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Abstract The efficiency of universal electric motors that are

widely used in home appliances can be improved by optimiz-

ing the geometry of the rotor and the stator. Expert design-

ers traditionally approach this task by iteratively evaluating

candidate designs and improving them according to their ex-

perience. However, the existence of reliable numerical simu-

lators and powerful stochastic optimization techniques make

it possible to automate the design procedure. We present a

comparative study of six stochastic optimization algorithms

in designing optimal rotor and stator geometries of a univer-

sal electric motor where the primary objective is to minimize

the motor power losses. We compare three methods from

the domain of evolutionary computation, generational evo-

lutionary algorithm, steady-state evolutionary algorithm and

differential evolution, two particle-based methods, particle-

swarm optimization and electromagnetism-like algorithm,

and a recently proposed multilevel ant stigmergy algorithm.

By comparing their performance, the most efficient method
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for solving the problem is identified and an explanation of

its success is offered.
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1 Introduction

Daily used home appliances, such as vacuum cleaners and

mixers, as well as home used power tools, such as drills and

saws, are most often powered by universal electric motors

(UM) [17]. This type of motor is widely used because it

exhibits high power despite of its small size, provides high

starting and running torques, and is inexpensive to manufac-

ture. For home appliances and power tools it is also crucial

that the motor is energy efficient, i.e., its input power should

be as low as possible, while satisfying the user needs by pro-

viding sufficient output power. The ratio of the output power

to the input power defines the efficiency of the motor. The ef-

ficiency can be improved by reducing the power losses in the

motor that originate in the iron and the copper. An approach

to reducing the power losses is to optimize the geometry of

the rotor and the stator. Due to the high magnetic saturation

of the iron in a UM, this optimization task is non-linear.

In a conventional design of an electric motor, the initial es-

timation for the geometry of the rotor and the stator is made

by an experienced engineer. The suitability of this geome-

try is then usually analyzed by means of numerical simula-

tion of the electromagnetic field. The manual procedure is

repeated until the satisfied evaluation results are obtained.

The advantage of this approach is that with their experi-

ence the engineers can significantly influence the progress of

the design process and react intelligently to any noticeable
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electromagnetic response with proper geometry redesign.

However, this conventional design approach can be upgraded

with stochastic optimization techniques which, in connec-

tion with reliable numerical simulators, allow for highly au-

tomated design process where the need for an experienced

engineer to navigate the process is significantly reduced.

Optimization of the electric motor geometry has already

been addressed in the literature. The reported approaches

differ in geometry description and applied optimization

methods.

In a study by Puternicki and Rudnicki [15], the technical

optimization system was used that produces a great number

of feasible solutions. The applied method was based on a

phase diagram. The design process was oriented towards the

synthesis of magnetic circuit dimensions and motor winding

parameters. A set of feasible solutions was defined through

design parameters specifying the core geometry, dimensions

of the magnetic circuit and flux density components. In the

design process each parameter was varied with stepping vari-

ation. The goal of design was to find an optimum geometry

of the motor magnetic circuit corresponding to given flux

density distribution under rated current. The optimization

was performed with deterministic sequential quadratic pro-

gramming, which is a generalization of Newton’s method for

unconstrained optimization. At the end a design was checked

for technological and standardization requirements.

Papa and coworkers [12] approached the motor design

optimization with a problem-specific genetic algorithm. The

main goal was to replace the manual optimization procedure

with an automated one capable of escaping from local optima

and finding the global optimum. The design optimization sys-

tem integrated the genetic algorithm with the finite-element

method program used to simulate and evaluate each candidate

solution. The input parameters referred to the dimensions of

the initial engineering design, while the outputs of the system

were the dimensions of the optimized design and its reduced

power losses. The geometry parameters were optimized (1)

with no material cost constraints, and (2) with constraints on

the outer motor dimensions to ensure the same material costs

as in the initial engineering design. For these two tasks the

solutions with 30 and 25% reduction of power losses were

found, respectively.

Shaked [18] employed a genetic algorithm-based opti-

mization methodology for structural optimization and torque

ripple minimization of a motor. The outer volume of the mo-

tor was used as the objective function and selected geometric

quantities were regarded as the optimization variables. For

the speed up of the optimization process the genetic algo-

rithm was combined with the Simplex method.

