250, 1994.

[2] B. Cestnik and I. Bratko. On estimating proba-
bilities in tree pruning. In Proceedings of the Eu-
ropean working session on learning on Machine
Learning (EWSL ’91), pages 138–150, 1991.

[3] R. Kohavi and G. H. John. Automatic parame-
ter selection by minimizing estimated error. In
Proceedings of the Twelfth International Confer-
ence on Machine Learning (ICML 1995), pages
304–312, 1995.

[4] D. Mladenić. Domain-tailored machine learning.
Master’s thesis, University of Ljubljana, Faculty
of Electrical Engineering and Computer Science,
1995.

[5] D. J. Newman, S. Hettich, C. L. Blake, and
C. J. Merz. UCI repository of machine learn-
ing databases, 1998.

[6] J. R. Quinlan. Induction of decision trees. Ma-
chine Learning, 1(1):81–106, 1986.

[7] J. R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[8] T. Robič and B. Filipič. DEMO: Differential
evolution for multiobjective optimization. In
Proceedings of the Third International Confer-
ence on Evolutionary Multi-Criterion Optimiza-
tion (EMO 2005), pages 520–533, 2005.

[9] T. Tušar. Design of an algorithm for multiob-
jective optimization with differential evolution.
Master’s thesis, University of Ljubljana, Faculty
of Electrical Engineering and Computer Science,
2007.

[10] T. Tušar and B. Filipič. Differential evolution
versus genetic algorithms in multiobjective op-
timization. In Proceedings of the Fourth In-
ternational Conference on Evolutionary Multi-
Criterion Optimization (EMO 2007), pages 257–
271, 2007.

[11] J. Valentinčič and M. Junkar. Detection of the
eroding surface in the EDM process based on
the current signal in the gap. The International
Journal of Advanced Manufacturing Technology,
28(3-4):294–301, 2006.

[12] I. H. Witten and E. Frank. Data Mining: Prac-
tical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2005.