In this paper we provide a comparative study of six

stochastic optimization methods in designing optimal UM

rotor and stator geometries where the primary objective is to

minimize the motor power losses. We compare three methods

from the domain of evolutionary computation, generational

evolutionary algorithm, steady-state evolutionary algorithm

and differential evolution, two particle-based methods,

particle-swarm optimization and electromagnetism-like al-

gorithm, and a recently proposed multilevel ant stigmergy

algorithm. All algorithms are tested in connection with a nu-

merical simulator of candidate designs that makes it possible

to evaluate the quality of designs.

From the no-free-lunch theorems for optimization [20] it is

known that there is no single algorithm that would outperform

all others on all optimization problems. However, in practice

we are challenged with particular problems having specific

characteristics, and typically certain algorithms are better in

solving them than others. Hence, it is important to identify

suitable algorithms for a particular problem and possibly un-

derstand why they perform well. The study presented in the

paper is of this kind. It deals with a high-dimensional non-

linear engineering optimization problem with low proportion

of feasible solutions in the search space. By comparing the

performance of available optimization methods, the most ef-

ficient method for solving it is identified and an explanation of

its success is offered. An additional practically important as-

pect of the work is the comparison of the results with the orig-

inal engineering UM design created by domain experts and

used in motor production before this study was performed.

The paper is further organized as follows. In Section 2 the

design of electric motors is outlined, including the role of

power losses and geometry parameters in the design proce-

dure, and a numerical simulation tool capable of evaluating

candidate designs. Section 3 describes the applied optimiza-

tion methods. Numerical experiments and the obtained re-

sults are presented in Section 4, where the applied methods

are evaluated with respect to their performance, and the re-

sulting designs from the point of view of minimizing the

losses and suitability for regular production. The paper con-

cludes with a summary of the findings of this study and di-

rections of future work.

2 Electric motor design

2.1 Power losses and motor efficiency

The efficiency of a UM is defined as the ratio of the out-

put power to the input power and depends on various power

losses. They include copper losses, iron losses, and additional

losses, such as brush losses, and losses due to ventilation and

friction.

The overall copper losses occurring in the rotor and stator

slots are as follows:

PCu =
∑

i

(J 2 Aρlturn)i , (1)
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Fig. 1 Rotor and stator
geometry parameters

where i stands for each slot, J is the current density, A the slot

area, ρ the specific resistance of copper and lturn the length

of the winding turn.

The calculation of the iron losses is less exact because of

the non-linear magnetic characteristic. The iron losses are of

two types: the hysteresis losses and the eddy-current losses.

Consequently, iron losses in the motor can be expressed by

the following equation:

PFe = ke B2 f 2
rotmrot + ke B2 f 2

statmstat + kh B2 fstatmstat, (2)

where ke is the eddy-current material constant at 50 Hz, kh

the hysteresis material constant at 50 Hz, B the maximum

magnetic flux density, frot the frequency of the magnetic field

density in the rotor, fstat the frequency of the magnetic field

density in the stator, mrot the mass of the rotor, and mstat the

mass of the stator.

Three additional types of losses occurring in a UM, i.e.,

brush losses Pbrush, ventilation losses Pvent, and friction losses

Pfrict, depend mainly on the motor speed. When optimizing

the geometry of the rotor and the stator, the motor speed

is assumed fixed, hence Pbrush, Pvent, and Pfrict have no im-

pact on the motor efficiency. Therefore, these losses are not

significantly affected by the geometry of the rotor and the

stator.

The output power P2 of the motor is a product of the

electromagnetic torque, T , and the angular velocity, ω:

P2 = T ω. (3)

When considering all the mentioned losses and the output

power, the overall efficiency of a UM can be defined as

follows:

η = P2

P2 + PCu + PFe + Pbrush + Pvent + Pfrict

. (4)

2.2 Rotor and stator geometry optimization problem

The rotor and the stator of a UM are constructed by stacking

the iron laminations. The shape of the laminations is spec-

ified by several parameters that define the rotor and stator

geometry in two dimensions. There are invariable and vari-

able parameters. Invariable parameters are fixed; they cannot

be altered, either for technical reasons (e.g., the air gap) or

because of the physical constraints on the motor (e.g., the

radius of the rotor shaft). Variable parameters do not have

predefined optimum values. Some variable parameters are

mutually independent and without any constraints. Others

are dependent, either on some invariable parameters or on

mutually independent ones.

In our case, ten mutually independent variable parameters

defining the rotor and stator geometry are subject to opti-

mization (see Fig. 1):� rotor yoke thickness (ryt),� rotor external radius (rer),� rotor pole width (rpw),� stator width (sw),� stator yoke horizontal thickness (syh),� stator yoke vertical thickness (syv),� stator middle part length (sml),� stator internal edge radius (sie),� stator teeth radius (str),� stator slot radius (ssr).

The optimization task is to find the geometry parameter val-

ues that would generate the rotor and stator geometry with

minimum power losses.

2.3 Numerical simulation of motor designs

Reliable numerical simulation is a prerequisite for auto-

mated design optimization. To evaluate settings of the rotor
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and stator geometry parameters with respect to the resulting

power losses, the ANSYS finite-element method simulation

package [1] was used. This software provides a variety of

structural, thermal, fluid and electromagnetic analysis ca-

pabilities suitable to simulate arbitrary products under real-

world conditions.

For the purpose of this study, the simulation software was

connected with the applied optimization algorithms. Com-

munication within the simulator-optimizer loop was done

through file data transfer. To evaluate a geometry parame-

ter setting, an optimization algorithm generated a script file

containing the parameter values and activated the simulation

software. This software read the parameter values from the

script file, performed the finite-element calculation of the

motor electromagnetic states, assessed the power losses, and

wrote this result into an output file. This result was then re-

ceived by the algorithm that used it as a cost value for the

evaluated solution.

3 Applied stochastic optimization methods

There exists a variety of stochastic optimization methods

and selecting an appropriate one is part of a challenge in

solving real-world design optimization problems. We tested

six stochastic methods on optimizing the UM rotor and

stator geometries to eventually draw conclusions on their

suitability for this problem. The selected methods included

well-known evolutionary methods widely used in optimiza-

tion: traditional generational evolutionary algorithm, steady-

state evolutionary algorithm and differential evolution; two

particle-based techniques: particle swarm optimization and

similar, but less frequently applied electromagnetism-like al-

gorithm; and the recently proposed multilevel ant stigmergy

algorithm.

All applied methods use real vector representation of can-

didate solutions where each vector component represents one

geometry parameter of the UM rotor or stator. The parameter

search space is put into discrete form and the stopping crite-

rion is given by the number of solutions to be evaluated. The

applied optimization methods are described in the following

subsections.

3.1 Generational evolutionary algorithm

The generational evolutionary algorithm (GEA) is an opti-

mization method that imitates the principles of Darwinian

theory of evolution. By applying selection, crossover and

mutation to a population of solutions, it creates better

and better offspring populations (Fig. 2). This method was

originally studied by Holland [8] and made popular by

Goldberg [7].

Generational Evolutionary Algorithm

1. Evaluate the initial population S of random individuals.

2. While stopping criterion not met, do:

2.1. Create an empty offspring population S.

2.2. Repeat until population S full:

(a) Select two parents from S with tournament selection.

(b) Create two offspring by crossing the parents.

(c) Mutate and evaluate the offspring.

(d) Add the offspring into the new population S.

2.3. Copy S into S.

Fig. 2 Outline of the generational evolutionary algorithm

GEA starts with a population of randomly created individ-

uals encoded as real vectors. In the main loop (2.2 in Fig. 2),

GEA creates new individuals from the parent population.

First, tournament selection is used to select two parent indi-

viduals from the population. In tournament selection a few

individuals compete to be chosen as parents for new indi-

viduals. The fittest individual wins the tournament. In case

of a tie, the winner is chosen randomly. Tournament selec-

tion is applied twice and the two winning individuals, called

parents, are then subject to crossover. Crossover consists of

exchanging the genetic material (solution components) be-

tween the two parents. As a result, two offspring individu-

als are created. After that, the offspring are mutated (some

vector components of each individual are randomly pertur-

bated), evaluated and inserted into the offspring population.

This loop is repeated until the new population is filled, i.e.,

until the number of created offspring reaches the predefined

population size.

3.2 Steady-state evolutionary algorithm

The steady-state evolutionary algorithm (SSEA) is similar to

GEA, with the exception of maintaining a single population

of solutions. Like in GEA, at every step two offspring are

created by applying the evolutionary operators. But instead

of filling a new population, the offspring replace the worst

two individuals in the current population (Fig. 3).

Steady-State Evolutionary Algorithm

1. Evaluate the initial population S of random individuals.

2. While stopping criterion not met, do:

2.1 Select two parents from S with tournament selection.

2.2 Create two offspring by crossing the parents.

2.3 Mutate and evaluate the offspring.

2.4 Replace the two worst individuals in S with the offspring.

Fig. 3 Outline of the steady-state evolutionary algorithm
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Differential Evolution

1. Evaluate the initial population S of random individuals.

2. While stopping criterion not met, do:

2.1. For each parent si (i = 1, . . . , |S |) from S repeat:

(a) Randomly select three individuals si1 , si2 , si3 from S, where i, i1, i2 and i3 are pairwise different.

(b) Calculate candidate c as c = si1 + w · (si2 − si3), where w is a scaling factor.

(c) Modify the candidate by binomial crossover with the parent si using crossover probability crossProb.

(d) Evaluate the candidate.

(e) If the candidate is better than the parent, replace the parent with the candidate.

2.2. Randomly change the order of the individuals in S.

Fig. 4 Outline of differential evolution

3.3 Differential evolution

Differential evolution (DE) is a population-based algorithm

for optimizing functions on totally ordered spaces. It was

developed by Price and Storn [13] as a variant of evolutionary

algorithms. The basic idea of DE is outlined in Fig. 4.

DE can adopt many different strategies that are by con-

vention [14] denoted as DE/x/y/z. DE stands for Differential

Evolution, x represents the method of selection of the first

individual si1
that can be either random (rand) or the best so

far (best), y is the number of difference vectors used and z
defines the type of crossover, which can either be binomial

(bin) or exponential (exp). In this paper the most widely used

strategy DE/rand/1/bin has been applied.

In DE the notion of parent is somewhat different from

the one used in GEA or SSEA. The candidate individual

is generated as a weighted sum of three randomly chosen

individuals that are different from the parent individual. Only

then, the parent participates in the creation of the candidate—

the candidate is modified by crossover with its parent. Finally,

the candidate is evaluated and compared to the parent. The

candidate replaces the parent in the population, only if it is

better than the parent. The described procedure (Loop 2.1 in

Fig. 4) is repeated consecutively for all parent individuals in

the population. When it is finished, the order of the parents

is randomly changed and the procedure is repeated.

3.4 Particle swarm optimization

Particle swarm optimization (PSO) is a stochastic optimiza-

tion technique developed by Eberhart and Kennedy [6, 9]

and inspired by social behavior of bird flocking or fish school-

ing. Suppose the following scenario: a group of birds are ran-

domly searching for a single piece of food in an area. None

of the birds knows where the food is, but they know how far

from the food they are. The most effective strategy for finding

the food is to follow the bird which is nearest to the food.

The PSO algorithm is derived from such scenarios and

applied to optimization problems. In PSO, each solution is

a “bird” in the search space. We call it a particle. Every

particle si has a fitness value, which is evaluated by the fitness

function to be optimized, and velocity vi , which directs the

flying of the particle. The particles fly through the search

space by following the current best particles.

PSO is initialized with a group of random particles (so-

lutions) and then searches for optima by updating popula-

tions (see Fig. 5). In every iteration, each particle is updated

by following two “best” solutions. The first one, spbest

i , is

the best solution found by the particle si so far. The sec-

ond “best” solution considered by the particle swarm op-

timizer is the best solution obtained so far by any particle

in the population. This best is the global best, called sgbest .

After finding the two best solutions, every particle updates

its velocity vi , and position si according to the following

equations:

vi = ωvi + c1

(
spbest

i − si
) + c2(sgbest − si ) (5)

si = si + vi , (6)

where −vmax ≤ vi ≤ vmax, c1 and c2 are learning factors, and

ω is an inertia weight employed as an improvement proposed

by Shi and Eberhart [19] to control the impact of the previ-

ous history of velocities on the current velocity. The weight

ω plays the role of balancing between the local and global

search and is updated with algorithm iterations.

Particle Swarm Optimization

1. Evaluate the initial population S of random solutions (particles).

2. While stopping criterion not met, do:

2.1. For each particle si (i = 1, . . . , |S|) from S repeat:

(a) Set s
pbest
i to be the best position of particle si.

2.2. Set sgbest as the best particle found so far.

2.3. For each particle si (i = 1, . . . , |S|) from S repeat:

(a) Calculate particle velocity according to Eq. (5).

(b) Update particle position according to Eq. (6).

2.4. Update the value of the inertia weight ω.

Fig. 5 Outline of particle swarm optimization
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3.5 Electromagnetism-like algorithm

The electromagnetism-like (EM) algorithm is similar to PSO.

The main difference is in calculating moves in the search

space. Like in PSO, each solution is moved to some new

position at every step of EM algorithm. But instead of being

influenced only by the personal best and global best solutions

as in PSO, each solution is influenced by every other solution

in the population.

The EM optimization heuristic was proposed by Birbil

and Fang [2] for unconstrained global optimization of non-

linear functions. In a multidimensional search space where

each point represents a candidate solution, a charge is associ-

ated with each point, calculated upon the objective function

value of the solution. A population of solutions is created,

in which each solution point exerts attraction or repulsion

on other points, the magnitude of which is proportional to

the product of the charges and inversely proportional to the

distance between the points (Coulomb’s Law). The overall

move of a point depends on the influence of all other points

of the population, which is expressed by a force vector. The

principle behind the algorithm is that worse solutions prevent

a move in their direction by repelling other solutions in the

population, while better solutions facilitate moves in their

direction.

The total force exerted on each point by all other points

(Step 2.1 in Fig. 6) depends on the charge of the point under

consideration as well as of the points exerting the force, and

the Euclidean distance between them. The charge of each

point si is determined by its objective function value f (si )

in relation to the objection function value of the current best

point sbest in the population, with better objective function

values resulting in higher charges. For a minimization prob-

lem, the charge qi of the point si is determined according to

equation:

qi = exp

(
−d

f (si ) − f (sbest)∑|S|
k=1( f (sk) − f (sbest))

)
, (7)

where |S| represents the population size and d is the dimen-

sion of the search space. For each point si , i = 1, . . . , |S|, a

Electromagnetism-Like Algorithm

1. Evaluate the initial population S of random solutions.

2. While stopping criterion not met, do:

2.1 Calculate the force of solutions sj on solution si, where j = i.

2.2 Move each solution si according to the forces of other solutions.

2.3 Evaluate each new solution.

Fig. 6 Outline of electromagnetism-like optimization algorithm

force vector Fi is determined as follows:

Fi =
⎧⎨⎩

∑|S|
j=1, j �=i (s j − si )

qi q j

‖s j −si ‖2 if f (s j ) < f (si )∑|S|
j=1, j �=i (si − s j )

qi q j

‖s j −si ‖2 if f (s j ) ≥ f (si )
. (8)

In this way, a point with a superior objective function value

attracts the other points, while a point with an inferior ob-

jective value repels them. The forces exerted on si by the

other points are combined by means of vector summation.

The movement of the points according to the resulting forces

is then performed (Step 2.2 in Fig. 6), which generates a

new population. The imposed force is normalized by divi-

sion with its norm and therefore only identifies the direction

of the move, not the magnitude. The magnitude of each move

is determined for each dimension separately according to the

charges ratio of the involved solutions.

3.6 Multilevel ant stigmergy algorithm

Dorigo and coworkers originally proposed the ant colony

optimization algorithm [3, 4] inspired by the social behav-

ior of real ants in exploring their environment. To find an

optimal path from their nest to a location of interest, such

as food source, they deposit a chemical called pheromone

and follow the pheromone trails of other ants. In the ant

colony optimization algorithm, the artificial ants incremen-

tally construct solutions by adding solution components to

a partial solution under consideration. The multilevel ant

stigmergy algorithm (MASA) [10] is a new approach to

solving multiparameter optimization problems based on ant

colony optimization and stigmergy, a type of collective work

observed in ant colonies. MASA consists of four phases

that are explained in the following paragraphs (see also

Fig. 7).

Search graph construction. The problem parameters are

transformed into a search graph where vertices represent dis-

crete values of parameters. A vertex representing a parameter

value is connected to all vertices representing the values of the

next parameter. In this way, the multiparameter optimization

problem is transformed into a problem of finding the cheapest

path. The complexity of search graph construction is O(nm)

where nm is the total number of vertices in the graph that

equals to the product of the number of problem parameters,

n, and the average number of values per parameter, m.

Coarsening. The graph is coarsened to a predetermined size.

Coarsening is done by merging two or more vertices that

represent discretized values of the same parameter into one

vertex; this is achieved in L iterations (we call them levels).

In the coarsened graph the initial amount of pheromone is

deployed in all vertices.
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Multilevel Ant Stigmergy Algorithm

1. Construct the search graph from all parameters.

2. Coarsen the graph in L levels.

3. Initialize vertices with initial amount of pheromone.

4. For all levels from L down to 1, do:

4.1. While current level stopping criterion not met, do:

(a) For all ants find the cheapest path (using probability rule).

(b) Update pheromone amounts in all vertices visited by the ants.

(c) Additionally increase the pheromone amounts on currently best path (daemon action).

(d) Evaporate pheromone in all vertices.

4.2. Refine the graph by one level.

Fig. 7 Outline of the multilevel
ant stigmergy algorithm

Optimization. Here the algorithm applies the optimization

procedure based on ant colony optimization [5] (Loop 4.1 in

Fig. 7). All ants simultaneously start from the starting vertex.

The probability of choosing the next vertex depends on the

amount of pheromone in the vertices. Ants repeat this action

until they reach the ending vertex. The parameter values gath-

ered on each ant’s path represent a candidate solution which

is then evaluated according to the given objective function.

Afterwards, each ant returns to the starting vertex, on its way

depositing pheromone in the vertices according to the evalu-

ation result: the better the result, the more pheromone is de-

posited. If the gathered parameter values form an infeasible

solution, the amount of pheromone in the parameter vertices

is slightly decreased. When the ants return to the starting

vertex, two additional actions are performed. First, like in

ant colony optimization, a “daemon action” is applied as a

kind of elitism, i.e., the pheromone amount on the currently

best path is additionally increased. Second, the pheromone

in all vertices evaporates, i.e., in each vertex the amount of

pheromone is decreased by some predetermined percentage.

Refinement. The coarsened graph is refined by one level. All

vertices created from one vertex have the same amount of

pheromone as the original one. When refinement is done,

the optimization phase continues. These two phases are re-

peated until the graph is expanded to its original size and the

optimization performed on every level of the expansion.

4 Experimental evaluation

4.1 Experimental setup

As explained in Section 2.2, we optimize ten parameters of

the UM rotor and stator geometry. Predefined search intervals

for their values are used and the discretization step for all

parameters is 0.1 mm. Table 1 summarizes the number of

possible settings for each parameter. Therefore, the size of

the search space can be obtained as a product of the numbers

Table 1 Number of possible settings for the optimized UM geometry
parameters

Parameter Number of settings

stator width 102

stator yoke horizontal thickness 170

stator yoke vertical thickness 270

stator middle part length 150

stator internal edge radius 140

stator teeth radius 37

stator slot radius 45

rotor yoke thickness 130

rotor external radius 200

rotor pole width 45

of possible settings over all parameters. It turns out to be

approximately 1.92 × 1020 points.

Five out of six applied optimization methods, GEA,

SSEA, DE, PSO and EM, need an initial population of so-

lutions to start the search. If the initial solutions are created

as random points in the search space, many of them are in-

feasible, i.e., result in a nonfunctional geometry. To estimate

the proportion of infeasible solutions in the search space,

a simple experiment was carried out. 30,000 points in the

search space were chosen randomly. Among them only seven

were found feasible. To assist the population-based methods

in finding feasible solutions, the initial populations did not

consist of random solutions, but rather of solutions that were

random perturbations of the original engineering solution.

Unlike the other applied methods that gradually improve

the solutions, MASA is a solution-construction method. Ini-

tial experiments with MASA on the UM geometry optimiza-

tion problem have shown this algorithm is capable of suc-

cessfully navigating the search from infeasible to feasible

regions. The multilevel approach significantly reduces the

search space in the early stages of exploration. This reduction

enables MASA to perform well without any background in-

formation on the feasibility of solutions. Through stigmergy,

infeasible regions in the search space are found less attractive
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by the ants, and consequently the search focuses on feasible

ones.

The algorithmic settings were determined according to

computational complexity limitations and experience from

previously performed simulation-based optimization stud-

ies [11,16]. The stopping criterion for all optimization meth-

ods was specified by the number of solutions to be evaluated.

It was set to 1400 and this value was chosen considering

the computational complexity of the optimization procedure.

The evaluation of a single solution through ANSYS simula-

tion on an AMD 1.8 GHz computer took approximately two

minutes and the execution of 1400 evaluations took about

two days. Other algorithm parameters were set as follows.

The evolutionary algorithms GEA, SSEA and DE all used

population size 20 and crossover probability 0.9. GEA and

SSEA used mutation probability 0.05 and tournament size 2.

The scaling factor in DE was set to 0.5. PSO also used popu-

lation size 20. The learning factors c1 and c2 were calculated

for each move as 1 + r , where r denotes a random number

in the interval (0, 1). The inertia weight ω was calculated for

each move as 0.1 + 0.9r and the maximum change of par-

ticle velocity vmax was set according to the bounds of each

optimized value. EM used population size 20 and magnitude

factor of moves 1.3. The settings for MASA were deter-

mined regarding the optimization parameter with the highest

number of possible values. This was the stator yoke vertical

thickness with 270 possible settings (see Table 1). Accord-

ingly, MASA operated with seven levels. At each level, 200

evaluations were performed by ten ants climbing down the

graph 20 times.

4.2 Results of the applied methods

The optimization methods were run 20 times. The obtained

results in terms of the UM power losses are presented statis-

tically in Table 2. The methods’ performance diagrams are

split across three figures for better clarity. Figure 8 compares

the performance of the three evolutionary algorithms, namely

GEA, SSEA and DE, with the performance of the original

engineering solution that amounted to 177.9 W, while Fig. 9

presents the diagrams of the other three methods, PSO, EM

and MASA, together with the original engineering solution

and DE as the best evolutionary method. The performance

of MASA is shown entirely in Fig. 10.

The results first of all show that all the applied methods

significantly improve the original engineering design of the

UM rotor and stator. Specifically, the geometry parameter

settings with minimum power losses were found by MASA.

The second best method was DE, followed by GEA, SSEA

and PSO that performed comparably well, and EM that per-

formed a little worse. While PSO and EM have a very fast

initial convergence, they are later unable to find solutions as

good as those of the other methods. Figures 8 and 9 show

Table 2 Result statistics for the optimization methods (UM power
losses in watts)

Method Best Average Worst St. dev.

EM 134.9 141.9 148.0 3.7

PSO 132.1 139.2 145.5 4.6

SSEA 131.4 137.7 148.8 5.4

GEA 131.3 136.7 147.4 4.5

DE 129.1 132.9 139.9 3.3

MASA 114.2 128.9 135.9 7.8
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Fig. 8 Performance of the evolutionary algorithms in optimizing UM
rotor and stator geometry parameters: averages over 20 runs
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Fig. 9 Performance of DE, PSO, EM and MASA in optimizing UM
rotor and stator geometry parameters: averages over 20 runs

the difference in the course of optimization of the six applied

methods. While DE, GEA, SSEA, PSO and EM all start with

the engineering solution originally used in motor production

and evolve rather slowly, MASA starts with randomly cre-

ated solutions that result in high power losses, but rapidly

improve during the course of run (see Fig. 10). The aver-

aged performance trace of MASA is not monotonic, as only

feasible solutions are taken into account in calculating the

average. Infeasible solutions get a predefined high value of

losses during the evaluation procedure and are excluded when
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Table 3 Improvement of the
results (UM power losses in
watts) with local optimization
(LO)

Best Best Average Average Average LO

Method before LO after LO before LO after LO improvement steps

EM 134.9 133.4 141.9 139.3 2.6 153

PSO 132.1 131.9 139.2 139.0 0.2 38

SSEA 131.4 130.5 137.7 137.4 0.4 49

GEA 131.3 129.5 136.7 135.7 1.1 76

DE 129.1 129.1 132.9 132.5 0.4 50

MASA 114.2 111.1 128.9 126.2 2.7 116
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Fig. 10 Performance of MASA averaged over 20 runs

calculating the average. Furthermore, when MASA finds the

first feasible solution, this solution typically results in high

power losses and can increase the average value found. This

phenomenon disappears when all 20 runs reach feasible so-

lutions. In the experiments shown, this happened after 421

evaluations.

In six out of 20 runs, MASA was able to find geometry

parameter values resulting in power losses under 120 W. In

the rest 14 runs it performed comparably to DE.

4.3 Local optimization of solutions

To check for possible further improvement, the best solu-

tion from each run of every applied optimization method

was subject to local optimization. The steepest-descent local

optimization was applied and the procedure was not limited

with a predefined number of steps. It rather stopped when

a local minimum was encountered. The statistics of the im-

provements are given in Table 3.

From these results one can see that the solutions found by

the methods SSEA, GEA, DE and PSO were closer to local

minima than the ones found by MASA and EM, i.e., fewer

steps were needed to reach a local minimum from the solu-

tions obtained by evolutionary methods and PSO than MASA

and EM. Accordingly, the former could be improved with lo-

cal optimization to a lower extent than the latter. Moreover,

even together with local optimization, the evolutionary meth-

ods could not find the solutions with power losses around 115

W. They seem to be stuck in local minima with values around

130 W. This was also noted for those solutions produced by

MASA that had power losses values near 130 W before local

optimization.

4.4 Resulting rotor and stator geometries

By applying selected stochastic optimization methods and

locally improving the obtained solutions, we found various

UM rotor and stator geometry parameter settings that min-

imize the power losses. The optimization procedures were

however driven according to the results of computer simu-

lation. To provide a more realistic evaluation, we submitted

the resulting designs to an expert designer to analyze them

from the technical and production points of view. Here we

compare the original engineering design created by domain

experts and used as a starting point for the population-based

methods with two optimized designs.

The original engineering rotor and stator design results

in power losses of 177.9 W and can be viewed in Fig. 11.

The figure shows the magnetic flux density in the laminations

(darker areas denote higher magnetic flux density that causes

higher power losses).

Fig. 11 Laminations of the original engineering rotor and stator design
with power losses of 177.9 W
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Fig. 12 Laminations of the rotor and stator design with minimum
power losses (111.1 W) as found in the optimization experiments

Fig. 13 Laminations of a locally optimal rotor and stator design ac-
ceptable from the production point of view (power losses 129.1 W)

The best rotor and stator geometry obtained in numerical

optimization experiments generates power losses of 111.1

W. It was found by MASA with local optimization, and is

presented in Fig. 12. These laminations have large rotor and

stator slots, and therefore low copper losses and overall power

losses. The difficulty with this design is, however, in the

strange dimensions of the stator pole. Its narrow middle part

makes it unacceptable for production. This outcome is due to

the settings in the simulation script. It could be modified by

inserting additional constraints on the stator geometry. Once

they are specified, a new optimization cycle will be necessary.

At this stage, however, the goal of our study is to check for

possible improvements of the engineering UM design and

compare the optimization methods on this problem.

We finally present a typical example of a feasible rotor

and stator geometry (Fig. 13). It was found by both DE

and MASA and its power losses are 129.1 W. This solu-

tion has very low iron losses in the rotor due to its small

size and despite its high magnetic saturation (dark area). The

small rotor and its saturation are compensated by large sta-

tor poles that ensure large enough magnetic flux. This de-

sign is feasible from the technical and production points of

view.

5 Conclusion

We have performed a comparative study of six stochastic

optimization methods in computer-assisted design of UM

rotor and stator geometry. The primary design goal was to

minimize the power losses, however, the resulting designs

were also evaluated by an expert designer from the point of

view of feasibility for use in regular production. The applied

methods were generational evolutionary algorithm, steady-

state evolutionary algorithm, differential evolution, particle

swarm optimization, electromagnetism-like algorithm and

multilevel ant stigmergy algorithm. They were employed in

optimizing the geometry parameters of an UM already in

regular production. The optimization procedures were cou-

pled with a numerical simulator that evaluated the candidate

solutions.

The output of this study can be summarized in several im-

portant findings. Above all, all tested optimization methods

were able to significantly improve the original engineering

design. Among the tested methods, the recently proposed

optimization technique MASA generated designs with min-

imum power losses. Its additional advantage shown on this

problem was the capability of successfully performing the

optimization from random starting points, which was not

the case with other methods. In our opinion, the superiority

of MASA arises from its multilevel search feature, which

appears to be particularly suitable for coping with search

spaces characterized by small proportion of feasible solu-

tions. While this advantageous property has been empiri-

cally confirmed on a specific problem in this study, further

research will be needed to investigate if it generalizes to a

class of optimization problems.

The analysis of the optimized UM rotor and stator geome-

tries by an expert designer revealed some deficiencies of the

designs with very low power losses. Although perfect with

respect to the primary design goal, they turned out to be infea-

sible for regular production because of the limitations in the

manufacturing process. This result calls for the refinement

of the optimization script with additional constraint and new

optimization cycle. This is planned as part of the future work.

On the methodological side, the multilevel approach found

beneficial with MASA, is worth of exploration in combina-

tion with other optimization methods.
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